

FCC TEST REPORT **FOR**

Shenzhen Pet Baby Technology Co., LTD Pet GPS Tracker & Health Monitor

Test Model: C08

Additional Model No.: WOY-028

Prepared for Shenzhen Pet Baby Technology Co., LTD

504, Building B, Lin guo suo hengmingzhu Industrial Park,

Address Taoyuan Community, Xixiang Street, Baoan District, Shenzhen,

China

Prepared by Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park

Address Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

518000, China

Tel (+86)755-82591330 Fax (+86)755-82591332 Web www.LCS-cert.com

Mail webmaster@LCS-cert.com

June 05, 2024 Date of receipt of test sample

2 Number of tested samples

A240603190-1, A240603190-2 Sample No.

Prototype Serial number

June 05, 2024 ~ June 17, 2024 Date of Test

Date of Report June 17, 2024

FCC PART 22/27 TEST REPORT

FCC Part 22H/Part 27

Report Reference No.....: LCSA06034215EA

FCC ID.....: XXXX-YYYY

Date of Issue.....: June 17, 2024

Testing Laboratory Name...... Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park

Address...... Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

518000, China

Applicant's name...... Shenzhen Pet Baby Technology Co., LTD

Community, Xixiang Street, Baoan District, Shenzhen, China

Test specification ::

FCC CFR Title 47 Part 2, Part 22H, Part 27

KDB971168 D01 Power Meas License Digital Systems v03r01

Test Report Form No.....: LCSEMC-1.0

TRF Originator...... Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF...... Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description...... Pet GPS Tracker & Health Monitor

Trade Mark..... N/A

Test Model....: C08

Modulation Type..... Input: 5V==1A

Battery: DC 3.7V, 500mAh

Rating....: N/A

Result..... PASS

Compiled by: Supervised by:

Approved by:

Joker.Hu

Joker Hu/Administrator

Cary Luo/ Technique principal

Gavin Liang/ Manager

Shenzhen LCS Compliance Testing Laboratory Ltd.

TEST REPORT

Test Report No. :	LCSA06034215EA	June 1	7, 2024
rest Report No	LC3A06034215EA	Date of	of issue

EUT	: Pet GPS Tracker & Health Monitor	
Test Model	: C08	
Applicant	: Shenzhen Pet Baby Technology Co., LTD	
Address	: 504, Building B, Lin guo suo hengmingzhu Industrial Park, Taoyuan Community, Xixiang Street, Baoan District, Shenzhen,	
	China	
Telephone	till to the sting Lab	
Fax	:/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Manufacturer	: Shenzhen Pet Baby Technology Co., LTD	
Address	: 504, Building B, Lin guo suo hengmingzhu Industrial Park, Taoyuan Community, Xixiang Street, Baoan District, Shenzhen,	
	China	
Telephone	: /	
Fax	: <i>I</i>	
Factory	: Shenzhen Pet Baby Technology Co., LTD	
Address	: 504, Building B, Lin guo suo hengmingzhu Industrial Park,	
	Taoyuan Community, Xixiang Street, Baoan District, Shenzhen,	
	China VSA LOSTES VSA LOSTES	
Telephone	:1	
Fax	: /	

Test Result:	PASS	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

	Revison History		
Report Version	Issue Date	Revision Content	Revised By
000	June 17, 2024	Initial Issue	

	Contents	
TIVILI	sing La II My Testing La	T Trest
TIL Co	TEST STANDARDS	6
2	SUMMARY	7
2.1	Product Description	7
2.2	Equipment under Test	8
2.3	Short description of the Equipment under Test (EUT)	8
2.4	Support equipment List	8
2.5	External I/O Cable	8
2.6 2.7	Normal Accessory setting	8 份銀網
2.7	Test Sample DE LEGISLATION CONTROL OF THE LEGISL	THE THE PARTY OF T
2.9	Related Submittal(s) / Grant (s)	VISA CS Testing 9
2.10	Modifications	9
2.11	General Test Conditions/Configurations	9
3	TEST ENVIRONMENT	10
3.1	Address of the test laboratory	10
3.2	Test Facility	10
3.3	Environmental conditions	10
3.4	Test Description	10
3.5	Equipments Used during the Test	12
3.6	Measurement uncertainty	13
4	TEST CONDITIONS AND RESULTS	14
4.1	Output Power	14
4.2	Peak-to-Average Ratio (PAR)	19
4.3	Occupied Bandwidth and Emission Bandwidth	20
4.4	Band Edge compliance	21
4.5	Spurious Emssion on Antenna Port	23
4.6	Radiated Spurious Emssion	25
4.7	Frequency Stability under Temperature & Voltage Variations	30
_		· · · · · · · · · · · · · · · · · · ·
5	TEST SETUP PHOTOS OF THE EUT	33
6	EXTERNAL PHOTOS OF THE EUT	
7	INTERNAL PHOTOS OF THE EUT	33
•	· · · · · · · · · · · · · · · · · · ·	

