

RF TEST REPORT

For

Linksmart Technology(Zhongshan) Co..Ltd.
Product Name: LCD projector

Test Model(s): Y5N

Report Reference No. : DACE250701005RL004

FCC ID : 2BHDN-Y5N

Applicant's Name: Linksmart Technology(Zhongshan) Co..Ltd.

Address : No,11, Yingbin Avenue, Banfu Town, Zhongshan City, China

Testing Laboratory: Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

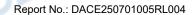
Guangdong, China

Test Specification Standard : 47 CFR Part 15E

Date of Receipt : July 1, 2025

Date of Test : July 1, 2025 to July 23, 2025

Data of Issue : July 23, 2025


Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 108

Apply for company information

Applicant's Name	:	Linksmart Technology(Zhongshan) CoLtd.	
Address	:	No,11,Yingbin Avenue, Banfu Town, Zhongshan City, China	
Product Name	:	LCD projector	
Test Model(s)	:	Y5N	V
Series Model(s)		Y5N-1, Y5N-2, Y5N-3, Y5N-4	
Test Specification Standard(s)	3	47 CFR Part 15E	

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by: Keren Huang Supervised by:

Approved by:

Keren Huang
Keren Huang / Test Engineer

Ben pany

Machael Mo / Manager

July 23, 2025

Ben Tang / Project Engineer
July 23, 2025

July 23, 2025

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 108

DAG

Report No.: DACE250701005RL004

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE250701005RL004	July 23, 2025
	1	2	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 108

DAG

V1.0

CONTENTS

1 TEST SUMMARY	6
1.1 Test Standards	
2 GENERAL INFORMATION	7
2.1 CLIENT INFORMATION	
2.1 CLIENT INFORMATION	
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	
2.5 EQUIPMENTS USED DURING THE TEST	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	.14
4.1.1 E.U.T. Operation:	.14
4.1.2 Test Setup Diagram:	.14
4.1.3 Test Data:	. 15
4.2 DUTY CYCLE	. 17
4.2.1 E.U.T. Operation:	.17
4.2.2 Test Setup Diagram:	.17
4.2.3 Test Data:	
4.3 EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 MAXIMUM CONDUCTED OUTPUT POWER	
4.4.1 E.U.T. Operation:	
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 POWER SPECTRAL DENSITY	
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 BAND EDGE EMISSIONS (RADIATED)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Data:	
4.7 UNDESIRABLE EMISSION LIMITS (BELOW 1GHz)	
4.7.1 E.U.T. Operation: 4.7.2 Test Data:	
4.7.2 Test Data:	
4.8.1 E.U.T. Operation:	.40
4.8.2 Test Data:	40

DAG

5	TEST SETUP PHOTOS	52
6	TEST SETUP PHOTOSPHOTOS OF THE EUT	52
ΑI	PPENDIX-5.2G_WIFI	52
	126dB and 99% Emission Bandwidth	53
	2. MAXIMUM CONDUCTED OUTPUT POWER	62
	3. POWER SPECTRAL DENSITY	63
	4. BANDEDGE	68
	5. Spurious Emission	72
	6. Frequency Stability	
ΑI	PPENDIX-5.8G_WIFI	78
	16DB EMISSION BANDWIDTH	79
	226DB AND 99% EMISSION BANDWIDTH	
	3. MAXIMUM CONDUCTED OUTPUT POWER	
	4. POWER SPECTRAL DENSITY	94
	5. BANDEDGE	
	6. Spurious Emission	103
	7. Frequency Stability	108

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 108

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15E		Part 15.203	Pass
Duty Cycle	47 CFR Part 15E	ANSI C63.10-2020 section 12.2 (b)	- 6	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Maximum conducted output power	47 CFR Part 15E	ANSI C63.10-2020, section 12.4	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	ANSI C63.10-2020, section 12.6	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	ANSI C63.10-2020, section 12.7.4, 12.7.5	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 108

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Linksmart Technology(Zhongshan) Co..Ltd.

Address : No,11,Yingbin Avenue, Banfu Town, Zhongshan City, China

Manufacturer : Linksmart Technology(Zhongshan) Co..Ltd.

Address : No,11,Yingbin Avenue, Banfu Town, Zhongshan City, China

2.2 Description of Device (EUT)

Product Name:	LCD projector
Model/Type reference:	Y5N
Series Model:	Y5N-1, Y5N-2, Y5N-3, Y5N-4
Model Difference:	The product has many models, only the model name and color is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	E EXTRAVIS
Power Supply:	DC 32V/2.1A from adapter
Operation Frequency:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80)/ax(HE80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz
Number of Channels:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(HT80)/ax(HE80): U-NII Band 1: 1; U-NII Band 3: 1
Modulation Type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Antenna Type:	FPC Antenna
Antenna Gain:	3dBi
Hardware Version:	V1.0
Software Version:	V1.0

Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for this data and the related calculations associated with it

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 108

Operation Frequency each of channel

802.11a/n(HT20)/ac(HT20)/ax(HT20)

	U-NII Band 1	U-NII Band 3
Channel	Frequency	Frequency
1	5180 MHz	5745 MHz
2	5200 MHz	5765 MHz
3	5220 MHz	5785 MHz
4	5240 MHz	5805 MHz
5	/	5825 MHz

802.11n(HT40)/ac(HT40)/ax(HT40)

	U-NII Band 1	U-NII Band 3
Channel	Frequency	Frequency
1	5190 MHz	5755 MHz
2	5230 MHz	5795 MHz

802.11ac(HT80)/ax(HT80)

	U-NII Band 1	U-NII Band 3
Channel	Frequency	Frequency
1	5210 MHz	5775 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11a/n(HT20)/ac(HT20)/ax(HT20)		
	U-NII Band 1	U-NII Band 3
Test channel	Frequency (MHz)	Frequency (MHz)
Lowest channel	5180 MHz	5745 MHz
Middle channel	5200 MHz	5785 MHz
Highest channel	5240 MHz	5825 MHz

802.11n(HT40)/ac(HT40)/ax(HT40)			
	U-NII Band 1 U-NII Band 3		
Test channel	Frequency (MHz)	Frequency (MHz)	
Lowest channel	5190 MHz	5755 MHz	
Highest channel	5230 MHz	5795 MHz	

802.11ac(HT80)/ax(HT80)		
U-NII Band 1 U-NII Band 3		
Test channel	Frequency (MHz)	Frequency (MHz)
Middle channel	5210 MHz	5775 MHz

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 8 of 108

2.3 Description of Test Modes

V1.0

No	Title	Description
TM1	802.11a mode	Keep the EUT in continuously transmitting mode with 802.11a modulation type at lowest, middle and highest channel. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT in continuously transmitting mode with 802.11n modulation type at lowest, middle and highest channel. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМ3	802.11ac mode	Keep the EUT in continuously transmitting mode with 802.11ac modulation type at lowest, middle and highest channel. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM4	802.11ax mode	Keep the EUT in continuously transmitting mode with 802.11ax modulation type at lowest, middle and highest channel. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Report No.: DACE250701005RL004

Remark:were performed with duty cycle above 98%, meet the requirements of KDB789033.Only the data of the worst mode would be recorded in this report.

2.4 Description of Support Units

The EUT was tested as an independent device.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 108

2.5 Equipments Used During The Test

Conducted Emission at AC power line									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2025-04-23	2026-04-22				
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	2025-04-18	2026-04-17				
Cable	SCHWARZ BECK	100	1	2025-04-18	2026-04-17				
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05				
50ΩCoaxial Switch	Anritsu	MP59B	M20531	1	/				
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	1164.6607K03 -102109-MH	2025-04-25	2026-04-24				
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2025-04-18	2026-04-17				
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2025-04-18	2026-04-17				
Pulse Limiter	CYBERTEK	EM5010A	/	2024-09-27	2025-09-26				
EMI test software	EZ -EMC	EZ	V1.1.42	1	1				

6dB Bandwidth

Maximum Conducted Output Power

Power Spectral Density

Emissions in non-restricted frequency bands

Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	1	1		
MIDEWEST	PWD-2533	SMA-79	2025-04-18	2026-05-10		
Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	/		
R&S	CMW500	113410	2025-04-25	2026-04-24		
Keysight	N5181A	MY50143455	2024-12-06	2025-12-05		
Keysight	N5182A	MY48180415	2024-12-06	2025-12-05		
Keysight	N9020A	MY53420323	2024-12-06	2025-12-05		
	Tachoy Information Technology(she nzhen) Co.,Ltd. MIDEWEST Tachoy Information Technology(she nzhen) Co.,Ltd. R&S Keysight Keysight	Tachoy Information Technology(she nzhen) Co.,Ltd. MIDEWEST Tachoy Information Technology(she nzhen) Co.,Ltd. R&S CMW500 Keysight N5181A Keysight N5182A	Tachoy Information Technology(she nzhen) Co.,Ltd. MIDEWEST PWD-2533 SMA-79 Tachoy Information Technology(she nzhen) Co.,Ltd. R&S CMW500 113410 Keysight N5181A MY50143455 Keysight N5182A MY48180415	Tachoy Information Technology(she nzhen) Co.,Ltd. RTS-01 V1.0.0 / MIDEWEST PWD-2533 SMA-79 2025-04-18 Tachoy Information Technology(she nzhen) Co.,Ltd. TR1029-2 000001 / R&S CMW500 113410 2025-04-25 Keysight N5181A MY50143455 2024-12-06 Keysight N5182A MY48180415 2024-12-06		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 10 of 108 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Emissions in frequency bands (above 1GHz) Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz)

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	1	1
Positioning Controller	MF	MF-7802	<u>e</u> '	1	/
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2024-04-26	2027-04-25
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2024-04-26	2027-04-25
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2025-04-28	2026-04-27
Cable(LF)#2	Schwarzbeck	1	1	2024-12-19	2025-12-18
Cable(LF)#1	Schwarzbeck	1	1	2024-12-19	2025-12-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2025-04-25	2026-04-24
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2025-04-25	2026-04-24
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2025-04-29	2026-04-28
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2025-04-29	2026-04-28
Wideband radio communication tester	R&S	CMW500	113410	2025-04-25	2026-04-24
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2025-04-18	2026-04-17
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2025-04-18	2026-04-17
Horn Antenna	Sunol Sciences	DRH-118	A091114	2025-04-21	2026-04-20
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 108

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty		
Duty cycle	±3.1%		
Occupied Bandwidth	±3.63%		
RF conducted power	±0.733dB		
RF power density	±0.234%		
Radiated Emission (Above 1GHz)	±5.46dB		
Radiated Emission (Below 1GHz)	±5.79dB		

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

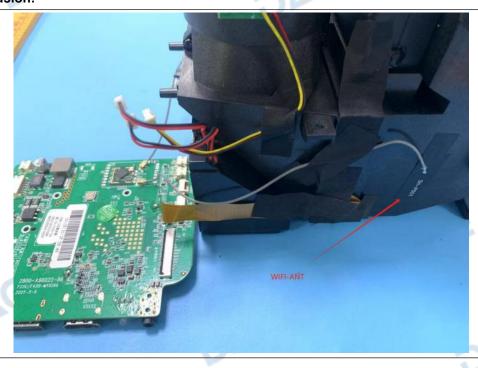
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 12 of 108

3 Evaluation Results (Evaluation)


V1.0

3.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

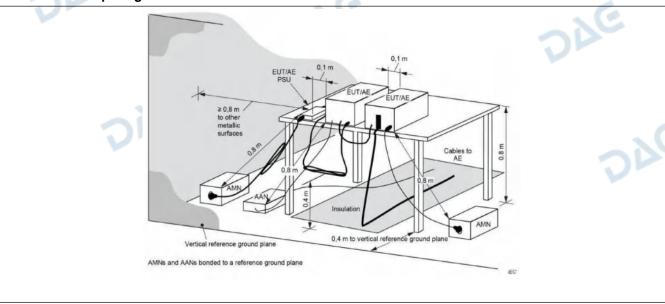
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 13 of 108

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

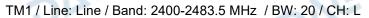
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)							
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
\	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2020 section 6.2							
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							

4.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	Temperature: 23.4 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	TM1			V			
Final test mode	TM1						

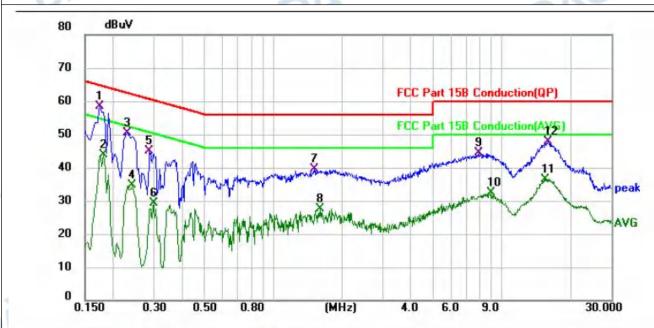
4.1.2 Test Setup Diagram:

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 14 of 108



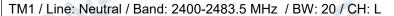
4.1.3 Test Data:

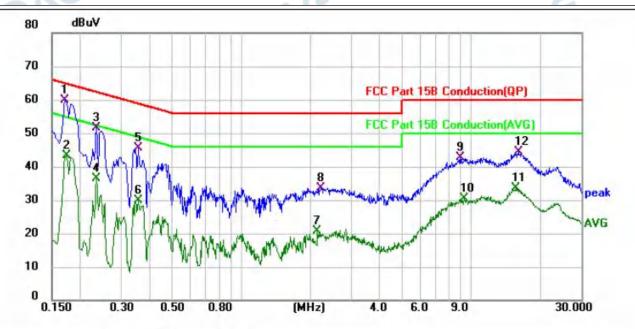
V1.0

Dooding

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1740	48.21	10.10	58.31	64.77	-6.46	QP		
2		0.1819	33.65	10.10	43.75	54.40	-10.65	AVG		
3		0.2300	40.26	10.09	50.35	62.45	-12.10	QP		
4		0.2420	24.56	10.09	34.65	52.03	-17.38	AVG		
5		0.2860	34.79	10.09	44.88	60.64	-15.76	QP		
6		0.2980	19.11	10.09	29.20	50.30	-21.10	AVG		
7		1.5180	29.53	10.06	39.59	56.00	-16.41	QP		
8		1.5940	17.66	10.05	27.71	46.00	-18.29	AVG		
9		7.8980	34.05	10.26	44.31	60.00	-15.69	QP		
10		8.9379	22.10	10.28	32.38	50.00	-17.62	AVG		
11		15.4100	26.02	10.51	36.53	50.00	-13.47	AVG		
12		15.9060	37.37	10.52	47.89	60.00	-12.11	QP		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

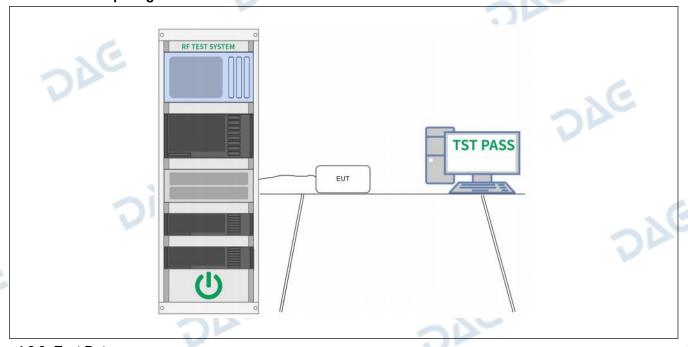

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 15 of 108

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1700	49.71	10.08	59.79	64.96	-5.17	QP	
2		0.1740	33.16	10.08	43.24	54.77	-11.53	AVG	
3		0.2340	41.54	10.08	51.62	62.31	-10.69	QP	
4		0.2340	26.36	10.08	36.44	52.31	-15.87	AVG	
5		0.3580	35.38	10.07	45.45	58.77	-13.32	QP	
6		0.3580	19.79	10.07	29.86	48.77	-18.91	AVG	
7		2.1420	10.73	10.01	20.74	46.00	-25.26	AVG	
8		2.2340	23.56	10.01	33.57	56.00	-22.43	QP	
9		8.9940	32.29	10.30	42.59	60.00	-17.41	QP	
10		9.2700	19.97	10.32	30.29	50.00	-19.71	AVG	
11		15.6700	22.97	10.49	33.46	50.00	-16.54	AVG	
12		15.9860	33.92	10.50	44.42	60.00	-15.58	QP	


4.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

4.2.1 E.U.T. Operation:

Operating Envir	onment:				V	•
Temperature:	23.4 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3, 7	ГМ4		
Final test mode:		TM1,	TM2, TM3, 7	ГМ4		

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 17 of 108

4.3 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
×C	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the
	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
Procedure:	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak. d) Trace mode = max hold.
1	e) Measure the maximum width of the emission that is 26 dB down from the peak of
	the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement
· C.	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bendoids
1	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times
	the OBW.
DIE	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
OP	and VBW shall be approximately three times the RBW, unless otherwise specified
	by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from
	exceeding the
	maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given
3	in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single
	sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace
XC	data points are recovered and directly summed in linear power terms. The recovered amplitude
	data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until
	99.5% of the
. 6	total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is
100 B 315 114 0 4/5 B 315 114 1	Dalluwiuli i S

Report No.: DACE250701005RL004

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

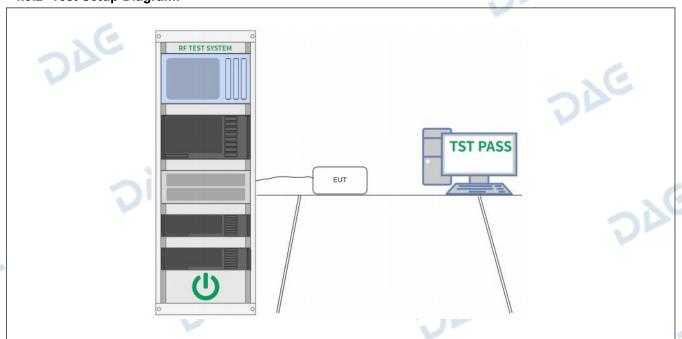
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 108

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).