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22H: Cellular Radiotelephone Service

FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

<u>TIA-603-E March 2016:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

ANSI C63.4:2014: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

FCC KDB971168 D01 Power Meas License Digital Systems v03r01

Page 7 of 33 FCC ID: 2BG3Q-C08 Report No.: LCSA06034215EA

2 SUMMARY

2.1 Product Description

The **Shenzhen Pet Baby Technology Co., LTD**'s Model: C08 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

EUT : Pet GPS Tracker & Health Monitor

Test Model : C08

Additional Model No. : WOY-028

Model Declaration : PCB board, structure and internal of these model(s) are the same, So no

additional models were tested

Power Supply : Input: 5V=1A

Battery: DC 3.7V, 500mAh

Hardware Version : /

Software Version : /

LTE

Support Band : ⊠ E-UTRA Band 5(U.S.-Band)

□ E-UTRA Band 41(U.S.-Band)

LTE Release Version : R12

Type Of Modulation : QPSK/16QAM Antenna Description : FPC Antenna

> 0dBi(max.) For E-UTRA Band 5 0dBi(max.) For E-UTRA Band 41

Power Class : Class 3

Extreme temp. : -30°C to +50°C

Tolerance

Extreme vol. Limits : 3.3VDC to 4.2VDC (nominal: 3.7VDC)

GPS function : Support and only RX

Page 8 of 33 FCC ID: 2BG3Q-C08

Report No.: LCSA06034215EA

Equipment under Test

Power supply system utilised

Power supply voltage	1159 10	•	120V/ 60 Hz	0	115V/60Hz	1/27
	9	0	12 V DC	0	5.0 V DC	1
		0	Other (specified in blank bel	ow)	-

Short description of the Equipment under Test (EUT)

2.4.1 GeneralDescription

Pet GPS Tracker & Health Monitor is subscriber equipment in the LTE system. LTE frequency band is band 5/41. The Pet GPS Tracker & Health Monitor implements such functions as RF signal receiving/transmitting, LTE protocol processing, video MMS service and etc. Externally it provides SIM card interface.

2.4 Support equipment List

.4	Support equipment List			TE TOS	
	Manufacturer	Description	Model	Serial Number	Certificate
	SHENZHEN TIANYIN	Power	TPA-		FCC
	ELECTRONICS CO., LTD	Adapter	46050200UU		FCC

Note: Auxiliary equipment is provided by the laboratory.

External I/O Cable

I/O Port Description	Quantity	Cable
Power Port	1 1	USB Cable: 0.5m, unshielded
TF Card Port	esting Lab 1	N/A II M Testin

Normal Accessory setting

Fully charged battery was used during the test.

2.7 Test Sample

The application provides 2 samples to meet requirement;

-		,
	Sample Number	Description
	Sample 1(A240603190-1)	Engineer sample – continuous transmit
	Sample 2(A240603190-2)	Normal sample – Intermittent transmit

Shenzhen LCS Compliance Testing Laboratory Ltd.

Page 9 of 33 FCC ID: 2BG3Q-C08 Report No.: LCSA06034215EA

2.8 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

0	Power Cable	Length (m):	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer:	1
		Model No.:	1

2.9 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: XXXX-YYYY filing to comply with FCC Part 22, Part 27 Rules

2.10 Modifications

No modifications were implemented to meet testing criteria.

2.11 General Test Conditions/Configurations

2.9.1 Test Environment

EnvironmentParameter	SelectedValuesDu	ringTests	
Relative Humidity	Ambient		
Temperature 1000 1000	TN NO LOS	Ambient Ambient	
	VL	DC 3.3V	
Voltage	VN	DC 3.7V	
	VH	DC 4.2V	

NOTE:VL=lower extreme testvoltage VN=nominal voltage VH=upper extreme testvoltage TN=normal temperature

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 22.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
10 May 10	14 - 10 Mg 103
Atmospheric pressure:	950-1050mbar

3.4 Test Description

Band 5 (824-849MHz pairedwith 869-894MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §22.913	FCC: ERP ≤ 7W.	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §22.917	≤-≤ -13dBm/1%*EBW, In 1MHz bands immediately outside and adjacent to The frequency block.	Pass
Spurious Emission at Antenna Terminals	§2.1051, §22.917	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §22.917	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Pass
NOTE 1:For the verdict, the	ne"N/A"denotes"	not applicable",the"N/T"de notes "not tested".	