6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.3.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	23.4 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3, 7	ГМ4		
Final test mode	:	TM1,	TM2, TM3, 7	ГМ4	3	C

4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to Appendix for Details.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 19 of 108

4.4 Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	DAG
	(/ (/ (/	
Test Limit:	For an outdoor access point operating in the ban	d 5.15-5.25 GHz, the maximum

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.

For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

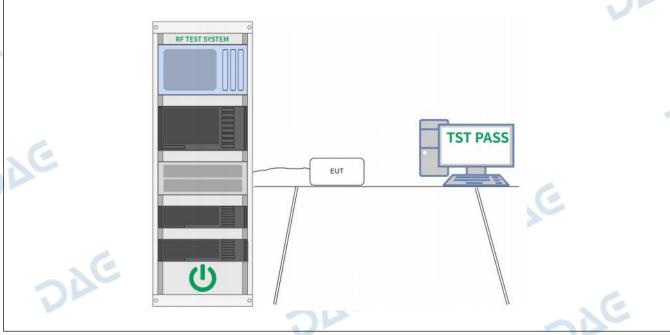
For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 108

 Test Method:
 ANSI C63.10-2020, section 12.4


 Procedure:
 Refer to ANSI C63.10-2020 section 12.4

Report No.: DACE250701005RL004

4.4.1 E.U.T. Operation:

Operating Environment	onment:						
Temperature:	23.4 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	. 7.0	TM1,	TM2, TM3, 7	ГМ4	. 6		
Final test mode:)	TM1,	TM2, TM3, 7	ГМ4	70		

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

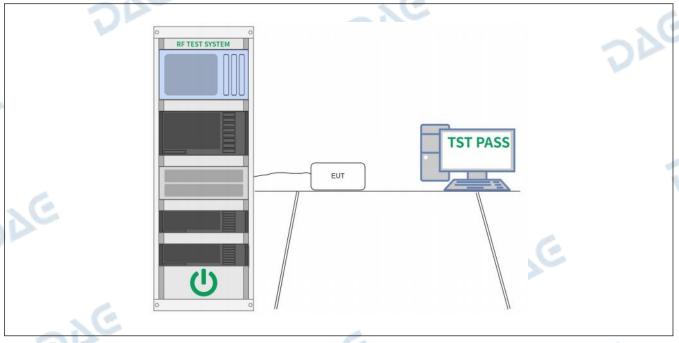
E-mail: service@dace-lab.com

Page 21 of 108

4.5 Power spectral	density
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
. 6	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
DIE	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
20	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.
DIE	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613 Page 22 of 108 Web: http://www.dace-lab.com E-mail: service@dace-lab.com



4.5.1 E.U.T. Operation:

Operating Envir	onment:			$\sim N$			- 3/6	
Temperature:	23.4 °C		Humidity:	50 %	Atmospheric Pr	essure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3,	ГМ4				
Final test mode:		TM1,	TM2, TM3, 7	ГМ4				

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 23 of 108

4.6 Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)
l _	

Test Limit:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Report No.: DACE250701005RL004

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of –27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

ubili/ivii iz at the band e	ago.		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 108

² Above 38.6

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Procedure:

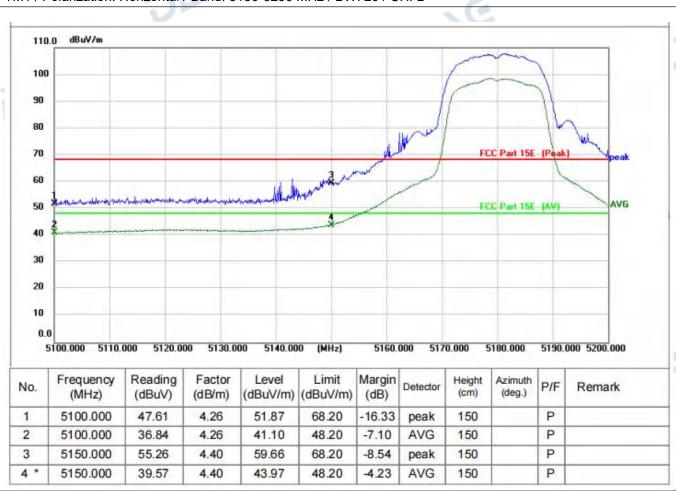
Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB

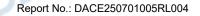
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 108

under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

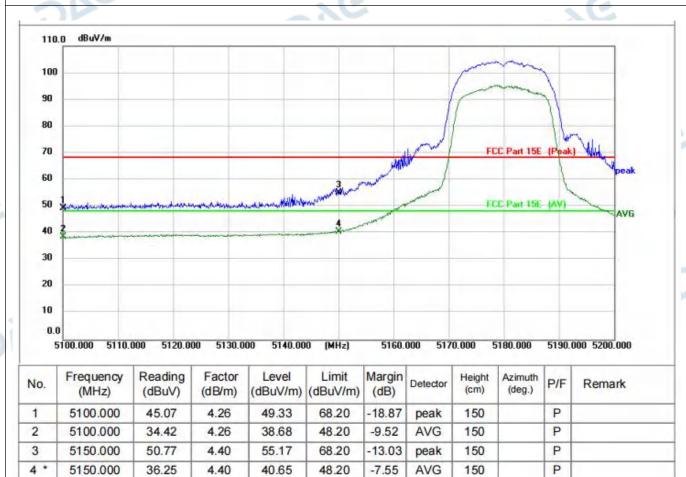

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

4.6.1 E.U.T. Operation:


Operating Environment:					
Temperature: 23.4 °C	Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	TM1, TM2, TM3,	TM4			7
Final test mode:	TM1, TM2, TM3,	TM4			ON

4.6.2 Test Data:

TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: L



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 108

TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: L

TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5260.000	59.45	4.73	64.18	68.20	-4.02	peak	150		Р	
2 *	5260.000	41.27	4.73	46.00	48.20	-2.20	AVG	150		Р	
3	5300.000	46.95	4.85	51.80	68.20	-16.40	peak	150		Р	
4	5300.000	35.12	4.85	39.97	48.20	-8.23	AVG	150		P	

5260.000

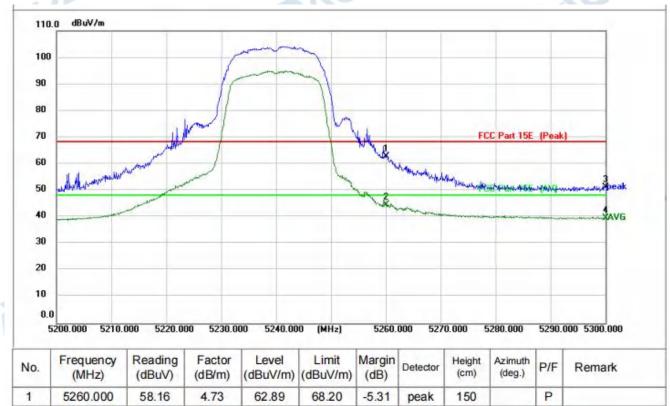
5270.000

5280.000

5290.000 5300.000

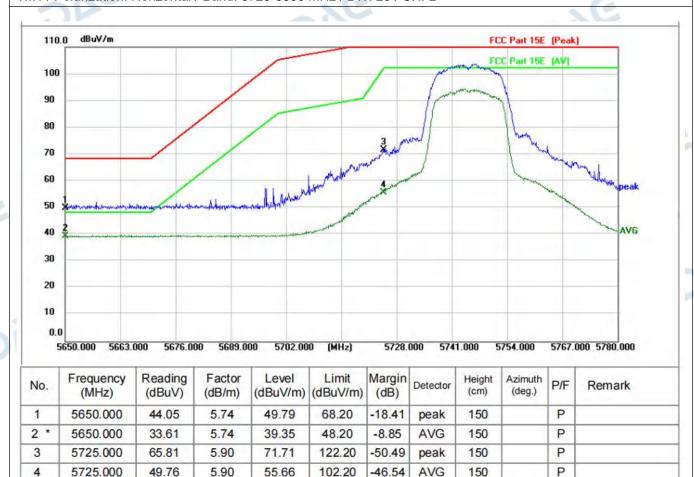
0.0

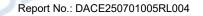
5210.000


5220.000

5230.000

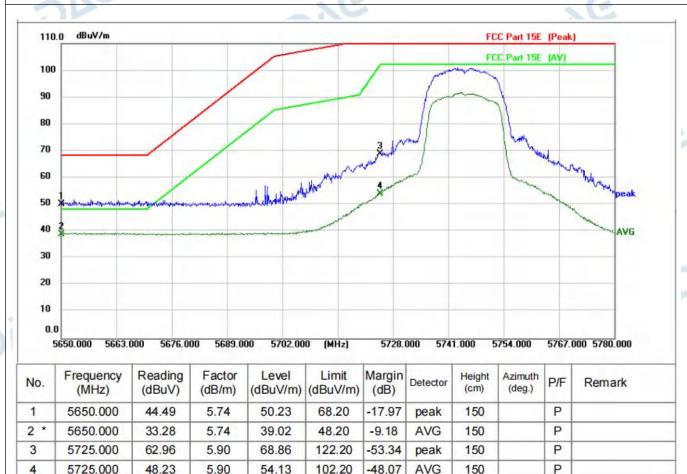
5240.000


TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: H



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5260.000	58.16	4.73	62.89	68.20	-5.31	peak	150		P	
2 *	5260.000	40.05	4.73	44.78	48.20	-3.42	AVG	150		P	
3	5300.000	46.39	4.85	51.24	68.20	-16.96	peak	150		Р	
4	5300.000	34.77	4.85	39.62	48.20	-8.58	AVG	150		Р	

TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: L



4

5725.000

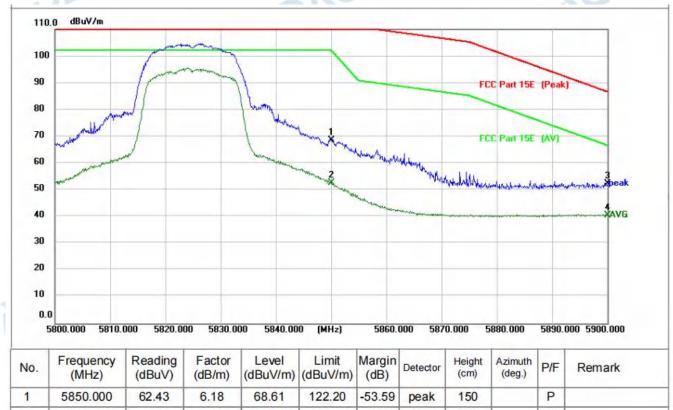
TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: L

5.90

102.20

-48.07

AVG


150

54.13


DAG

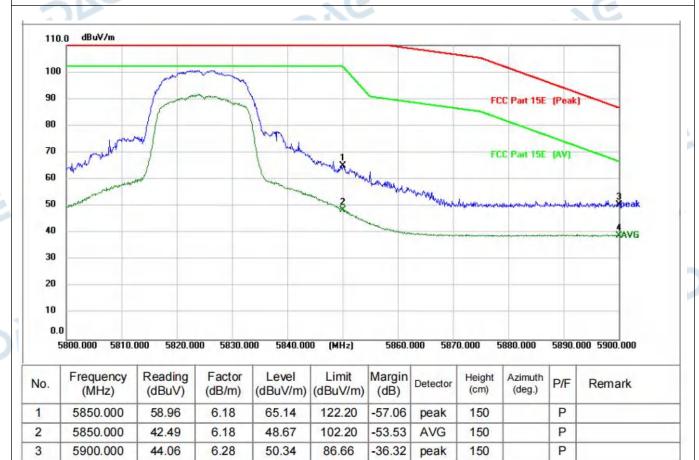
TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5850.000	62.43	6.18	68.61	122.20	-53.59	peak	150		Р	
2	5850.000	46.45	6.18	52.63	102.20	-49.57	AVG	150		Р	
3	5900.000	46.07	6.28	52.35	86.66	-34.31	peak	150		Р	
4 *	5900.000	34.38	6.28	40.66	66.66	-26.00	AVG	150		Р	

TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: H

6.28

39.03


66.66

32.75

4 *

DAG

5900.000

AVG

150

-27.63

P

4.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	3112 ₎	7.G					
Test Limit:	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.							
		ere in this subpart, the emissions e field strength levels specified ir						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
DIG	these frequency bands is p and 15.241. In the emission table above The emission limits shown employing a CISPR quasi-p 110–490 kHz and above 10	4-216 MHz or 470-806 MHz. Howermitted under other sections of the tighter limit applies at the basin the above table are based on receal detector except for the frequitor of the management of the management of the frequitor of	and edges. measurements uency bands 9–90 kHz, s in these three bands					
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.5	270					
Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be								
)AE	reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using quasi-peak method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor							

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

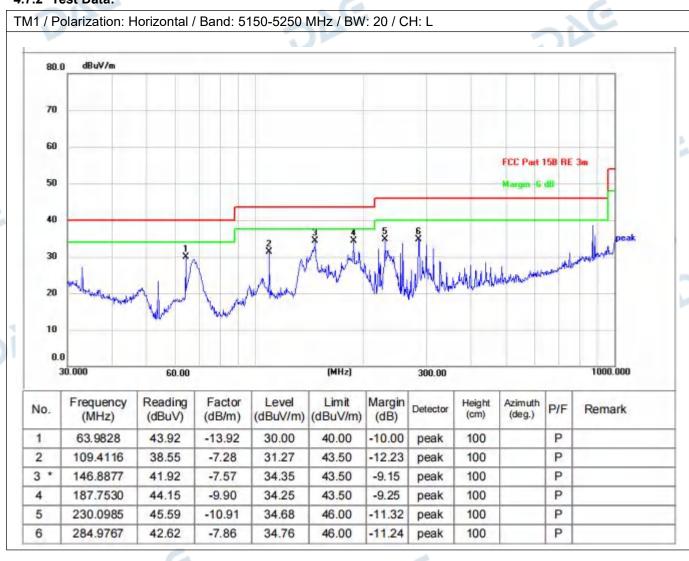
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 34 of 108

- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

4.7.1 E.U.T. Operation:


Operating Environment:									
Temperature:	23.4 °C		Humidity:	50 %		Atmospheric Pressure:	102 kPa		
Pretest mode:	TM1,	TM2, TM3, 7	ГМ4		4	C			
Final test mode:	TM1,	TM2, TM3, 7	ГМ4		2				

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 35 of 108

DAC

Report No.: DACE250701005RL004

4.7.2 Test Data:

46.16

44.81

48.93

-8.23

-8.99

-9.41

153.2003

181.2834

187.7530

4!

6!

Report No.: DACE250701005RL004

P

P

P

TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: L dBuV/m 80.0 70 60 FCC Part 15B RE 3m 50 40 30 20 10 0.0 30,000 (MHz) 1000.000 60.00 300.00 Level Margin Frequency Reading Factor Limit Height Azimuth No. Detector P/F Remark (cm) (deg.) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1! 48.5015 48.16 -12.5435.62 40.00 -4.38QP P 2! 68.1514 50.73 -13.0237.71 40.00 -2.29QP P 146.8876 49.36 -7.89 41.47 43.50 -2.03 QP Р 3 *

-5.57

-7.68

-3.98

QP

QP

QP

43.50

43.50

43.50

37.93

35.82

39.52

4.8 Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)
l _	

Test Limit:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Report No.: DACE250701005RL004

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of –27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

ubili/ivii iz at tile ballu e	ago.		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 38 of 108

² Above 38.6

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Procedure:

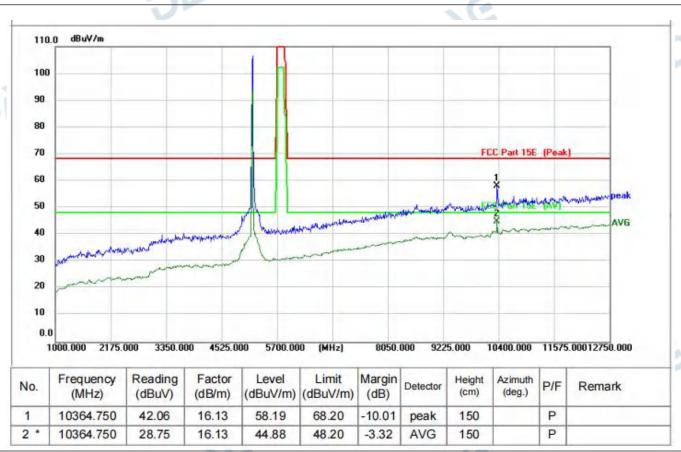
Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

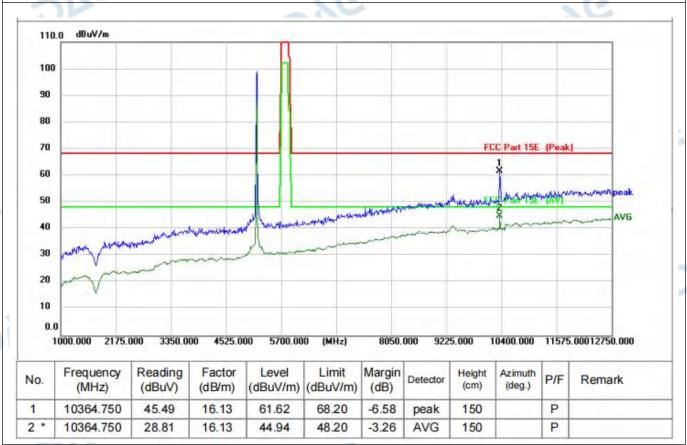
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 39 of 108

under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

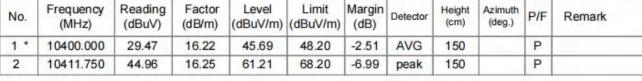
4.8.1 E.U.T. Operation:

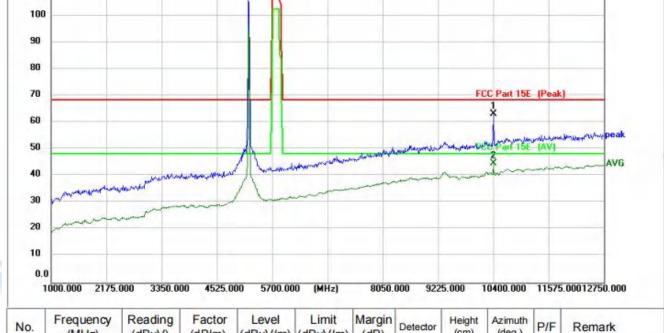
Operating Environment:										
Temperature: 23.4 °C	Humidity:	50 %	Atmospheric Pressure:	102 kPa						
Pretest mode:	TM1, TM2, TM3, T	ГМ4			- 76					
Final test mode:	TM1, TM2, TM3, T	ГМ4			J					


4.8.2 Test Data:

TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 40 of 108


TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: L


DAG

DAG

TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: M dBuV/m 110.0 100 90 80 70 FCC Part 15E (Peak) 60 50 AVG 40 30 20 10 0.0 3350.000 4525.000 5700.000 9225.000 10400.000

TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: M

DAG

1 *

2

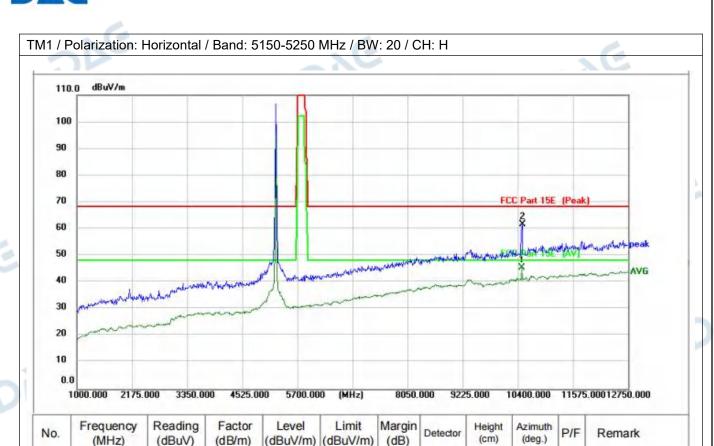
DAG

10482.250

10494.000

28.93

45.18


16.46

16.49

45.39

61.67

Report No.: DACE250701005RL004

-2.81

-6.53

AVG

peak

150

150

P

P

DAG

48.20

68.20

TM1 / Polarization: Vertical / Band: 5150-5250 MHz / BW: 20 / CH: H

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1	10482.250	46.87	16.46	63.33	68.20	-4.87	peak	150		Р		
2 *	10482.250	29.43	16.46	45.89	48.20	-2.31	AVG	150		P		

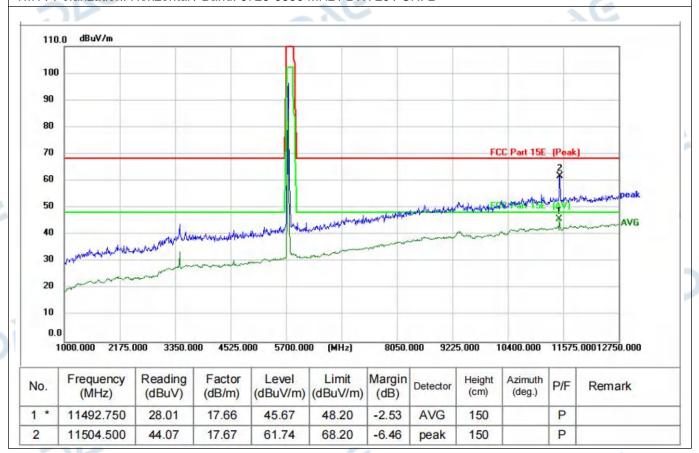
(MHz)

5700.000

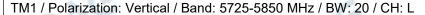
8050.000

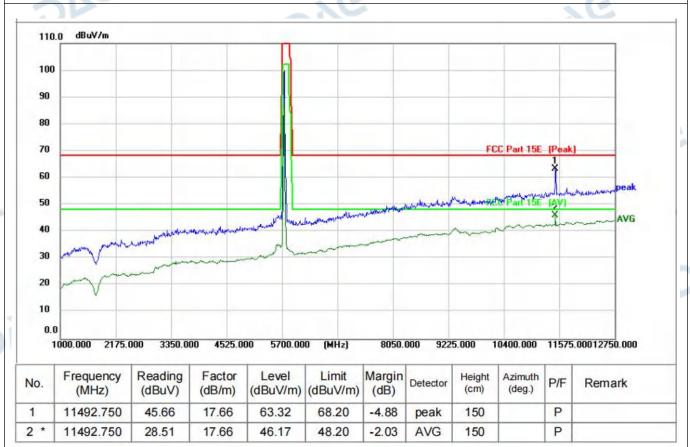
9225.000

10400.000 11575.00012750.000

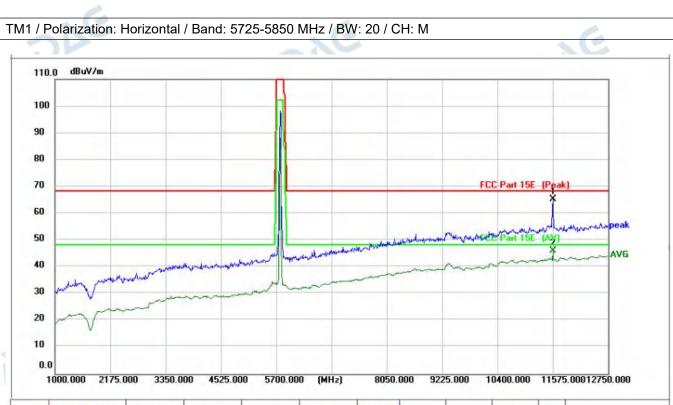

3350.000

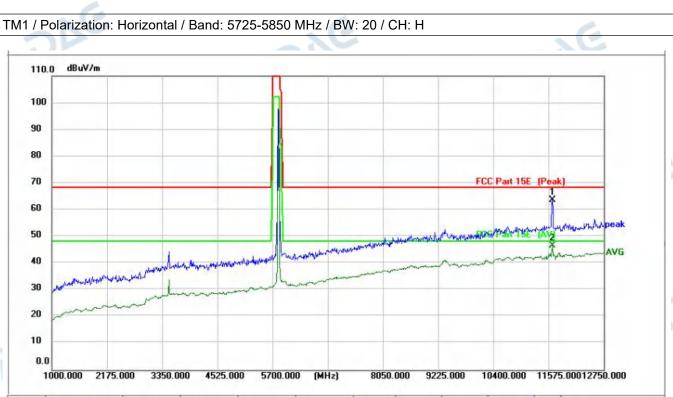
2175.000

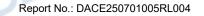

4525.000



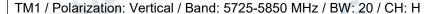
TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: L

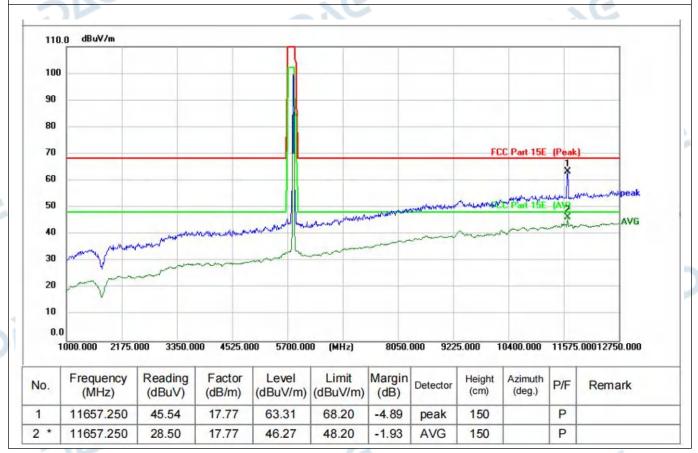



No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1	11575.000	47.56	17.72	65.28	68.20	-2.92	peak	150		Р		
2 *	11575.000	28.38	17.72	46.10	48.20	-2.10	AVG	150		Р		


TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: M dBuV/m 110.0 100 90 80 70 FCC Part 15E (Peak) 60 50 40 30 20 10 0.0 10400.000 11575.00012750.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1	11575.000	45.46	17.72	63.18	68.20	-5.02	peak	150		Р		
2 *	11575.000	28.36	17.72	46.08	48.20	-2.12	AVG	150		Р		





No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1	11657.250	45.79	17.77	63.56	68.20	-4.64	peak	150		Р		
2 *	11657.250	28.81	17.77	46.58	48.20	-1.62	AVG	150		Р		

5 TEST SETUP PHOTOS

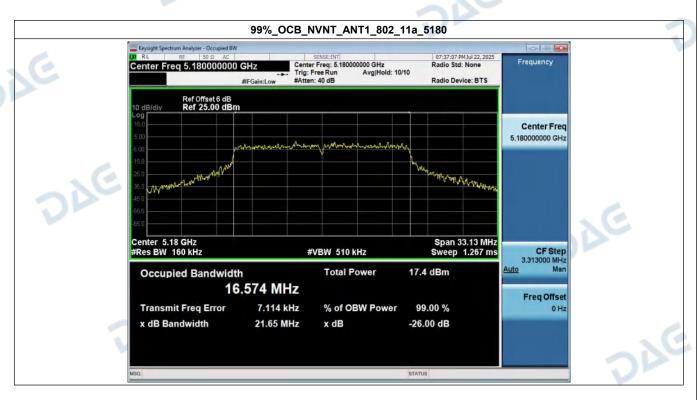
Please refer to Setup Photo file

6 PHOTOS OF THE EUT

Please refer to external photos file and internal photos file

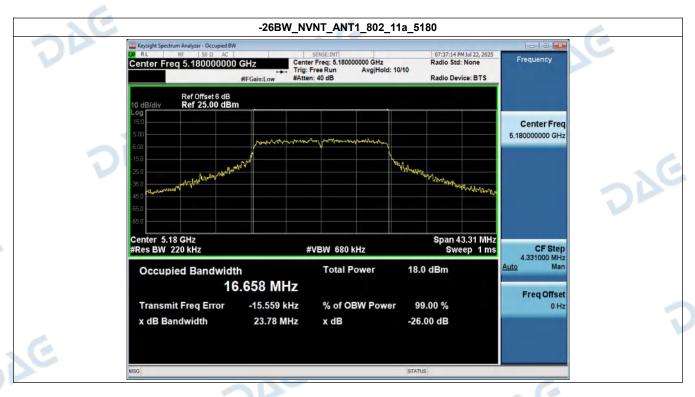
Appendix-5.2G_WIFI

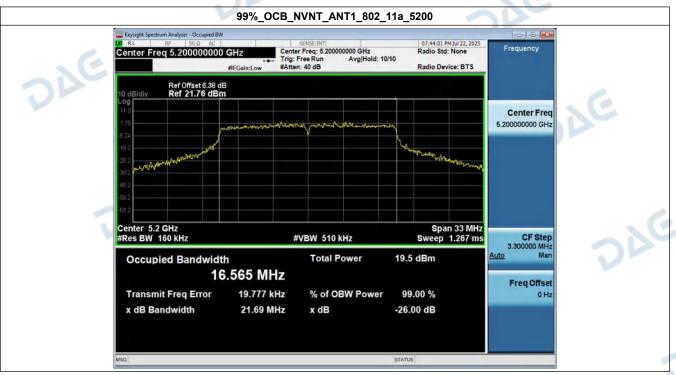
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 52 of 108

HT250701003--Y5N--5.2G--FCC FCC_5.2G_WIFI (Part15.407) Test Data

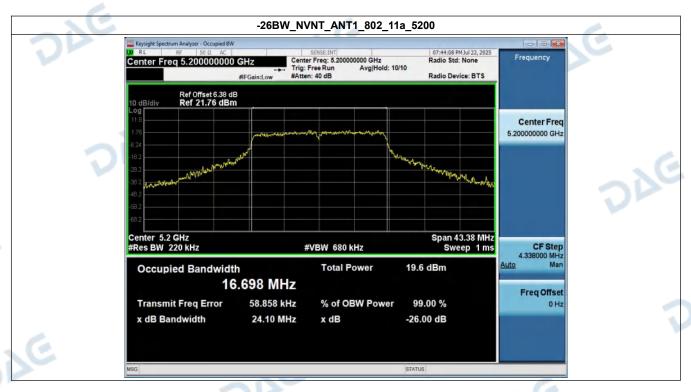
1. -26dB and 99% Emission Bandwidth

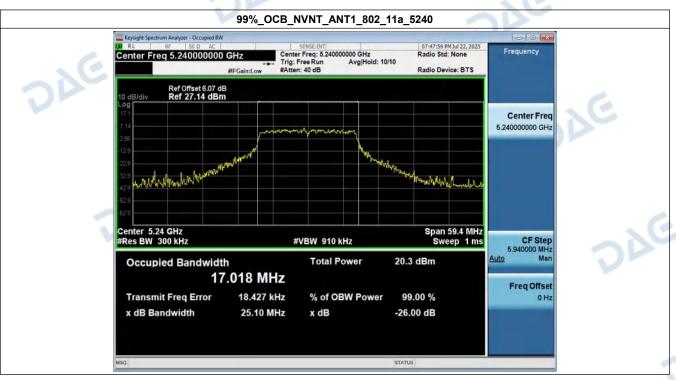

Condition	Antenna	Modulation	Frequency(MHz)	-26dB_Emission_Bandwidth(MHz)	Occupied Bandwidth(MHz)
NVNT	ANT1	802.11a	5180.00	23.78	16.57
NVNT	ANT1	802.11a	5200.00	24.10	16.57
NVNT	ANT1	802.11a	5240.00	23.87	17.02
NVNT	ANT1	802.11ax(HE20)	5180.00	25.70	18.92
NVNT	ANT1	802.11ax(HE20)	5200.00	23.97	17.67
NVNT	ANT1	802.11ax(HE20)	5240.00	27.16	18.91
NVNT	ANT1	802.11ax(HE40)	5190.00	46.62	37.40
NVNT	ANT1	802.11ax(HE40)	5230.00	44.51	37.91