TDD Band 41(2496-2690MHz)

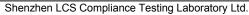
Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Power Output Data	§2.1046, §27.50(h)	ERP ≤ 2W;	PASS
Peak-Average Ratio	§2.1046, §27.50	Limit≤13dB	PASS
Modulation Characteristics	§2.1047	Digitalmodulation	N/A
Bandwidth	§2.1049	OBW: Nolimit. EBW: Nolimit.	PASS
BandEdges Compliance	§2.1051, §27.53(m)	≤ -13dBm/1%*EBW,in1 MHz bands immediately outside and adjacent to The frequency block.	PASS
Spurious Emission at Antenna Terminals	§2.1051, §27.53(m)	≤ -13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	PASS
Frequency Stability	§2.1055, §27.54	Within authorized bands of operation/frequency block.	PASS
Radiated spurious emission	§2.1053, §27.53(m)	≤ -25dBm/1MHz.	PASS

Equipments Used during the Test

3.5	Equipments Usea a	uring the rest				_1 1125
Ite m	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R&S	NRVS	100444	2023-06-09 2024-06-06	2024-06-08 2025-06-05
2	Power Sensor	R&S	NRV-Z81	100458	2023-06-09 2024-06-06	2024-06-08 2025-06-05
3	Power Sensor	R&S	NRV-Z32	10057	2023-06-09 2024-06-06	2024-06-08 2025-06-05
4	LTE Test Software	Tonscend	JS1120-1	N/A	N/A	N/A
5	RF Control Unit	Tonscend	JS0806-1	158060009	2023-10-18	2024-10-17
6	MXA Signal Analyzer	Agilent	N9020A	MY51250905	2023-10-18	2024-10-17
7	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2023-06-09	2024-06-08
8	DC Power Supply	Agilent	E3642A	N/A	2023-10-18	2024-10-17
9	EMI Test Software	AUDIX	E3	1	N/A	N/A
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2023-06-09	2024-06-08
11	Positioning Controller	Max-Full	MF7802BS	MF780208586	N/A	N/A
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-08-29	2024-08-28
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-09-12	2024-09-11
14	By-log Antenna	SCHWARZBECK	VULB9163	9163-471	2021-09-12	2024-09-11
15	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-09-05	2024-09-04
16	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1926	2021-09-05	2024-09-04
17	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2021-08-29	2024-08-28
18	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	792	2021-08-29	2024-08-28
19	Broadband Preamplifier	SCHWARZBECK	BBV9719	9719-025	2021-08-29	2024-08-28
20	EMI Test Receiver	R&S	ESR 7	101181	2023-08-15	2024-08-14
21	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2023-07-17	2024-07-16
22	Low-frequency amplifier	SchwarzZBECK	BBV9745	00253	2023-10-18	2024-10-17
23	High-frequency amplifier	JS Denki Pte	PA0118-43	JSPA21009	2023-10-18	2024-10-17
24	6dB Attenuator	1	100W/6dB	1172040	2023-06-09 2024-06-06	2024-06-08 2025-06-05
26	3dB Attenuator	1	2N-3dB	1	2023-10-18	2024-10-17
27	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2023-10-05	2024-10-04
28	EMI Test Software	Farad	EZ /		N/A	N/A
29	RADIO COMMUNICATION TESTER	R&S CMU 20		105988	2023-06-09	2024-06-08
29	TESTER	CIMU 200	105988	2024-06-06	2025-06-05	

Measurement uncertainty

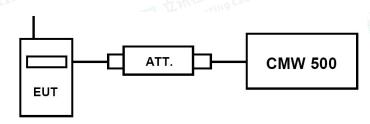
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100 028"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.


Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.10 dB	(1)
Radiated Emission	1~18GHz	3.80 dB	(1)
Radiated Emission	18-40GHz	3.90 dB	(1)
Conducted Disturbance	0.15~30MHz	1.63 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occuiped Bandwidth	9KHz~40GHz	-	(1)

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4 TEST CONDITIONS AND RESULTS


4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW 500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW 500 by an Att.
- c) EUT Communicate with CMW 500 then selects a channel for testing.
- d) Add a correction factor to the display CMW 500, and then test.

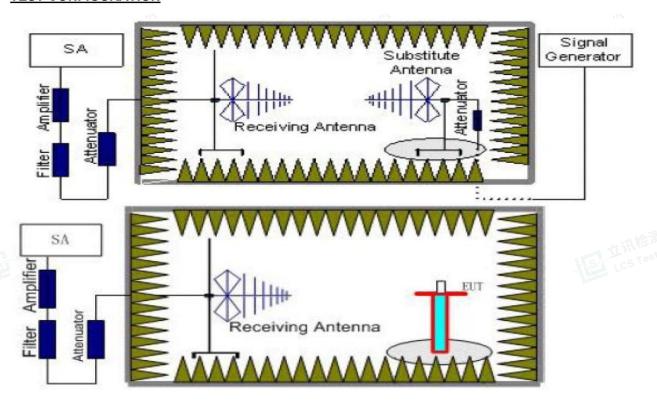
TEST RESULTS

Remark:

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 41.
- 2. For E-UTRA Band 5, please refer to Appendix A.1: Section A.1
- 3. For E-UTRA Band 41, please refer to Appendix B.1: Section B.1

工资检测股份 LCS Testing Lab

LCS Testing Lab


4.1.2. Radiated Output Power

LIMIT

This is the test for the maximum radiated power from the EUT.