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 53 of 108

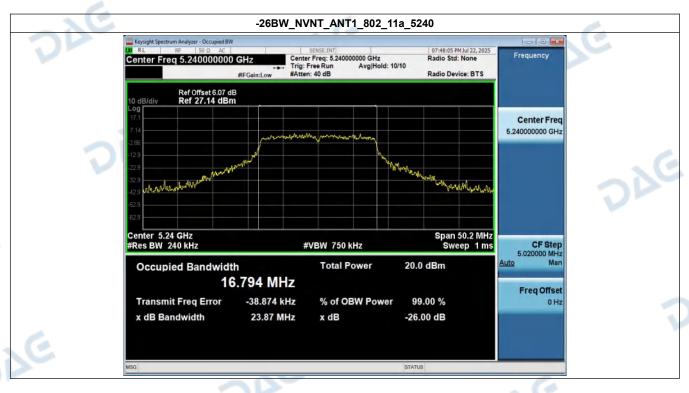
V1.0

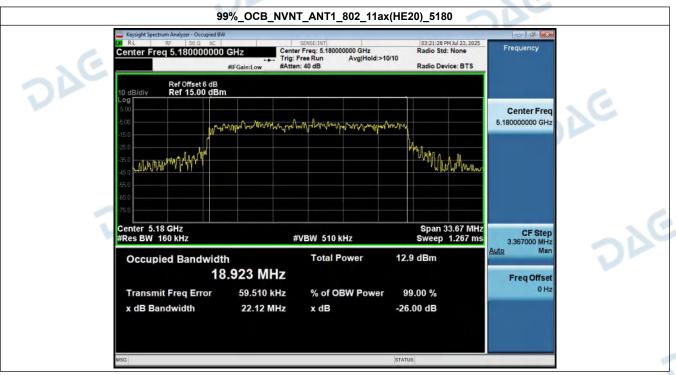




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 108

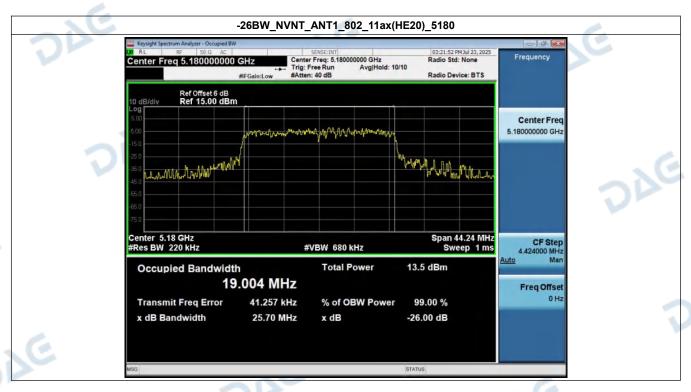
V1.0

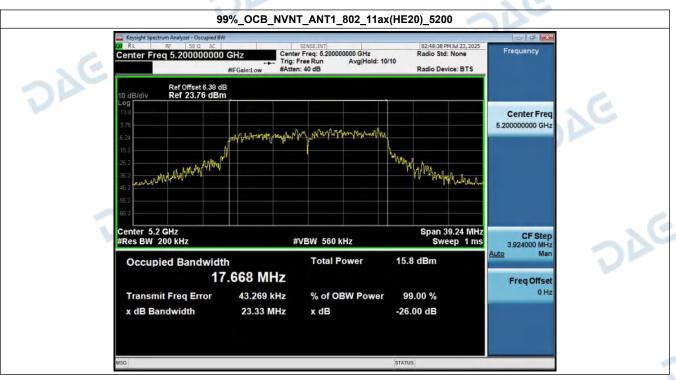



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 55 of 108

DAG

V1.0

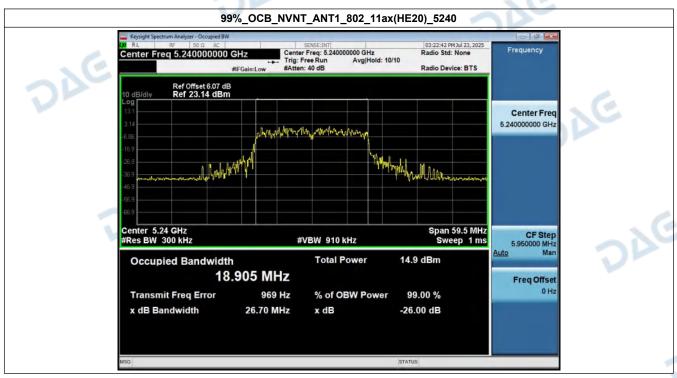



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 56 of 108

DAG

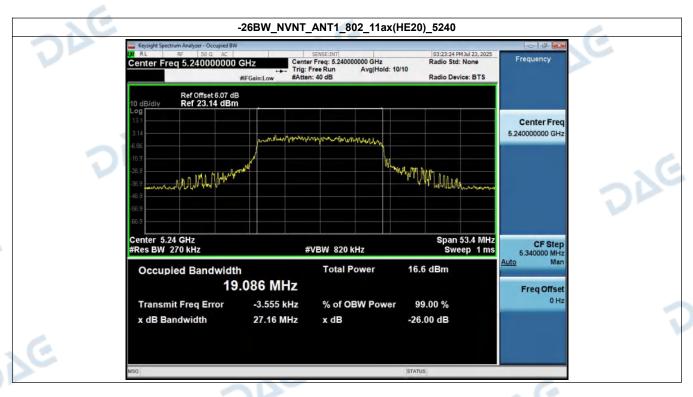
V1.0

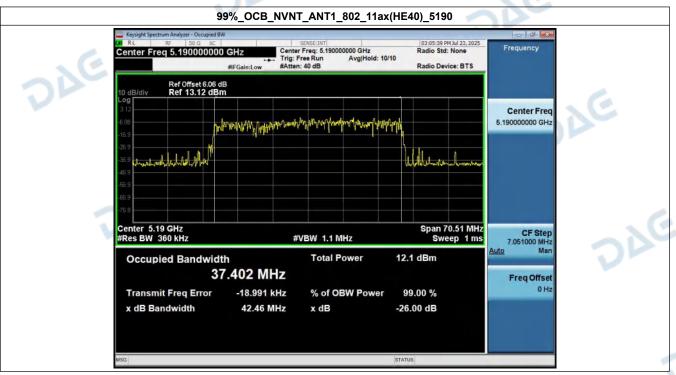



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 57 of 108

DAG

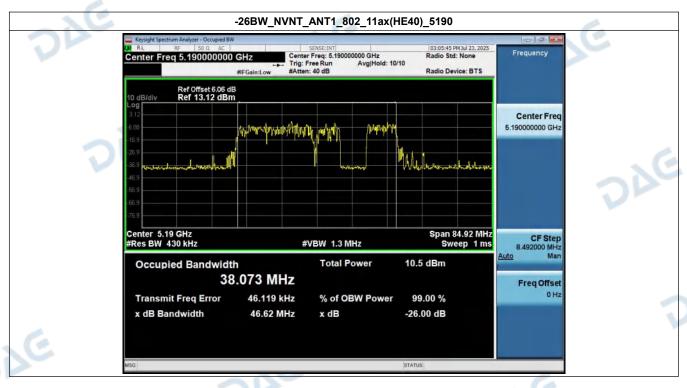
V1.0

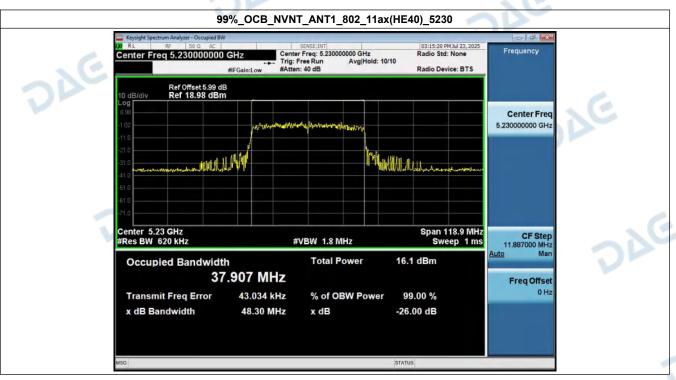



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 108

DAG

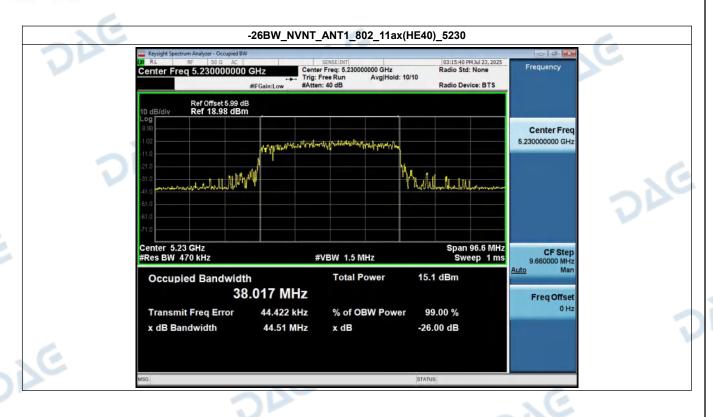
V1.0




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 59 of 108

DAG

V1.0


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 60 of 108

DAG

DAG

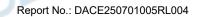
V1.0

DAG

DAG

DAG

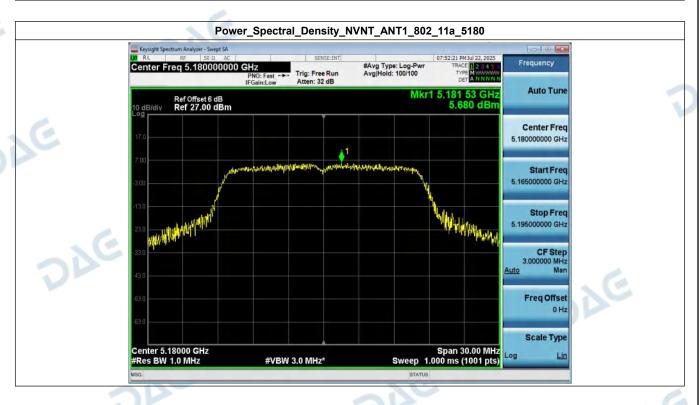
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 61 of 108



Report No.: DACE250701005RL004

2. Maximum Conducted Output Power

Condition	Antenna	Modulation	Frequency (MHz)	Conducted Power(dBm)	Duty factor(dB)	Total Power(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	12.33	0.00	12.33	24	Pass
NVNT	ANT1	802.11a	5200.00	12.53	0.00	12.53	24	Pass
NVNT	ANT1	802.11a	5240.00	14.81	0.00	14.81	24	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	10.49	0.00	10.49	24	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	10.35	0.00	10.35	24	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	10.85	0.00	10.85	24	Pass
NVNT	ANT1	802.11ac(VHT20)	5180.00	9.61	0.00	9.61	24	Pass
NVNT	ANT1	802.11ac(VHT20)	5200.00	9.42	0.00	9.42	24	Pass
NVNT	ANT1	802.11ac(VHT20)	5240.00	9.91	0.00	9.91	24	Pass
NVNT	ANT1	802.11ax(HE20)	5180.00	9.38	0.00	9.38	24	Pass
NVNT	ANT1	802.11ax(HE20)	5200.00	9.99	0.00	9.99	24	Pass
NVNT	ANT1	802.11ax(HE20)	5240.00	9.30	0.00	9.30	24	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	8.26	0.00	8.26	24	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	8.61	0.00	8.61	24	Pass
NVNT	ANT1	802.11ac(VHT40)	5190.00	8.19	0.00	8.19	24	Pass
NVNT	ANT1	802.11ac(VHT40)	5230.00	8.98	0.00	8.98	24	Pass
NVNT	ANT1	802.11ax(HE40)	5190.00	8.54	0.00	8.54	24	Pass
NVNT	ANT1	802.11ax(HE40)	5230.00	8.82	0.00	8.82	24	Pass

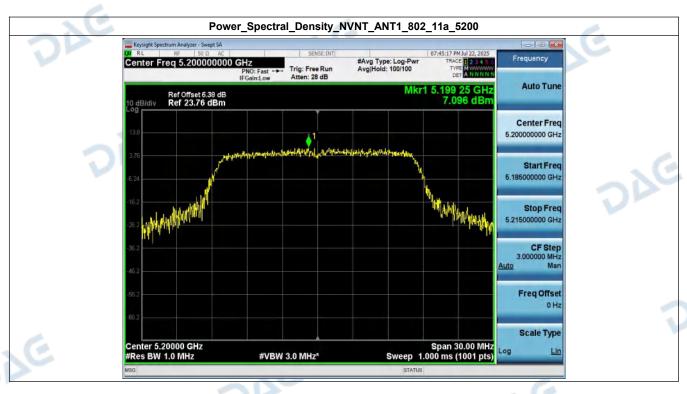

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 108

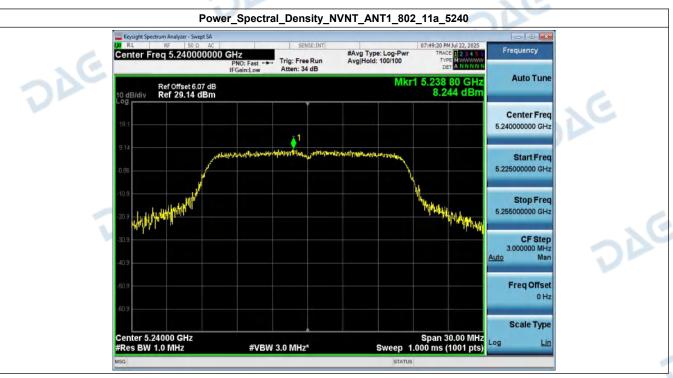
3. Power Spectral Density

Condition	Antenna	Modulation	Frequency (MHz)	PSD(dBm/MHz)	Duty factor(dB)	Total PSD(dBm/MHz)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	5.68	7.75	13.43	11	Pass
NVNT	ANT1	802.11a	5200.00	7.10	7.72	14.82	11	Pass
NVNT	ANT1	802.11a	5240.00	8.24	7.75	15.99	11	Pass
NVNT	ANT1	802.11ax(HE20)	5180.00	3.71	17.08	20.79	11	Pass
NVNT	ANT1	802.11ax(HE20)	5200.00	5.12	17.08	22.20	11	Pass
NVNT	ANT1	802.11ax(HE20)	5240.00	6.16	17.54	23.70	11	Pass
NVNT	ANT1	802.11ax(HE40)	5190.00	-0.96	20.05	19.09	11	Pass
NVNT	ANT1	802.11ax(HE40)	5230.00	0.74	20.05	20.79	11	Pass

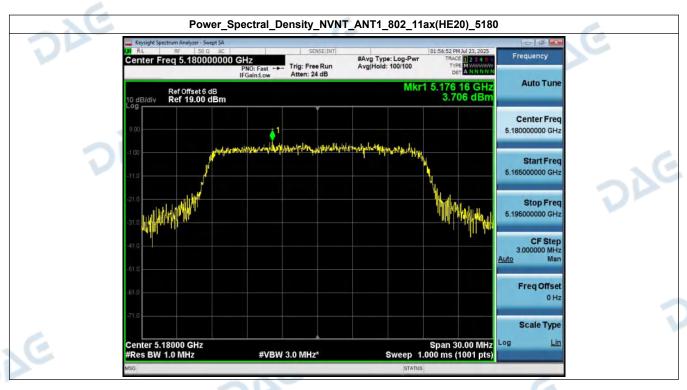
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