Per §22.913(2) Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. Per Part 27.50(h) (2)specifies Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com | Scan code to check authenticity

Page 16 of 33 FCC ID: 2BG3Q-C08 Report No.: LCSA06034215EA

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.
 - The measurement results are obtained as described below:
 - Power(EIRP)= P_{Mea} + P_{Ag} P_{cl} + G_a
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Radiated Measurement:

Remark:

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 41.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = Emission Level Limit
- 5. We tested the worst-case records for H and V directions, and only the worst-case records for V direction were recorded in the report.

LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.70	-15.57	3.45	8.45	2.15	33.79	21.07	38.45	-17.38	V
836.50	-15.83	3.49	8.45	2.15	33.85	20.83	38.45	-17.62	V
848.30	-16.41	3.55	8.36	2.15	33.88	20.13	38.45	-18.32	V Testin

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK

Frequenc (MHz)	y P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
825.50	-16.14	3.45	8.45	2.15	33.79	20.50	38.45	-17.95	V
836.50	-15.51	3.49	8.45	2.15	33.85	21.15	38.45	-17.30	V
847.50	-15.75	3.55	8.36	2.15	33.88	20.79	38.45	-17.66	V

LTE FDD Band 5 Channel Bandwidth 5MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.50	-15.60	3.45	8.45	2.15	33.79	21.04	38.45	-17.41	V
836.50	-16.21	3.49	8.45	2.15	33.85	20.45	38.45	-18.00	V
846.50	-15.95	3.55	8.36	2.15	33.88	20.59	38.45	-17.86	V

LTE FDD Band 5 Channel Bandwidth 10MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.00	-16.10	3.45	8.45	2.15	33.79	20.54	38.45	-17.91	V
836.50	-15.86	3.49	8.45	2.15	33.85	20.80	38.45	-17.65	V
844.00	-16.42	3.55	8.36	2.15	33.88	20.12	38.45	-18.33	V

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Page 17 of 33 FCC ID: 2BG3Q-C08 Report No.: LCSA06034215EA

LTE FDD Band 5_Channel Bandwidth 1.4MHz_16QAM

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
8	824.70	-16.79	3.45	8.45	2.15	33.79	19.85	38.45	-18.60	V
	836.50	-17.39	3.49	8.45	2.15	33.85	19.27	38.45	-19.18	V
	848.30	-16.82	3.55	8.36	2.15	33.88	19.72	38.45	-18.73	V

LTE FDD Band 5_Channel Bandwidth 3MHz_16QAM

P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
-16.56	3.45	8.45	2.15	33.79	20.08	38.45	-18.37	V	
-17.30	3.49	8.45	2.15	33.85	19.36	38.45	-19.09	V	
-16.52	3.55	8.36	2.15	33.88	20.02	38.45	-18.43		
LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM									
	-16.56 -17.30 -16.52	(dBm) (dB) -16.56 3.45 -17.30 3.49 -16.52 3.55	PMea (dBm) Pcl (dB) Antenna Gain(dB) -16.56 3.45 8.45 -17.30 3.49 8.45 -16.52 3.55 8.36	P _{Mea} (dBm)	PMea (dBm) Pcl (dB) Antenna Gain(dB) Correction (dB) Pag (dB) -16.56 3.45 8.45 2.15 33.79 -17.30 3.49 8.45 2.15 33.85 -16.52 3.55 8.36 2.15 33.88 and 5_Channel Bandwidth 5MHz_16QAM	PMea (dBm) Pcl (dB) Antenna Gain(dB) Correction (dB) PAg (dB) ERP (dBm) -16.56 3.45 8.45 2.15 33.79 20.08 -17.30 3.49 8.45 2.15 33.85 19.36 -16.52 3.55 8.36 2.15 33.88 20.02 and 5_Channel Bandwidth 5MHz_16QAM	PMea (dBm) Pcl (dB) Antenna Gain(dB) Correction (dB) PAg (dB) ERP (dBm) Limit (dBm) -16.56 3.45 8.45 2.15 33.79 20.08 38.45 -17.30 3.49 8.45 2.15 33.85 19.36 38.45 -16.52 3.55 8.36 2.15 33.88 20.02 38.45 and 5_Channel Bandwidth 5MHz_16QAM	PMea (dBm) Pcl (dB) Antenna Gain(dB) Correction (dB) PAg (dB) ERP (dBm) Limit (dBm) Margin (dB) -16.56 3.45 8.45 2.15 33.79 20.08 38.45 -18.37 -17.30 3.49 8.45 2.15 33.85 19.36 38.45 -19.09 -16.52 3.55 8.36 2.15 33.88 20.02 38.45 -18.43 and 5_Channel Bandwidth 5MHz_16QAM	

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.50	-16.52	3.45	8.45	2.15	33.79	20.12	38.45	-18.33	V
836.50	-16.78	3.49	8.45	2.15	33.85	19.88	38.45	-18.57	V
846.50	-16.61	3.55	8.36	2.15	33.88	19.93	38.45	-18.52	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.00	-17.28	3.45	8.45	2.15	33.79	19.36	38.45	-19.09	V
836.50	-16.85	3.49	8.45	2.15	33.85	19.81	38.45	-18.64	V
844.00	-16.59	3.55	8.36	2.15	33.88	19.95	38.45	-18.50	V

LTE TDD Band 41 Channel Bandwidth 5MHz QPSK

		o. <u>-</u> aa.	······ •···· ·- <u>-</u> _	Α. σ				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2498.5	-18.52	4.32	6.80	36.13	20.09	33.01	-12.92	V
2593.0	-18.96	4.36	6.55	36.26	19.49	33.01	-13.52	V
2687.5	-18.96	4.51	6.37	36.54	19.44	33.01	-13.57	V

LTE TDD Band 41_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2501.0	-18.11	4.32	6.80	36.13	20.50	33.01	-12.51	V
2593.0	-18.66	4.36	6.55	36.26	19.79	33.01	-13.22	V
2685.0	-18.76	4.51	6.37	36.54	19.64	33.01	-13.37	V

LTE TDD Band 41 Channel Bandwidth 15MHz QPSK

	ETE TEE Band TI_Ondition Bandwidth Tollin E_QT OK									
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
2503.5	-18.66	4.32	6.80	36.13	19.95	33.01	-13.06	S/ 1032		
2593.0	-18.31	4.36	6.55	36.26	20.14	33.01	-12.87	V		
2682.5	-18.20	4.51	6.37	36.54	20.20	33.01	-12.81	V		

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 18 of 33

FCC ID: 2BG3Q-C08 Report No.: LCSA06034215EA

LTE TDD Band 41 Channel Bandwidth 20MHz QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	2506.0	-18.12	4.32	6.80	36.13	20.49	33.01	-12.52	V
Ī	2593.0	-18.05	4.36	6.55	36.26	20.40	33.01	-12.61	V
I	2680.0	-18.04	4.51	6.37	36.54	20.36	33.01	-12.65	V

LTE TDD Band 41 Channel Bandwidth 5MHz 16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2498.5	-19.53	4.32	6.80	36.13	19.08	33.01	-13.93	V
2593.0	-19.83	4.36	6.55	36.26	18.62	33.01	-14.39	V ening V
2687.5	-19.61	4.51	6.37	36.54	18.79	33.01	-14.22	V

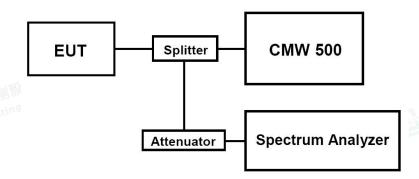
LTE TDD Band 41 Channel Bandwidth 10MHz 16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2501.0	-19.31	4.32	6.80	36.13	19.30	33.01	-13.71	V
2593.0	-19.24	4.36	6.55	36.26	19.21	33.01	-13.80	V
2685.0	-19.88	4.51	6.37	36.54	18.52	33.01	-14.49	V

LTE TDD B	LTE TDD Band 41_Channel Bandwidth 15MHz_16QAM										
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
2503.5	-19.75	4.32	6.80	36.13	18.86	33.01	-14.15	V			
2593.0	-19.78	4.36	6.55	36.26	18.67	33.01	-14.34	V			
2682.5	-19.05	4.51	6.37	36.54	19.35	33.01	-13.66	V			

LTE TDD Band 41 Channel Bandwidth 20MHz 16QAM

	ana nona	mior Banavi	TOUT LOWIN IL	_ 1 0 00, 1101				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2506.0	-19.78	4.32	6.80	36.13	18.83	33.01	-14.18	No.
2593.0	-19.39	4.36	6.55	36.26	19.06	33.01	-13.95	V V
2680.0	-18.96	4.51	6.37	36.54	19.44	33.01	-13.57	V



4.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

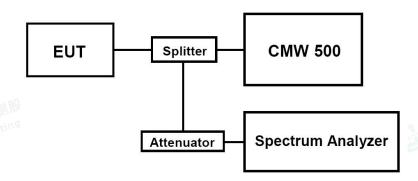
TEST RESULTS

Remark:

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 41.
- 2. For E-UTRA Band 5, please refer to Appendix A.2: Section A:2
- 3. For E-UTRA Band 41, please refer to Appendix B.2: Section B.2

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China



4.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

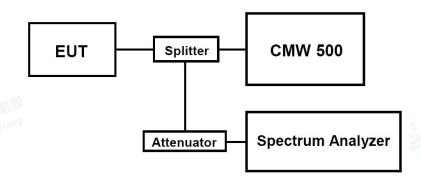
Remark:

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 41.
- 2. For E-UTRA Band 5, please refer to Appendix A.3: Section A:3
- 3. For E-UTRA Band 41, please refer to Appendix B.3: Section B.3

医在大线测度的 LCS Testing Lab

LCS Testing Lar

4.4 Band Edge compliance


LIMIT

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

For LTE TDD Band 41: Per §27.53 (m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules.