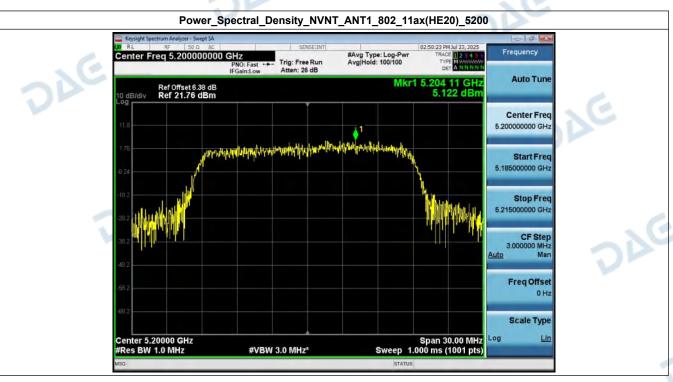
Web: http://www.dace-lab.com

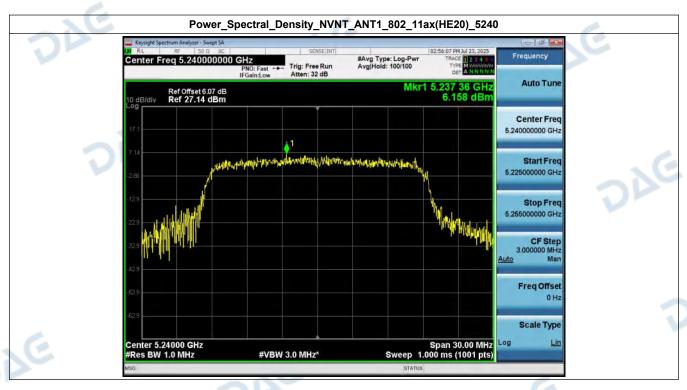

Tel: +86-755-23010613

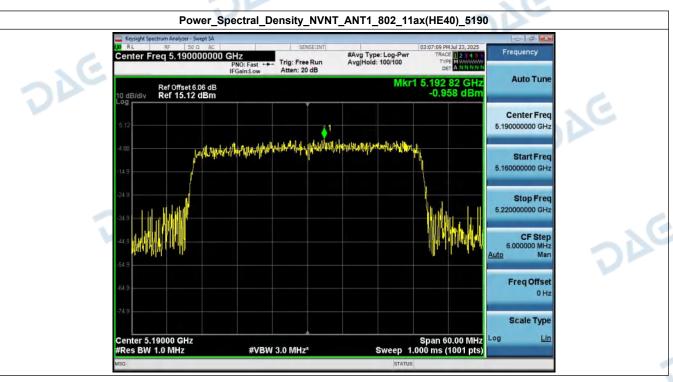

E-mail: service@dace-lab.com

Page 63 of 108

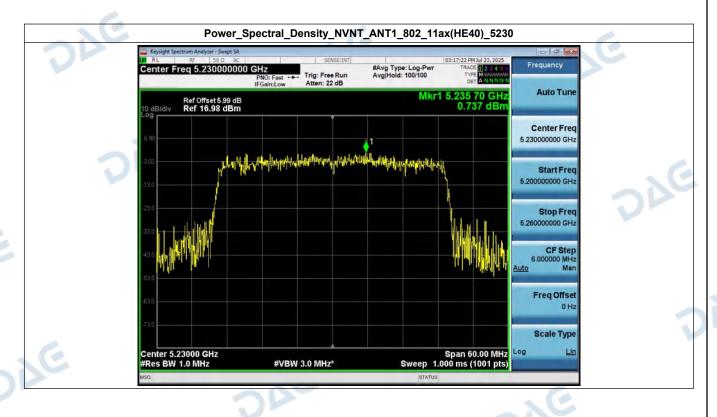

DAG




DAG



DAG



DAG

DAG

DAG

DAG

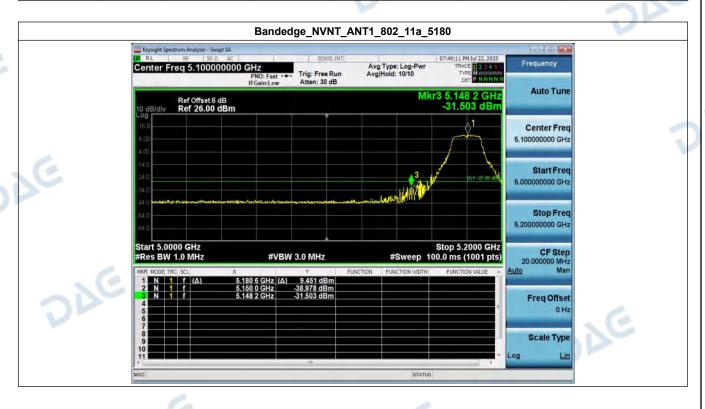
DAG

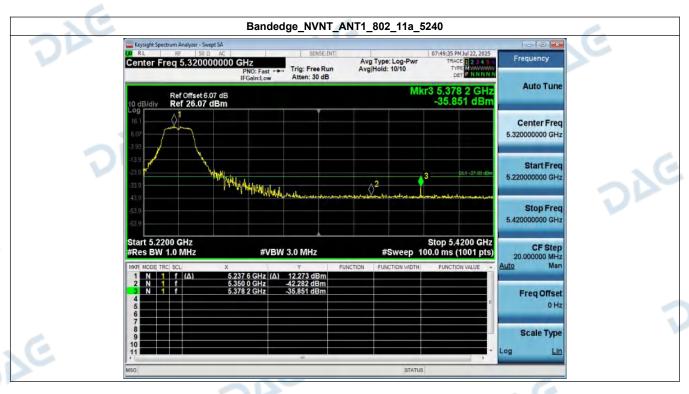
DAG

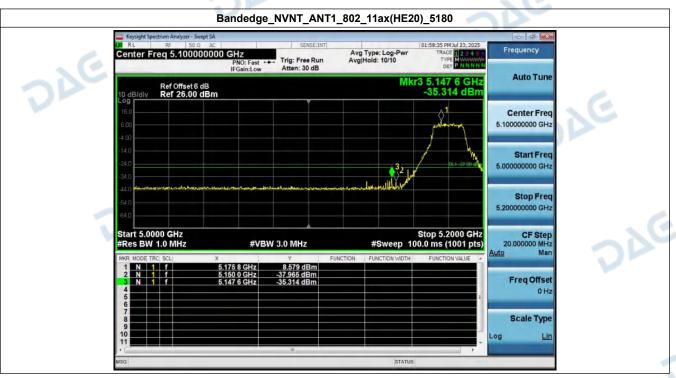
DAG

DAG

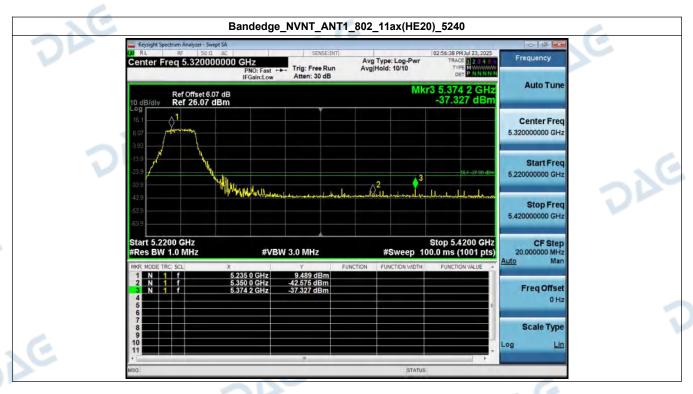
DAG

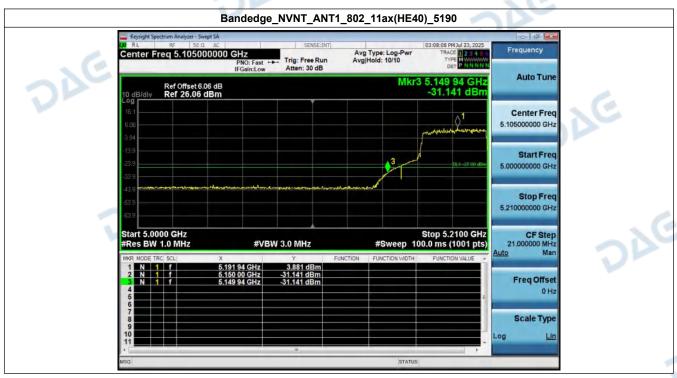

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 67 of 108

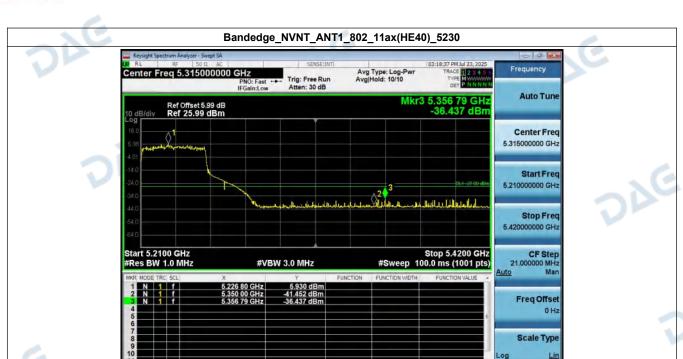

4. Bandedge


Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark Frequency(MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	5148.20	-31.50	-27	Pass
NVNT	ANT1	802.11a	5240.00	5378.20	-35.85	-27	Pass
NVNT	ANT1	802.11ax(HE20)	5180.00	5147.60	-35.31	-27	Pass
NVNT	ANT1	802.11ax(HE20)	5240.00	5374.20	-37.33	-27	Pass
NVNT	ANT1	802.11ax(HE40)	5190.00	5149.94	-31.14	-27	Pass
NVNT	ANT1	802.11ax(HE40)	5230.00	5356.79	-36.44	-27	Pass

Report No.: DACE250701005RL004







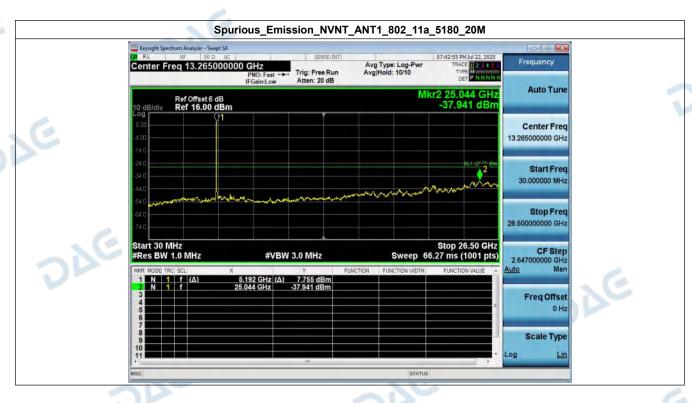
DAG

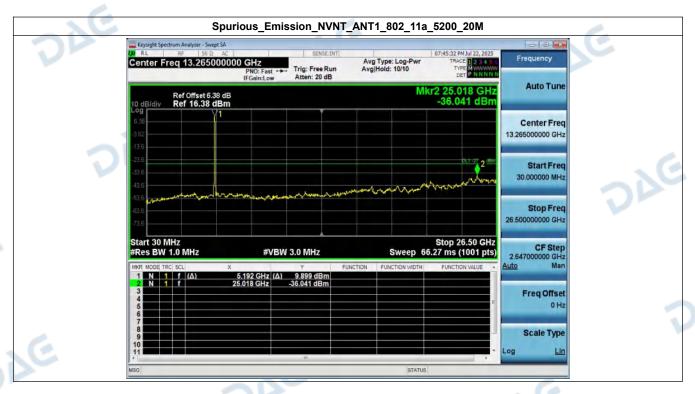
DAG

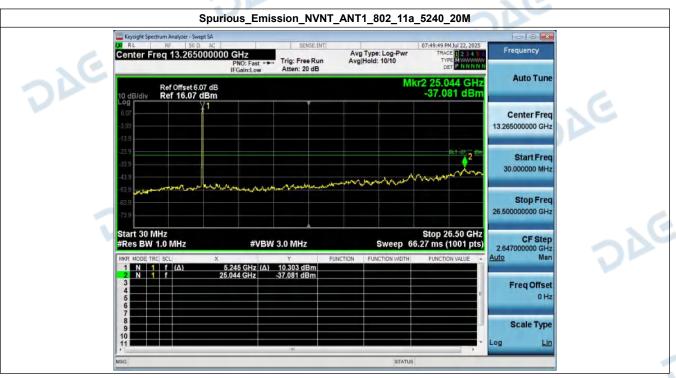
DAG

DAG

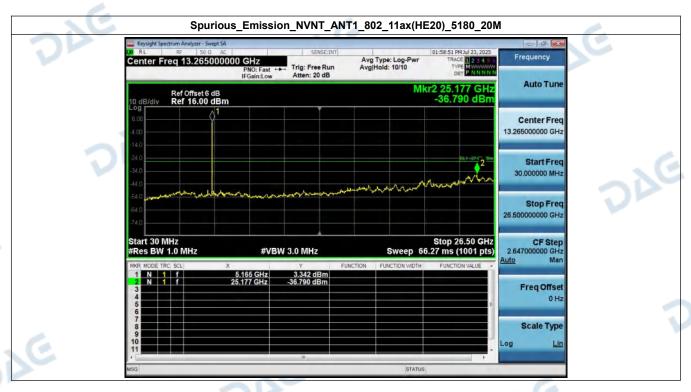
Report No.: DACE250701005RL004

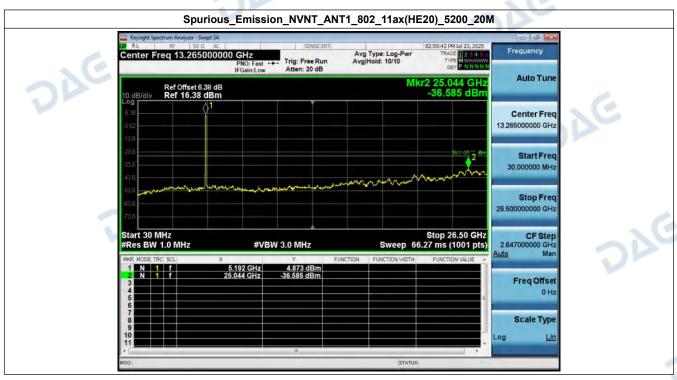

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 71 of 108


5. Spurious Emission

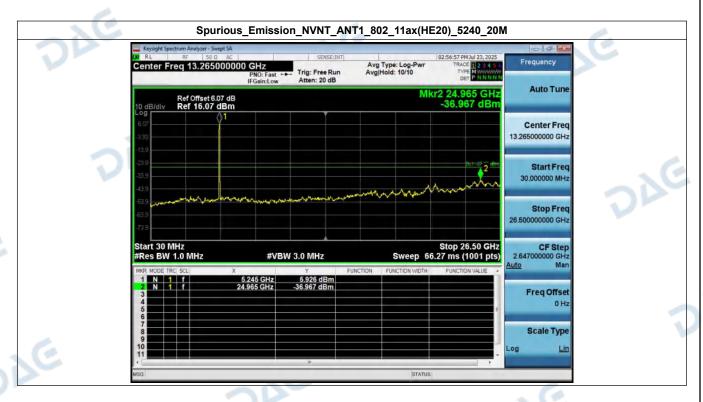

Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark Frequency(MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	25044.15	-37.94	-27	Pass
NVNT	ANT1	802.11a	5200.00	25017.68	-36.04	-27	Pass
NVNT	ANT1	802.11a	5240.00	25044.15	-37.08	-27	Pass
NVNT	ANT1	802.11ax(HE20)	5180.00	25176.50	-36.79	-27	Pass
NVNT	ANT1	802.11ax(HE20)	5200.00	25044.15	-36.58	-27	Pass
NVNT	ANT1	802.11ax(HE20)	5240.00	24964.74	-36.97	-27	Pass
NVNT	ANT1	802.11ax(HE40)	5190.00	25123.56	-27.04	-27	Pass
NVNT	ANT1	802.11ax(HE40)	5230.00	25070.62	-27.11	-27	Pass

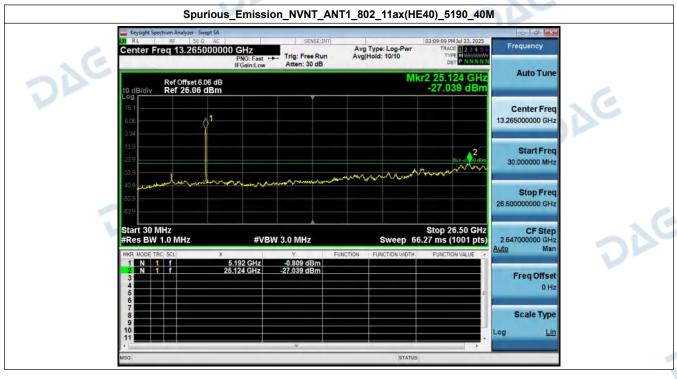
Report No.: DACE250701005RL004





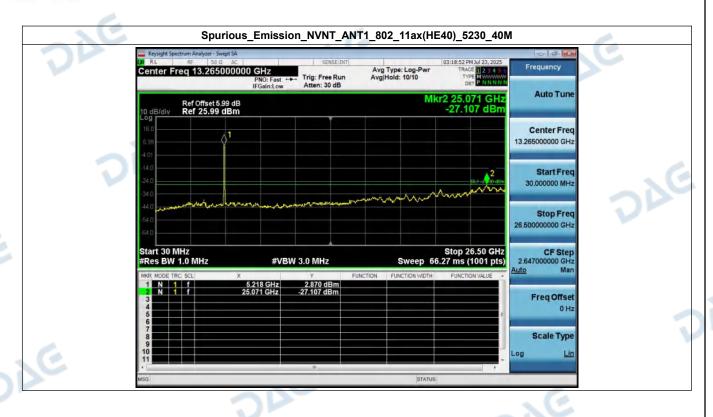
V1.0





Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 74 of 108

V1.0


DAG

DAG

DAG

DAG

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 76 of 108

6. Frequency Stability

Condition	Antenna	Modulation	Frequency (MHz)	Fc(MHz)	FI(MHz)	Fh(MHz)	Limit(MHz)	Result	
55degrees C&&3.80V	ANT1	802.11a	5180.00	5179.934	5171.040	5188.828	5150~5250	Pass	
45degrees C&&3.80V	ANT1	802.11a	5180.00	5179.980	5171.568	5188.392	5150~5250	Pass	
35degrees C&&3.80V	ANT1	802.11a	5180.00	5180.034	5171.728	5188.340	5150~5250	Pass	
25degrees C&&3.80V	ANT1	802.11a	5180.00	5179.988	5171.828	5188.148	5150~5250	Pass	
15degrees C&&3.80V	ANT1	802.11a	5180.00	5179.996	5171.892	5188.100	5150~5250	Pass	
5degrees C&&3.80V	ANT1	802.11a	5180.00	5180.018	5171.960	5188.076	5150~5250	Pass	
-5degrees C&&3.80V	ANT1	802.11a	5180.00	5180.000	5172.012	5187.988	5150~5250	Pass	
-15degrees C&&3.80V	ANT1	802.11a	5180.00	5179.992	5172.060	5187.924	5150~5250	Pass	
25degrees C&&4.37V	ANT1	802.11a	5180.00	5179.968	5172.116	5187.820	5150~5250	Pass	
25degrees C&&3.80V	ANT1	802.11a	5180.00	5180.020	5172.168	5187.872	5150~5250	Pass	
25degrees C&&3.23V	ANT1	802.11a	5180.00	5179.992	5172.200	5187.784	5150~5250	Pass	
55degrees C&&3.80V	ANT1	802.11a	5200.00	5200.114	5191.168	5209.060	5150~5250	Pass	
45degrees C&&3.80V	ANT1	802.11a	5200.00	5200.032	5191.612	5208.452	5150~5250	Pass	
35degrees C&&3.80V	ANT1	802.11a	5200.00	5200.032	5191.780	5208.284	5150~5250	Pass	
25degrees C&&3.80V	ANT1	802.11a	5200.00	5200.040	5191.868	5208.212	5150~5250	Pass	
15degrees C&&3.80V	ANT1	802.11a	5200.00	5200.018	5191.940	5208.096	5150~5250	Pass	
5degrees C&&3.80V	ANT1	802.11a	5200.00	5200.020	5192.008	5208.032	5150~5250	Pass	
-5degrees C&&3.80V	ANT1	802.11a	5200.00	5200.038	5192.048	5208.028	5150~5250	Pass	
-15degrees C&&3.80V	ANT1	802.11a	5200.00	5200.038	5192.104	5207.972	5150~5250	Pass	
25degrees C&&4.37V	ANT1	802.11a	5200.00	5200.036	5192.156	5207.916	5150~5250	Pass	
25degrees C&&3.80V	ANT1	802.11a	5200.00	5200.058	5192.228	5207.888	5150~5250	Pass	
25degrees C&&3.23V	ANT1	802.11a	5200.00	5200.064	5192.276	5207.852	5150~5250	Pass	
55degrees C&&3.80V	ANT1	802.11a	5240.00	5239.956	5231.036	5248.876	5150~5250	Pass	
45degrees C&&3.80V	ANT1	802.11a	5240.00	5239.966	5231.532	5248.400	5150~5250	Pass	
35degrees C&&3.80V	ANT1	802.11a	5240.00	5239.972	5231.724	5248.220	5150~5250	Pass	
25degrees C&&3.80V	ANT1	802.11a	5240.00	5239.982	5231.824	5248.140	5150~5250	Pass	
15degrees C&&3.80V	ANT1	802.11a	5240.00	5239.992	5231.892	5248.092	5150~5250	Pass	
5degrees C&&3.80V	ANT1	802.11a	5240.00	5239.974	5231.948	5248.000	5150~5250	Pass	
-5degrees C&&3.80V	ANT1	802.11a	5240.00	5239.958	5232.000	5247.916	5150~5250	Pass	
-15degrees C&&3.80V	ANT1	802.11a	5240.00	5239.996	5232.056	5247.936	5150~5250	Pass	
25degrees C&&4.37V	ANT1	802.11a	5240.00	5239.980	5232.112	5247.848	5150~5250	Pass	
25degrees C&&3.80V	ANT1	802.11a	5240.00	5239.990	5232.164	5247.816	5150~5250	Pass	
25degrees C&&3.23V	ANT1	802.11a	5240.00	5239.960	5232.208	5247.712	5150~5250	Pass	