(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Show citation box.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- Select lowestand highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

Shenzhen LCS Compliance Testing Laboratory Ltd.

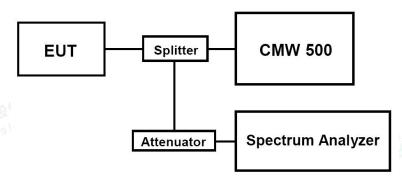
Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Page 22 of 33 FCC ID: 2BG3Q-C08 Report No.: LCSA06034215EA

医立法形位测度份 LCS Testing Lab We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 41.

- 3. For E-UTRA Band 41, please refer to Appendix B.4: Section B.4 2. For E-UTRA Band 5, please refer to Appendix A.4: Section A:4

4.5 Spurious Emssion on Antenna Port


LIMIT

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

For LTE TDD Band 41: Per §27.53 (m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules.

(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Show citation box.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to TIA-603-E

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW 500 by a Directional Couple.
- c. EUT Communicate with CMW 500, then select a channel for testing.
- Add a correction factor to the display of spectrum, and then test.
- The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to 10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

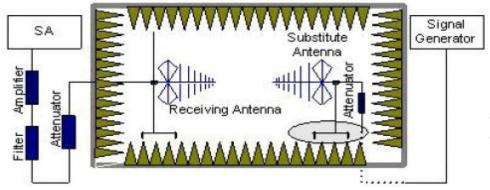
Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
(,5)	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 5	0.000015~0.03	10KHz	30KHz	Auto
	0.03~10	1 MHz	3 MHz	Auto
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 41	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26.5	1 MHz	3 MHz	Auto

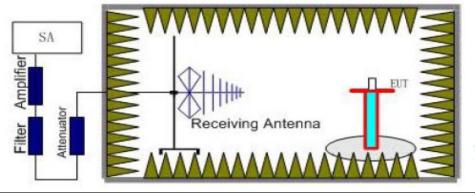
TEST RESULTS

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD 医正式消检测度的Lab Band 5, LTE FDD Band 41.
- For E-UTRA Band 5, please refer to Appendix A.5: Section A:5
- For E-UTRA Band 41, please refer to Appendix B.5: Section B.5

Radiated Spurious Emssion

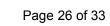

LIMIT


For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

For LTE TDD Band 41: Per §27.53 (m)(6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points. one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. With respect to television operations, measurements must be made of the separate visual and aural operating powers at sufficiently frequent intervals to ensure compliance with the rules.

(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Show citation box.

TEST CONFIGURATION



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

TEST PROCEDURE

1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below:

 Power(EIRP)=P_{Mea}+ P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
GTosting Lo	0.00009~0.15	1KHz	3KHz	30
(5)	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
LTE FDD Band 5	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~9	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
an IP	2~5	1 MHz	3 MHz	3
LTE TDD Band 41	5~8	1 MHz	3 MHz	3
T. Tosting L.	8~11	1 MHz	3 MHz	3
TE LOS Testing Le	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
<u> </u>	18~20	1 MHz	3 MHz	2
	20~26	1 MHz	3 MHz	2

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz -9GHz	PASS
LTE FDD Band 5	Middle	9KHz -9GHz	PASS
	High	9KHz -9GHz	PASS
	Low	9KHz -26GHz	PASS
LTE TDD Band 41	Middle	9KHz -26GHz	PASS
	High	9KHz -26GHz	PASS
TEST RESULTS			

TEST RESULTS

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band
- 5, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 41.
- 3. We were not recorded other points as values lower than limits.
- 4. Power(EIRP)= P_{Mea} + P_{Ag} P_{cl} + G_a
- 5. Margin = EIRP Limit

LTE FDD Band 5 Channel Bandwidth 10MHz QPSK Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1658.00	-38.56	3.86	3.00	8.56	-33.86	-13.00	-20.86	Н
2487.00	-46.43	4.29	3.00	6.98	-43.74	-13.00	-30.74	Н
1658.00	-33.21	3.86	3.00	8.56	-28.51	-13.00	-15.51	V
2487.00	-37.89	4.29	3.00	6.98	-35.20	-13.00	-22.20	V

LTE FDD Band 5 Channel Bandwidth 10MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.00	-38.93	3.90	3.00	8.58	-34.25	-13.00	-21.25	Н
2509.50	-47.71	4.32	3.00	6.80	-45.23	-13.00	-32.23	H
1673.00	-33.29	3.90	3.00	8.58	-28.61	-13.00	-15.61	TV VIE
2509.50	-38.08	4.32	3.00	6.80	-35.60	-13.00	-22.60	V