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 77 of 108

Appendix-5.8G_WIFI

Web: http://www.dace-lab.com Tel: +86-7

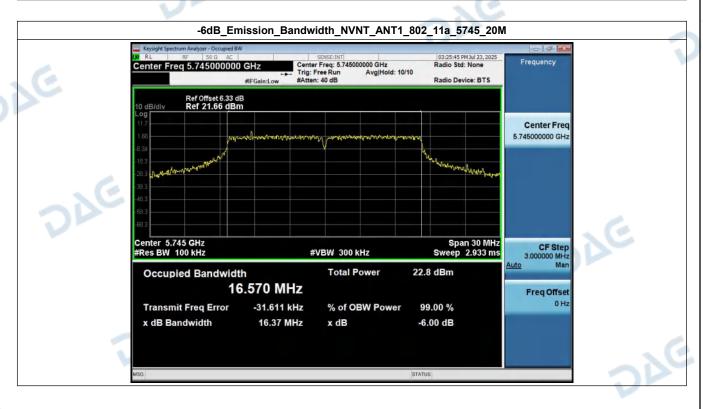
DAG

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 78 of 108

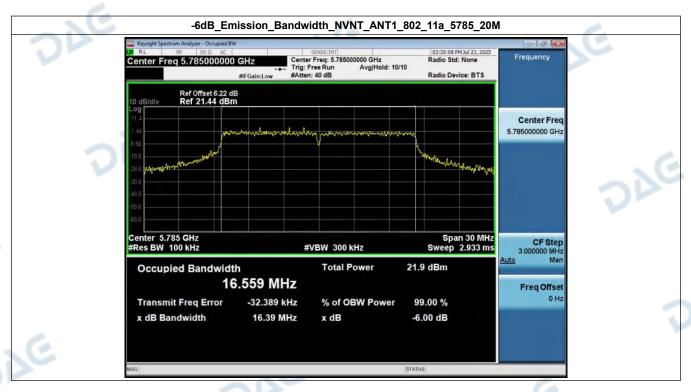
DAG



HT250701003--Y5N--5.8G--FCC FCC_5.8G_WIFI (Part15.407) Test Data

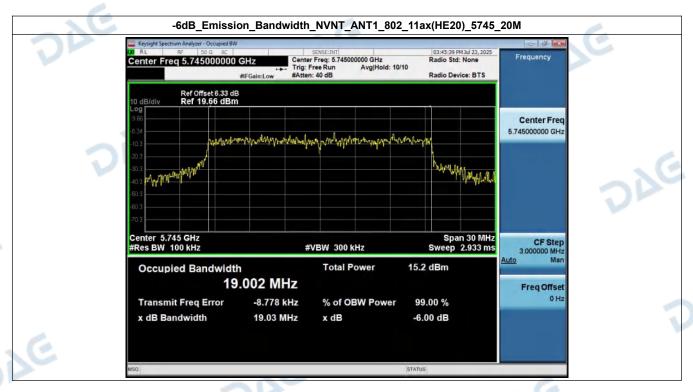
1. -6dB Emission Bandwidth

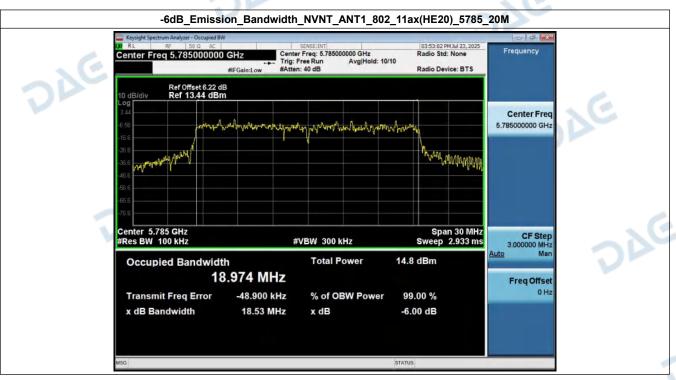
V1.0


Condition	Antenna	Mode	Frequency(MHz)	-6dB_Emission_Bandwidth(MHz)	Limit(MHz)	Result
NVNT	ANT1	802.11a	5745.00	16.366	0.500	Pass
NVNT	ANT1	802.11a	5785.00	16.390	0.500	Pass
NVNT	ANT1	802.11a	5825.00	16.394	0.500	Pass
NVNT	ANT1	802.11ax(HE20)	5745.00	19.035	0.500	Pass
NVNT	ANT1	802.11ax(HE20)	5785.00	18.530	0.500	Pass
NVNT	ANT1	802.11ax(HE20)	5825.00	18.875	0.500	Pass
NVNT	ANT1	802.11ax(HE40)	5755.00	37.473	0.500	Pass
NVNT	ANT1	802.11ax(HE40)	5795.00	37.792	0.500	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 79 of 108

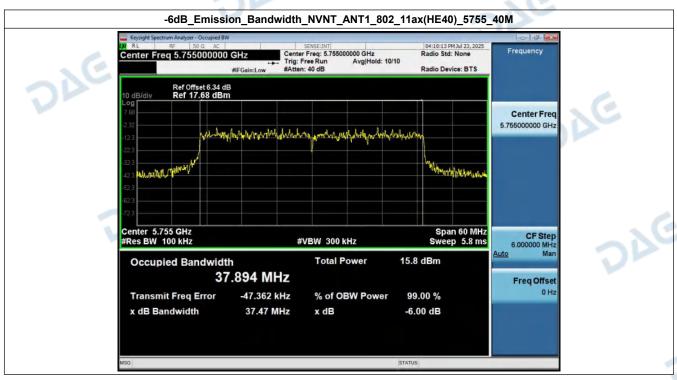
V1.0




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 80 of 108

DAG

V1.0

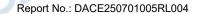

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 81 of 108

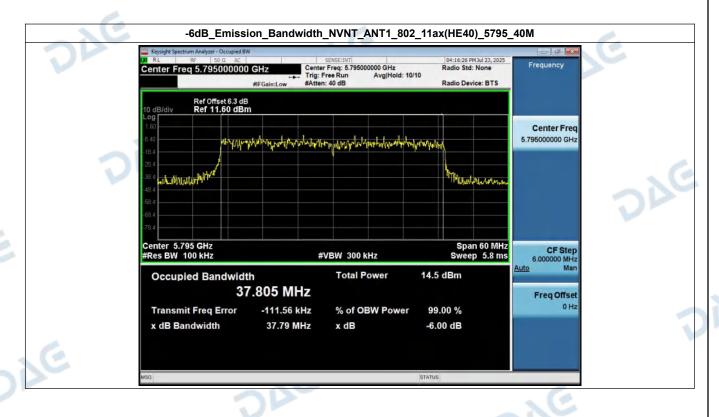
DIE

V1.0

Web: http://www.dace-lab.com

Tel: +86-755-23010613


E-mail: service@dace-lab.com


Page 82 of 108

DAG

DAG

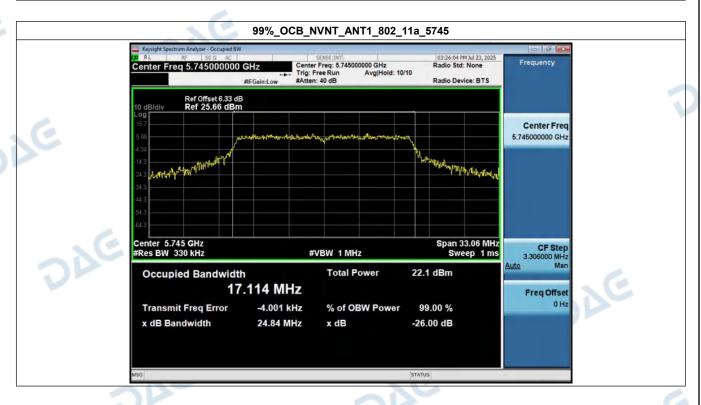
DAG

DAG

DAG

DAG

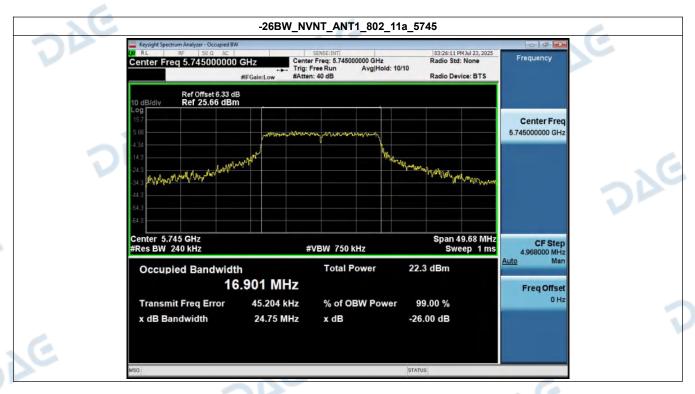
DAG

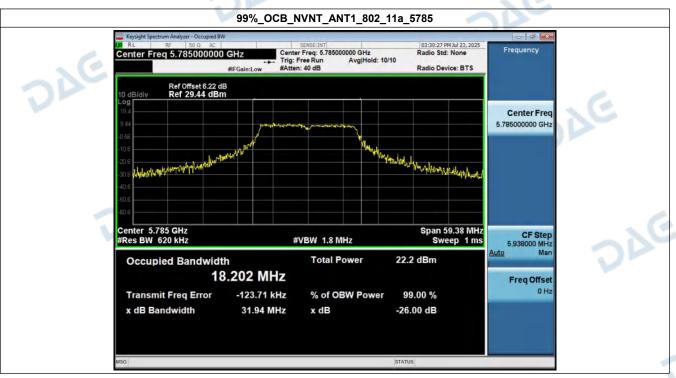

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 83 of 108

2. -26dB and 99% Emission Bandwidth

Condition	Antenna	Modulation	Frequency(MHz)	-26dB_Emission_Bandwidth(MHz)	Occupied Bandwidth(MHz)
NVNT	ANT1	802.11a	5745.00	24.75	17.11
NVNT	ANT1	802.11a	5785.00	26.29	18.20
NVNT	ANT1	802.11a	5825.00	25.79	17.18
NVNT	ANT1	802.11ax(HE20)	5745.00	29.26	19.69
NVNT	ANT1	802.11ax(HE20)	5785.00	28.74	19.19
NVNT	ANT1	802.11ax(HE20)	5825.00	26.54	19.03
NVNT	ANT1	802.11ax(HE40)	5755.00	53.78	38.72
NVNT	ANT1	802.11ax(HE40)	5795.00	51.93	38.22

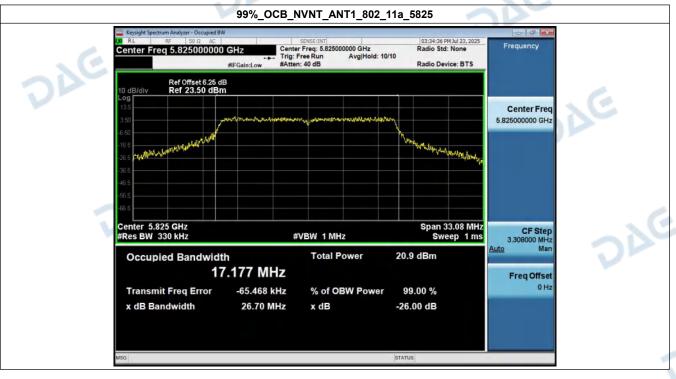



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 84 of 108

DAG

V1.0

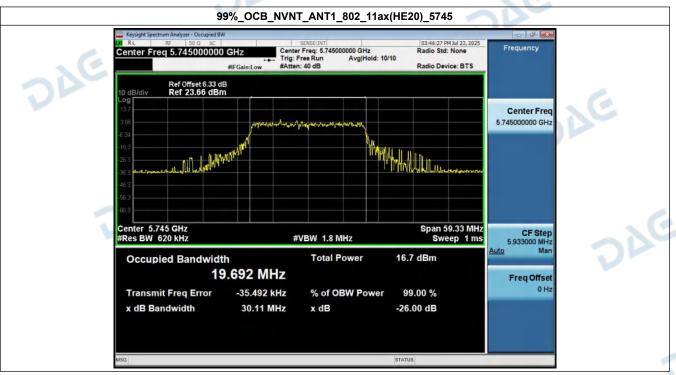




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 85 of 108

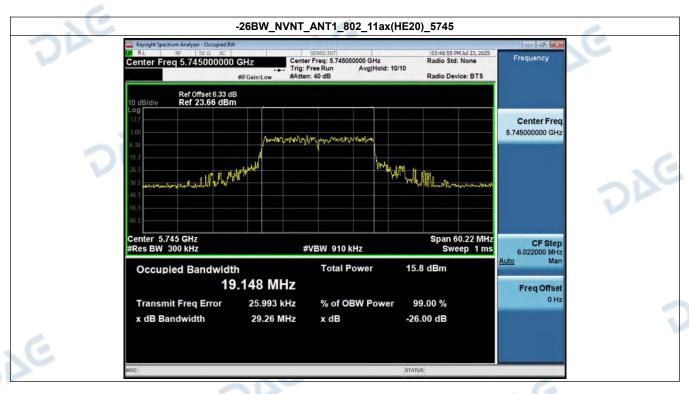
V1.0

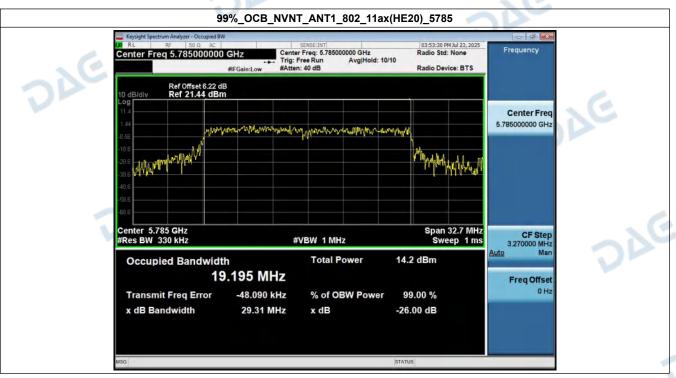



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 86 of 108

DAG

V1.0



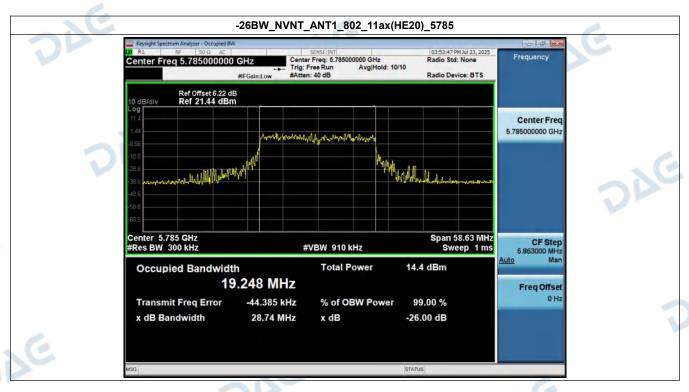


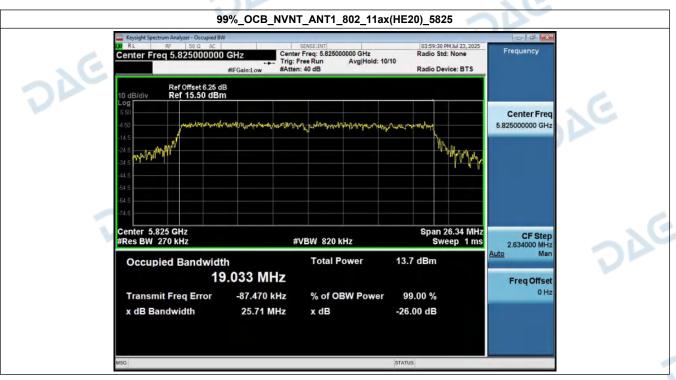
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 87 of 108