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1688.00	-40.79	3.91	3.00	9.06	-35.64	-13.00	-22.64	Н
2532.00	-47.34	4.32	3.00	6.65	-45.01	-13.00	-32.01	Н
1688.00	-35.77	3.91	3.00	9.06	-30.62	-13.00	-17.62	V
2532.00	-39.30	4.32	3.00	6.65	-36.97	-13.00	-23.97	V

LTE FDD Band 5 Channel Bandwidth 10MHz 16QAM Low Channel

	12 7 22 24 14 C C C C C C C C C C C C C C C C C C											
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization				
1658.00	-39.03	3.86	3.00	8.56	-34.33	-13.00	-21.33	Н				
2487.00	-47.82	4.29	3.00	6.98	-45.13	-13.00	-32.13	H				
1658.00	-33.34	3.86	3.00	8.56	-28.64	-13.00	-15.64	Venise				
2487.00	-39.39	4.29	3.00	6.98	-36.70	-13.00	-23.70	V				

LTE FDD Band 5 Channel Bandwidth 10MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.00	-40.38	3.90	3.00	8.58	-35.70	-13.00	-22.70	Н
2509.50	-46.36	4.32	3.00	6.80	-43.88	-13.00	-30.88	Н
1673.00	-33.80	3.90	3.00	8.58	-29.12	-13.00	-16.12	V
2509.50	-39.61	4.32	3.00	6.80	-37.13	-13.00	-24.13	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1688.00	-39.04	3.91	3.00	9.06	-33.89	-13.00	-20.89	Н
2532.00	-45.32	4.32	3.00	6.65	-42.99	-13.00	-29.99	Н
1688.00	-36.56	3.91	3.00	9.06	-31.41	-13.00	-18.41	V
2532.00	-38.27	4.32	3.00	6.65	-35.94	-13.00	-22.94	V

LTE TDD Band 41_Channel Bandwidth 20MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5012.0	-40.96	7.15	3.00	9.88	-38.23	-25.00	-13.23	THE STATE OF THE S
7518.0	-47.43	8.36	3.00	11.36	-44.43	-25.00	-19.43	Calng LH
5012.0	-33.57	7.15	3.00	9.88	-30.84	-25.00	-5.84	V
7518.0	-38.41	8.36	3.00	11.36	-35.41	-25.00	-10.41	V

LTE TDD Band 41 Channel Bandwidth 20MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5186.0	-38.31	7.26	3.00	10.03	-35.54	-25.00	-10.54	Н
7779.0	-46.83	8.48	3.00	11.41	-43.90	-25.00	-18.90	Н
5186.0	-34.49	7.26	3.00	10.03	-31.72	-25.00	-6.72	V
7779.0	-39.82	8.48	3.00	11.41	-36.89	-25.00	-11.89	V

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Page 29 of 33 FCC ID: 2BG3Q-C08 Report No.: LCSA06034215EA

LTE TDD Band 41_Channel Bandwidth 20MHz QPSK_High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5360.0	-38.16	7.17	3.00	9.62	-35.71	-25.00	-10.71	Н
8040.0	-47.29	8.39	3.00	11.46	-44.22	-25.00	-19.22	Н
5360.0	-33.18	7.17	3.00	9.62	-30.73	-25.00	-5.73	V
8040.0	-37.56	8.39	3.00	11.46	-34.49	-25.00	-9.49	V

LTE TDD Band 41 Channel Bandwidth 20MHz 16QAM Low Channel

	_							
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5012.0	-38.30	7.15	3.00	9.88	-35.57	-25.00	-10.57	Н
7518.0	-45.56	8.36	3.00	11.36	-42.56	-25.00	-17.56	William H
5012.0	-34.80	7.15	3.00	9.88	-32.07	-25.00	-7.07	Sting LV
7518.0	-37.87	8.36	3.00	11.36	-34.87	-25.00	-9.87	V

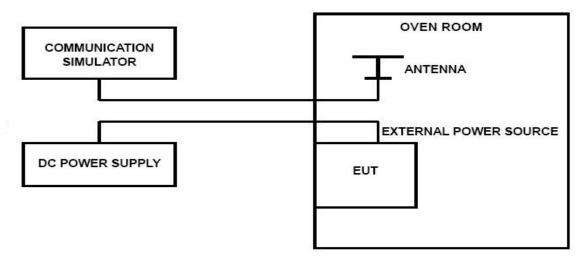
LTE TDD Band 41 Channel Bandwidth 20MHz 16QAM Middle Channel

	12 133 Band 11_ondiniorBandwath Lown 12_10 Qrun_iniodic Ontainior										
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
5186.0	-39.70	7.26	3.00	10.03	-36.93	-25.00	-11.93	Н			
7779.0	-46.10	8.48	3.00	11.41	-43.17	-25.00	-18.17	Н			
5186.0	-35.73	7.26	3.00	10.03	-32.96	-25.00	-7.96	V			
7779.0	-39.69	8.48	3.00	11.41	-36.76	-25.00	-11.76	V			

LTE TDD Band 41_Channel Bandwidth 20MHz_16QAM_ High Channel

6	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G₂ Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	5360.0	-41.00	7.17	3.00	9.62	-38.55	-25.00	-13.55	Н
	8040.0	-47.09	8.39	3.00	11.46	-44.02	-25.00	-19.02	Н
Ī	5360.0	-33.86	7.17	3.00	9.62	-31.41	-25.00	-6.41	V
	8040.0	-36.61	8.39	3.00	11.46	-33.54	-25.00	-8.54	V

Notes: All channel bandwidth were tested, the report recorded the worst data.



4.7 Frequency Stability under Temperature & Voltage Variations

LIMIT STITE

According to FCC§22.355,§27.54 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to TIA-603-E

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW 500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30°C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on middle channel for LTE band 5, LTE Band 41; measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements
- 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure.

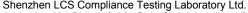
Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

Remark:

We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 41; recorded worst case for each Channel Bandwidth of LTE FDD Band 5, LTE FDD Band 41.


LTE Band 5. QPSK. 1.4MHz bandwidth(worst case of all bandwidths)

	or, 1. Hill 12 Danawi		D Band 5		
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
VL	20	-56	-0.067	±2.50	PASS
VN	20	27	0.033	±2.50	PASS
VH	20	49	0.059	±2.50	PASS
VN	-30	-37	-0.044	±2.50	PASS
VN	-20	65	0.078	±2.50	PASS
VN	-10	-25	-0.030	±2.50	PASS
VN	eting La O	3	0.003	±2.50	PASS
NN 102	10	54	0.065	±2.50	PASS
VN	20	2	0.003	±2.50	PASS
VN	30	-62	-0.075	±2.50	PASS
VN	40	-51	-0.061	±2.50	PASS
VN	50	12	0.014	±2.50	PASS

LTE Band 5. 16QAM. 1.4MHz bandwidth(worst case of all bandwidths)

		LTE FD	D Band 5		
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
VL	20	-42	-0.051	±2.50	PASS
VN	20	-61	-0.073	±2.50	PASS
VH	20	-45	-0.053	±2.50	PASS
N VN	-30	-59	-0.071	±2.50	PASS
VN	-20	-65	-0.077	±2.50	PASS
VN	-10	19	0.023	±2.50	PASS
VN	0	56	0.067	±2.50	PASS
VN	10	13	0.015	±2.50	PASS
VN	20	19	0.022	±2.50	PASS
VN	30	-38	-0.046	±2.50	PASS
VN	40	4	0.005	±2.50	PASS
VN	50	61	0.072	±2.50	PASS

Page 32 of 33

FCC ID: 2BG3Q-C08 Report No.: LCSA06034215EA

LTE Band 41, 5MHz bandwidth, QPSK (worst case of all bandwidths)

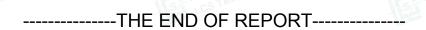
LTE TDD Band 41							
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
¹ √Co VL	20	9	0.003	2.50	PASS		
VN	20	-61	-0.024	2.50	PASS		
VH	20	40	0.015	2.50	PASS		
VN	-30	-38	-0.015	2.50	PASS		
VN	-20	-29	-0.011	2.50	PASS		
VN	-10	33	0.013	2.50	PASS		
VN	0	-66	-0.025	2.50	PASS		
VN	10	-14	-0.005	2.50	PASS		
VN	20	12	0.005	2.50	PASS		
VN	30	1	0.000	2.50	PASS		
VN	40	3	0.001	2.50	PASS		
VN	50	6	0.002	2.50	PASS		

LTE Band 41, 5MHz bandwidth, 16QAM (worst case of all bandwidths)

LTE TDD Band 41							
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
VL	20	48	0.018	2.50	PASS		
VN	20	-33	-0.013	2.50	PASS		
VH	20	49	0.019	2.50	PASS		
VN	-30	-60	-0.023	2.50	PASS		
VN	-20	-67	-0.026	2.50	PASS		
VN	-10	-65	-0.025	2.50	PASS		
VN 43	0	-6	-0.002	2.50	PASS		
VN	10	-45	-0.017	2.50	PASS		
VN	20	25	0.010	2.50	PASS		
VN	30	-57	-0.022	2.50	PASS		
VN	40	-18	-0.007	2.50	PASS		
VN	50	27	0.011	2.50	PASS		

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Test Setup Photos of the EUT


Pleaserefer to separated files for Test Setup Photos of the EUT.

External Photos of the EUT

Pleaserefer to separated files for External Photos of the EUT.

7 Internal Photos of the EUT

Pleaserefer to separated files for Internal Photos of the EUT.