V1.0

Web: http://www.dace-lab.com

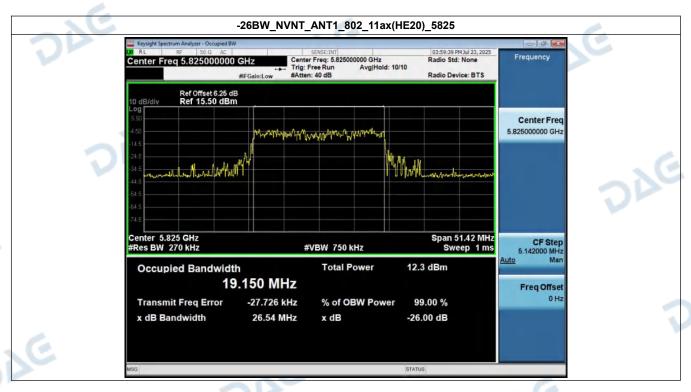
4

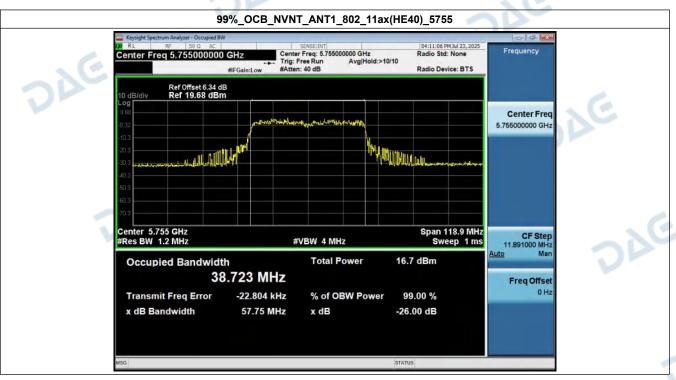

DAG


Page 88 of 108

DAG

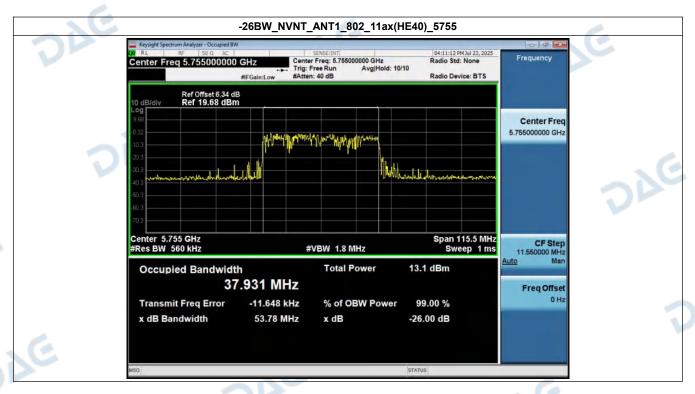
V1.0

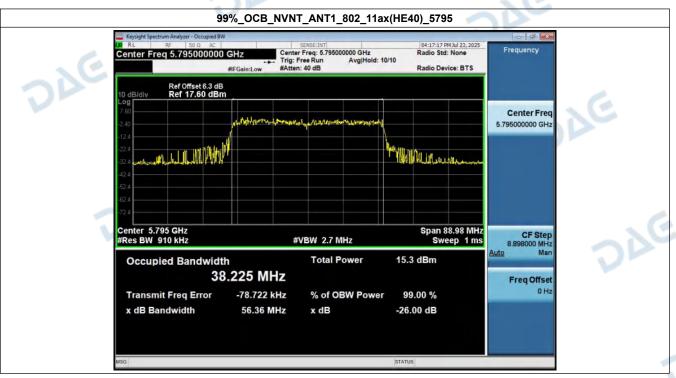



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 89 of 108

DAG

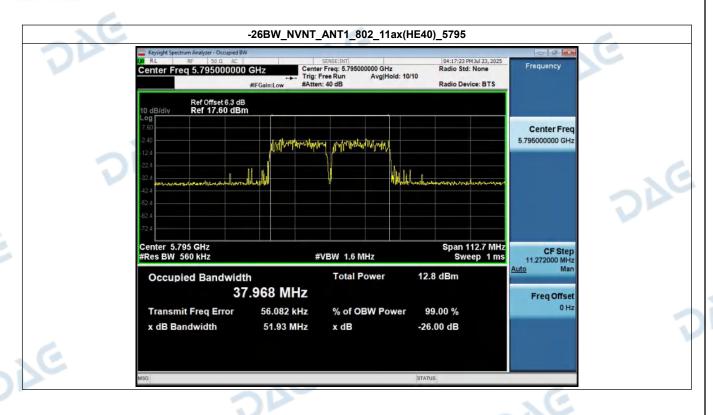
V1.0




Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 90 of 108

DAG

V1.0


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 91 of 108

DAG

DAG

V1.0

DAG

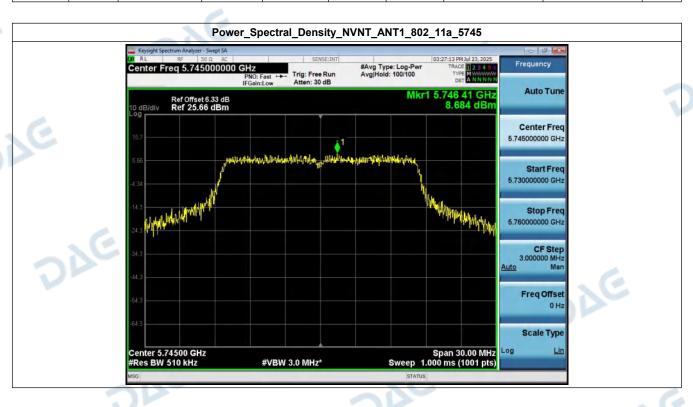
DAG

DAG

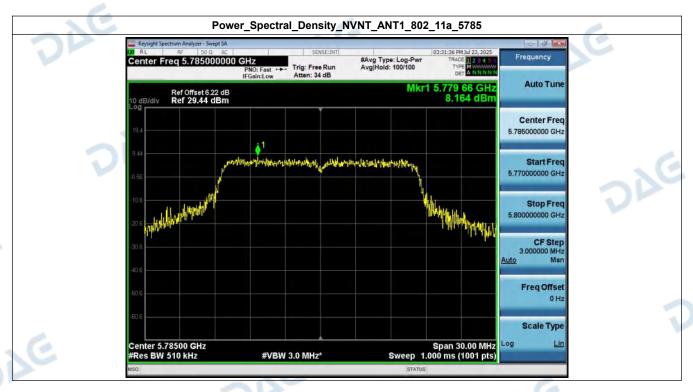
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 92 of 108

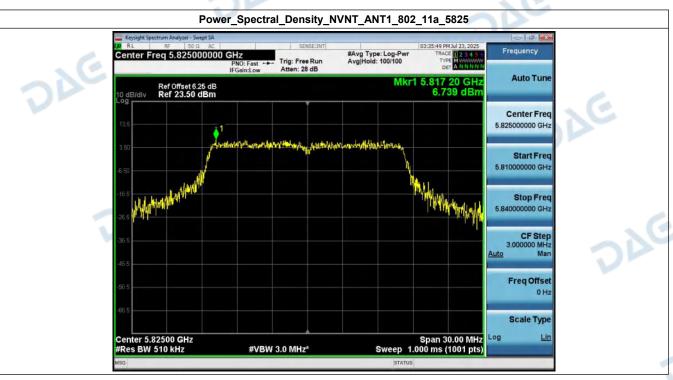
Report No.: DACE250701005RL004

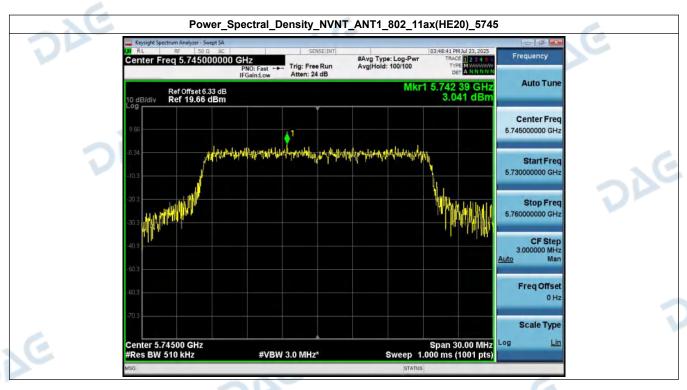
3. Maximum Conducted Output Power

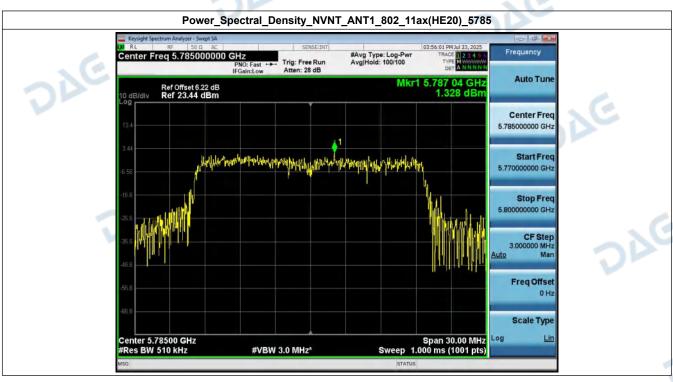

Condition	Antenna	Modulation	Frequency (MHz)	Conducted Power(dBm)	Duty factor(dB)	Total Power(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5745.00	17.41	0.00	17.41	30	Pass
NVNT	ANT1	802.11a	5785.00	17.05	0.00	17.05	30	Pass
NVNT	ANT1	802.11a	5825.00	15.93	0.00	15.93	30	Pass
NVNT	ANT1	802.11n(HT20)	5745.00	8.17	0.00	8.17	30	Pass
NVNT	ANT1	802.11n(HT20)	5785.00	6.64	0.00	6.64	30	Pass
NVNT	ANT1	802.11n(HT20)	5825.00	7.06	0.00	7.06	30	Pass
NVNT	ANT1	802.11ac(VHT20)	5745.00	9.19	0.00	9.19	30	Pass
NVNT	ANT1	802.11ac(VHT20)	5785.00	8.30	0.00	8.30	30	Pass
NVNT	ANT1	802.11ac(VHT20)	5825.00	7.18	0.00	7.18	30	Pass
NVNT	ANT1	802.11ax(HE20)	5745.00	11.47	0.00	11.47	30	Pass
NVNT	ANT1	802.11ax(HE20)	5785.00	9.81	0.00	9.81	30	Pass
NVNT	ANT1	802.11ax(HE20)	5825.00	7.53	0.00	7.53	30	Pass
NVNT	ANT1	802.11n(HT40)	5755.00	6.42	0.00	6.42	30	Pass
NVNT	ANT1	802.11n(HT40)	5795.00	5.50	0.00	5.50	30	Pass
NVNT	ANT1	802.11ac(VHT40)	5755.00	5.89	0.00	5.89	30	Pass
NVNT	ANT1	802.11ac(VHT40)	5795.00	5.60	0.00	5.60	30	Pass
NVNT	ANT1	802.11ax(HE40)	5755.00	8.74	0.00	8.74	30	Pass
NVNT	ANT1	802.11ax(HE40)	5795.00	9.53	0.00	9.53	30	Pass

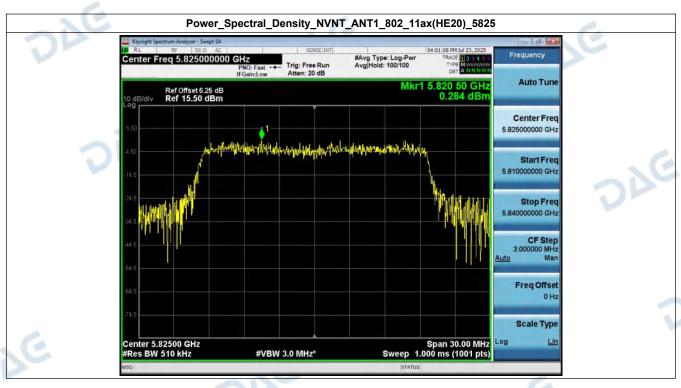
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 93 of 108

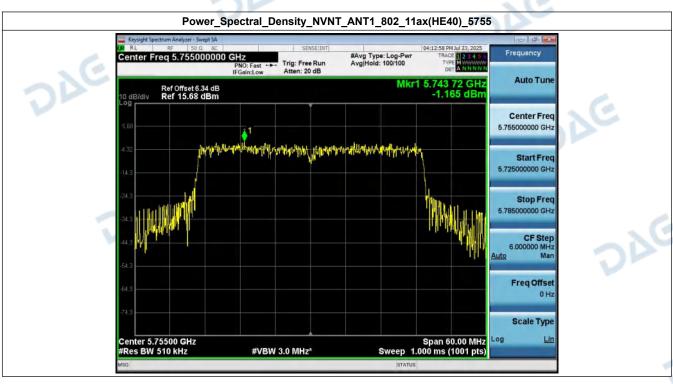

4. Power Spectral Density


Condition	Antenna	Modulation	Frequency (MHz)	PSD_SA (dBm/RBW)	Duty factor(dB)	RB factor(dB)	PSD(dBm/500kHz)	limit(dBm/500kHz)	Result
NVNT	ANT1	802.11a	5745.00	8.68	7.75	-0.09	16.35	30	Pass
NVNT	ANT1	802.11a	5785.00	8.16	7.72	-0.09	15.80	30	Pass
NVNT	ANT1	802.11a	5825.00	6.74	7.72	-0.09	14.37	30	Pass
NVNT	ANT1	802.11ax(HE20)	5745.00	3.04	18.61	-0.09	21.56	30	Pass
NVNT	ANT1	802.11ax(HE20)	5785.00	1.33	18.61	-0.09	19.85	30	Pass
NVNT	ANT1	802.11ax(HE20)	5825.00	0.28	18.61	-0.09	18.81	30	Pass
NVNT	ANT1	802.11ax(HE40)	5755.00	-1.17	20.05	-0.09	18.80	30	Pass
NVNT	ANT1	802.11ax(HE40)	5795.00	-1.48	20.05	-0.09	18.48	30	Pass

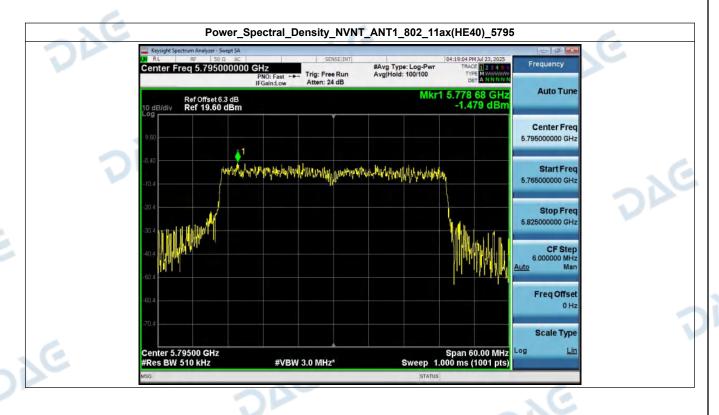

DAG




DAG



DAG



DAG

DAG

DAG

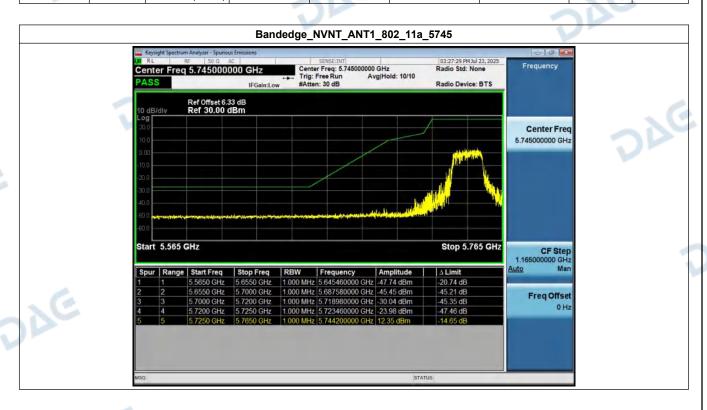
DAG

DAG

DAG

DAG

DAG


DAG

5. Bandedge

V1.0

Condition	Antenna	Modulation	TX_Frequency (MHz)	Frequency Area(MHz)	Frequency(MHz)	Amplitude(dBm)	Limit(dBm)	Result	
NVNT	ANT1	802.11a	LCH	5565-5655	5645.460	-47.74	-27.00	Pass	
NVNT	ANT1	802.11a	LCH	5655-5700	5687.580	-45.45	-0.21	Pass	
NVNT	ANT1	802.11a	LCH	5700-5720	5718.980	-30.04	15.31	Pass	
NVNT	ANT1	802.11a	LCH	5720-5725	5723.460	-23.98	23.49	Pass	
NVNT	ANT1	802.11a	HCH	5850-5855	5853.220	-36.64	19.66	Pass	
NVNT	ANT1	802.11a	HCH	5855-5875	5855.040	-38.39	15.59	Pass	
NVNT	ANT1	802.11a	HCH	5875-5920	5886.340	-46.85	0.68	Pass	
NVNT	ANT1	802.11a	HCH	5920-6005	5940.485	-44.15	-27.00	Pass	
NVNT	ANT1	802.11ax(HE20)	LCH	5565-5655	5630.970	-48.34	-27.00	Pass	
NVNT	ANT1	802.11ax(HE20)	LCH	5655-5700	5656.080	-48.43	-26.11	Pass	
NVNT	ANT1	802.11ax(HE20)	LCH	5700-5720	5701.180	-47.51	10.33	Pass	
NVNT	ANT1	802.11ax(HE20)	LCH	5720-5725	5721.295	-38.87	18.55	Pass	
NVNT	ANT1	802.11ax(HE20)	HCH	5850-5855	5854.990	-47.36	15.62	Pass	
NVNT	ANT1	802.11ax(HE20)	HCH	5855-5875	5871.720	-47.53	10.92	Pass	
NVNT	ANT1	802.11ax(HE20)	HCH	5875-5920	5919.370	-48.08	-26.48	Pass	
NVNT	ANT1	802.11ax(HE20)	HCH	5920-6005	5937.680	-43.34	-27.00	Pass	
NVNT	ANT1	802.11ax(HE40)	LCH	5595-5655	5624.640	-47.99	-27.00	Pass	
NVNT	ANT1	802.11ax(HE40)	LCH	5655-5700	5657.655	-48.45	-24.82	Pass	
NVNT	ANT1	802.11ax(HE40)	LCH	5700-5720	5702.660	-48.43	10.74	Pass	
NVNT	ANT1	802.11ax(HE40)	LCH	5720-5725	5721.440	-48.11	18.88	Pass	
NVNT	ANT1	802.11ax(HE40)	HCH	5850-5855	5854.945	-47.63	15.73	Pass	
NVNT	ANT1	802.11ax(HE40)	HCH	5855-5875	5874.140	-47.50	10.24	Pass	
NVNT	ANT1	802.11ax(HE40)	HCH	5875-5920	5913.025	-47.73	-21.26	Pass	
NVNT	ANT1	802.11ax(HE40)	HCH	5920-5955	5941.420	-44.34	-27.00	Pass	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 99 of 108

V1.0

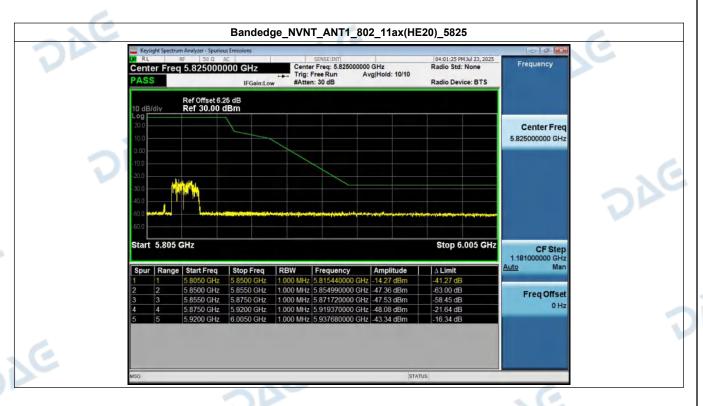
Bandedge_NVNT_ANT1_802_11a_5825 03:36:06 PM Jul 23, 2025 Radio Std: None Center Freq: 5.825000000 GHz
Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB Radio Device: BTS Ref Offset 6.25 dB Ref 30.00 dBm Center Freq 5.825000000 GHz Start 5.805 GHz Stop 6.005 GHz CF Step 1.181000000 GHz
 58500 GHz
 1.000 MHz
 5.842305000 GHz
 -31.32 dBm

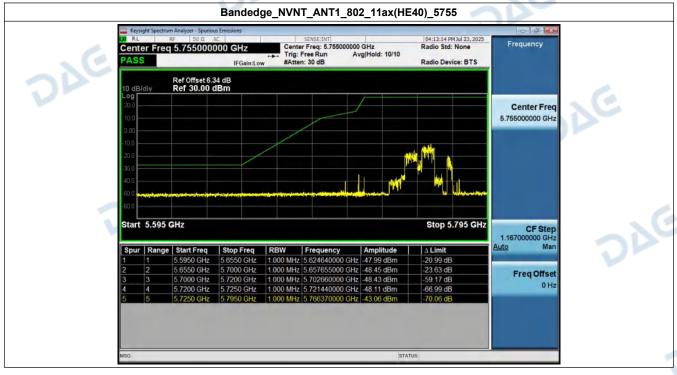
 5.8550 GHz
 1.000 MHz
 5.853220000 GHz
 -36.64 dBm

 5.8750 GHz
 1.000 MHz
 5.855040000 GHz
 -38.39 dBm

 5.9200 GHz
 1.000 MHz
 5.886340000 GHz
 -46.85 dBm
 -58.32 dB -56.31 dB 5.8500 GHz Freq Offset -53.97 dB -47.54 dB 0 Hz

Report No.: DACE250701005RL004


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 100 of 108



4

DAG

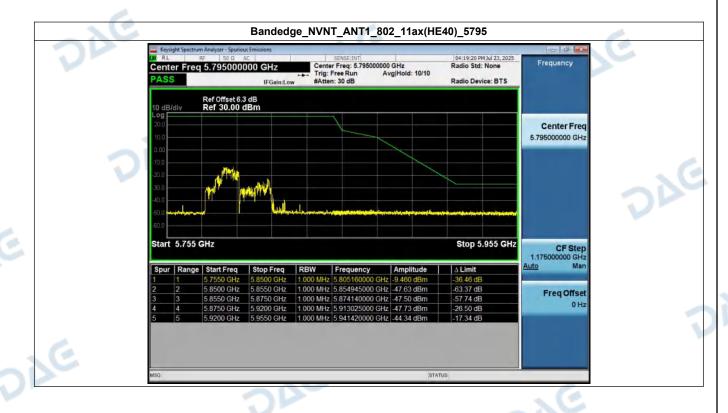
V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com


Page 101 of 108

DAG

DAG

DAG

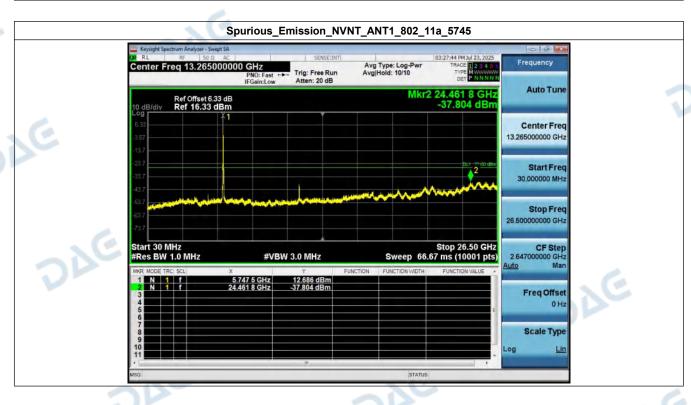
DAG

DAG

DAG

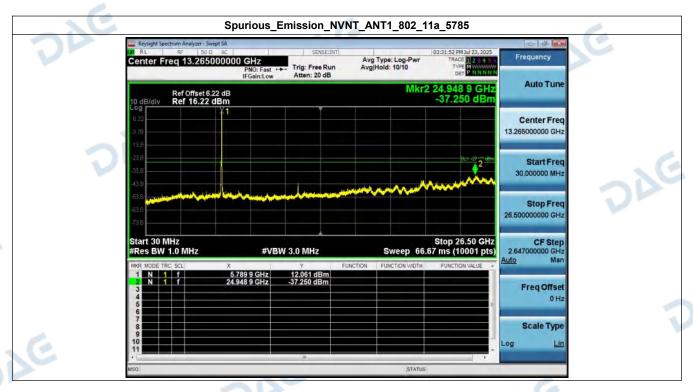
DAG

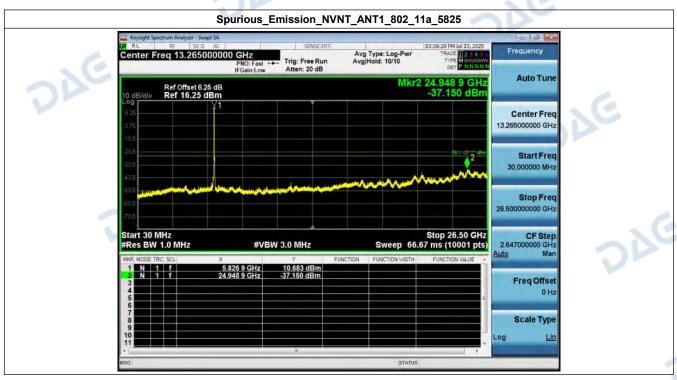
DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 102 of 108

6. Spurious Emission

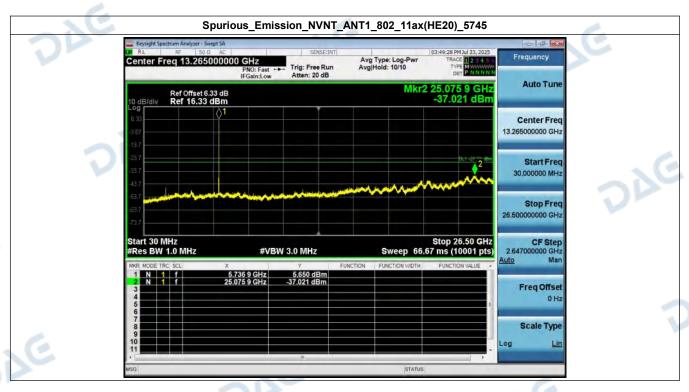
Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark Frequency(MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5745.00	24461.81	-37.80	-27	Pass
NVNT	ANT1	802.11a	5785.00	24948.86	-37.25	-27	Pass
NVNT	ANT1	802.11a	5825.00	24948.86	-37.15	-27	Pass
NVNT	ANT1	802.11ax(HE20)	5745.00	25075.91	-37.02	-27	Pass
NVNT	ANT1	802.11ax(HE20)	5785.00	25083.85	-36.58	-27	Pass
NVNT	ANT1	802.11ax(HE20)	5825.00	26140.01	-37.36	-27	Pass
NVNT	ANT1	802.11ax(HE40)	5755.00	25094.44	-36.73	-27	Pass
NVNT	ANT1	802.11ax(HE40)	5795.00	25012.39	-36.28	-27	Pass

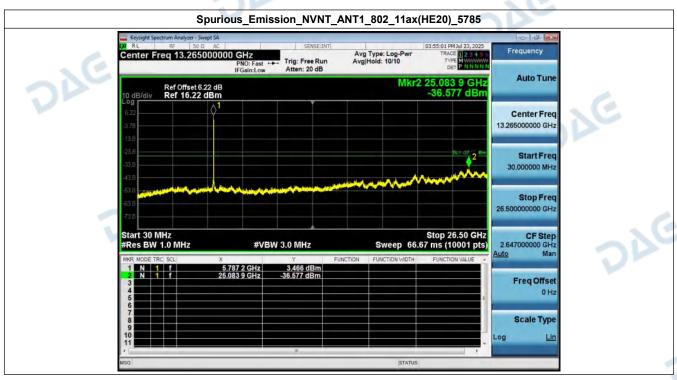

Report No.: DACE250701005RL004



Page 103 of 108 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

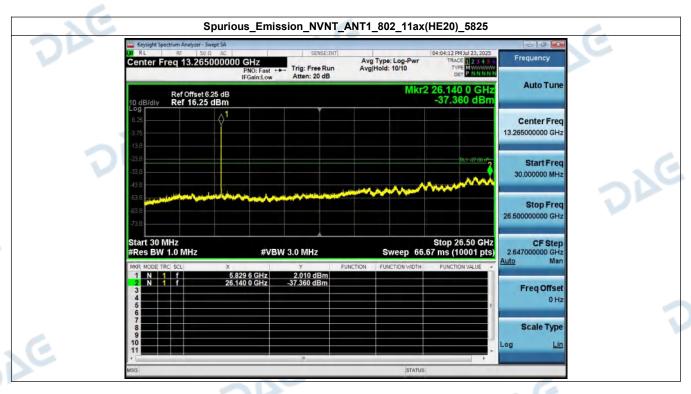
V1.0

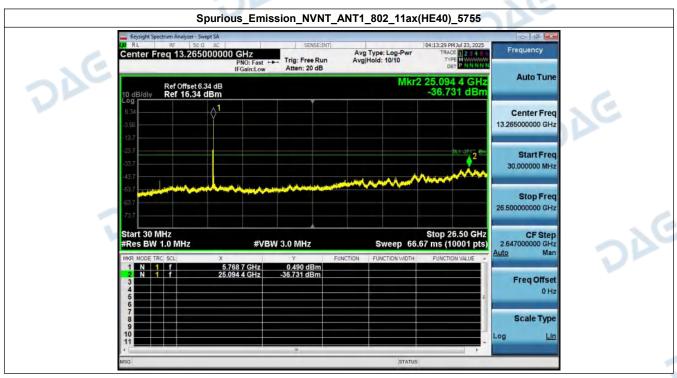




Page 104 of 108 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

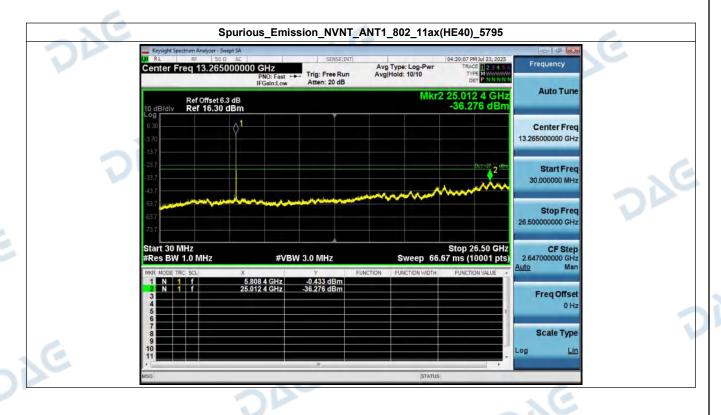
V1.0





Page 105 of 108 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

V1.0


DAG

DAG

DAG

DAG

DAG

DAG

DAG

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 107 of 108

7. Frequency Stability

	_							
Condition	Antenna	Modulation	Frequency (MHz)	Fc(MHz)	FI(MHz)	Fh(MHz)	Limit(MHz)	Result
55degrees C&&3.80V	ANT1	802.11a	5745.00	5745.024	5735.984	5754.064	5725~5850	Pass
45degrees C&&3.80V	ANT1	802.11a	5745.00	5744.984	5736.500	5753.468	5725~5850	Pass
35degrees C&&3.80V	ANT1	802.11a	5745.00	5744.996	5736.712	5753.280	5725~5850	Pass
25degrees C&&3.80V	ANT1	802.11a	5745.00	5744.978	5736.788	5753.168	5725~5850	Pass
15degrees C&&3.80V	ANT1	802.11a	5745.00	5744.998	5736.856	5753.140	5725~5850	Pass
5degrees C&&3.80V	ANT1	802.11a	5745.00	5744.996	5736.916	5753.076	5725~5850	Pass
-5degrees C&&3.80V	ANT1	802.11a	5745.00	5744.972	5736.956	5752.988	5725~5850	Pass
-15degrees C&&3.80V	ANT1	802.11a	5745.00	5744.978	5736.992	5752.964	5725~5850	Pass
25degrees C&&4.37V	ANT1	802.11a	5745.00	5744.990	5737.028	5752.952	5725~5850	Pass
25degrees C&&3.80V	ANT1	802.11a	5745.00	5744.984	5737.076	5752.892	5725~5850	Pass
25degrees C&&3.23V	ANT1	802.11a	5745.00	5744.984	5737.124	5752.844	5725~5850	Pass
55degrees C&&3.80V	ANT1	802.11a	5785.00	5784.930	5775.836	5794.024	5725~5850	Pass
45degrees C&&3.80V	ANT1	802.11a	5785.00	5784.952	5776.504	5793.400	5725~5850	Pass
35degrees C&&3.80V	ANT1	802.11a	5785.00	5784.992	5776.684	5793.300	5725~5850	Pass
25degrees C&&3.80V	ANT1	802.11a	5785.00	5784.996	5776.788	5793.204	5725~5850	Pass
15degrees C&&3.80V	ANT1	802.11a	5785.00	5784.998	5776.868	5793.128	5725~5850	Pass
5degrees C&&3.80V	ANT1	802.11a	5785.00	5784.998	5776.928	5793.068	5725~5850	Pass
-5degrees C&&3.80V	ANT1	802.11a	5785.00	5784.992	5776.972	5793.012	5725~5850	Pass
-15degrees C&&3.80V	ANT1	802.11a	5785.00	5784.984	5777.020	5792.948	5725~5850	Pass
25degrees C&&4.37V	ANT1	802.11a	5785.00	5784.980	5777.060	5792.900	5725~5850	Pass
25degrees C&&3.80V	ANT1	802.11a	5785.00	5785.002	5777.120	5792.884	5725~5850	Pass
25degrees C&&3.23V	ANT1	802.11a	5785.00	5785.006	5777.164	5792.848	5725~5850	Pass
55degrees C&&3.80V	ANT1	802.11a	5825.00	5824.952	5815.844	5834.060	5725~5850	Pass
45degrees C&&3.80V	ANT1	802.11a	5825.00	5824.966	5816.452	5833.480	5725~5850	Pass
35degrees C&&3.80V	ANT1	802.11a	5825.00	5824.968	5816.676	5833.260	5725~5850	Pass
25degrees C&&3.80V	ANT1	802.11a	5825.00	5824.970	5816.776	5833.164	5725~5850	Pass
15degrees C&&3.80V	ANT1	802.11a	5825.00	5824.972	5816.828	5833.116	5725~5850	Pass
5degrees C&&3.80V	ANT1	802.11a	5825.00	5824.972	5816.884	5833.060	5725~5850	Pass
-5degrees C&&3.80V	ANT1	802.11a	5825.00	5824.974	5816.932	5833.016	5725~5850	Pass
-15degrees C&&3.80V	ANT1	802.11a	5825.00	5824.958	5816.972	5832.944	5725~5850	Pass
25degrees C&&4.37V	ANT1	802.11a	5825.00	5824.962	5817.008	5832.916	5725~5850	Pass
25degrees C&&3.80V	ANT1	802.11a	5825.00	5824.978	5817.060	5832.896	5725~5850	Pass
25degrees C&&3.23V	ANT1	802.11a	5825.00	5824.940	5817.108	5832.772	5725~5850	Pass
			•					

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 108 of 108