

FCC Radio Test Report

FCC ID: 2BDWL2417321

: BTL-FCCP-5-2303E003 Report No. Equipment TELUS SmartHome+ Hub

: TELUS **Brand Name** Test Model : HUF Series Model : N/A

TELUS Communications Inc. Applicant

Address : 7th Floor,510 West Georgia Street, Vancouver, BC, V6B0M3 Canada

Radio Function : Zigbee

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247) Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2024/3/5 Date of Test : 2024/3/5 ~ 2024/6/15

Issued Date : 2024/10/10

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Poken Huang, Engineer

Poken Huon

Approved by

Peter Chen, Supervisor

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2303E003 Page 2 of 45 Report Version: R01

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 7 1.1 **TEST FACILITY** MEASUREMENT UNCERTAINTY 7 1.2 1.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 7 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 2 **GENERAL INFORMATION** 9 **DESCRIPTION OF EUT** 9 2.1 2.2 **TEST MODES** 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 11 AC POWER LINE CONDUCTED EMISSIONS TEST 3 12 3.1 LIMIT 12 **TEST PROCEDURE** 12 3.2 3.3 **TEST SETUP** 13 3.4 **TEST RESULT** 13 RADIATED EMISSIONS TEST 4 14 4.1 14 LIMIT 4.2 **TEST PROCEDURE** 15 **TEST SETUP** 4.3 15 4.4 **EUT OPERATING CONDITIONS** 16 4.5 TEST RESULT - BELOW 30 MHZ 16 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 16 4.7 TEST RESULT - ABOVE 1 GHZ 16 5 **BANDWIDTH TEST** 17 5.1 APPLIED PROCEDURES / LIMIT 17 5.2 **TEST PROCEDURE** 17 5.3 **TEST SETUP** 17 5.4 **EUT OPERATION CONDITIONS** 17 5.5 **TEST RESULTS** 17 6 **OUTPUT POWER TEST** 18 6.1 APPLIED PROCEDURES / LIMIT 18 6.2 **TEST PROCEDURE** 18 6.3 **TEST SETUP** 18 6.4 **EUT OPERATION CONDITIONS** 18 6.5 **TEST RESULTS** 18 7 POWER SPECTRAL DENSITY TEST 19 7.1 APPLIED PROCEDURES / LIMIT 19 **TEST PROCEDURE** 7.2 19 7.3 **TEST SETUP** 19 7.4 **EUT OPERATION CONDITIONS** 19 7.5 **TEST RESULTS** 19 ANTENNA CONDUCTED SPURIOUS EMISSION 20 8 8.1 APPLIED PROCEDURES / LIMIT 20 8.2 **TEST PROCEDURE** 20 8.3 **TEST SETUP** 20 **EUT OPERATION CONDITIONS** 8.4 20

8.5	TEST	T RESULTS	20
9	LIST OF	MEASURING EQUIPMENTS	21
10	22		
11	EUT PH	IOTOS	22
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	23
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	26
APPENDIX C		RADIATED EMISSIONS - ABOVE 1 GHZ	29
APPENDIX D		BANDWIDTH	38
APPEND	IX E	MAXIMUM OUTPUT POWER	40
APPEND	IX F	POWER SPECTRAL DENSITY TEST	42
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSION	44

Project No.: 2303E003 Page 4 of 45 Report Version: R01

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-5-2303E003	R00	Original Report.	2024/7/24	Invalid
BTL-FCCP-5-2303E003	R01	Corrected the Hardware Version.	2024/10/10	Valid

Project No.: 2303E003 Page 5 of 45 Report Version: R01

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C						
Standard(s) Section	Judgment	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS			
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C	PASS			
15.247(a)(2)	Bandwidth	APPENDIX D	PASS			
15.247(b)(3)	Maximum Output Power	APPENDIX E	PASS			
15.247(d)	Power Spectral Density	APPENDIX F	PASS			
15.247(e)	Antenna conducted Spurious Emission	APPENDIX G	PASS			
15.203	Antenna Requirement		PASS			

Note:

Project No.: 2303E003 Page 6 of 45 Report Version: R01

^{(1) &}quot;N/A" denotes test is not applicable to this device.

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

□ C06 □ CB21

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The eLab measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C06	CISPR	150 kHz ~ 30MHz	2.4498

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.20
CB21	6 GHz ~ 18 GHz	5.50
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Occupied Bandwidth	0.53
Maximum Output Power	0.37
Power Spectral Density	0.66
Conducted Spurious emissions	0.54
Conducted Band edges	0.53

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software		NB-03A1-01	
Modulation Mode	2405 MHz	2440 MHz	2475 MHz
Parameters	default	default	default

Project No.: 2303E003 Page 7 of 45 Report Version: R01

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	25°C, 45%	AC 120V	Ken Hsieh
Radiated Emissions	24°C, 62%	DC 5V	Ken Hsieh
Bandwidth	25°C, 64%	DC 5V	Ken Hsieh
Maximum Output Power	25°C, 64%	DC 5V	Ken Hsieh
Power Spectral Density	25°C, 64%	DC 5V	Ken Hsieh
Antenna conducted Spurious Emission	25°C, 64%	DC 5V	Ken Hsieh

Project No.: 2303E003 Page 8 of 45 Report Version: R01

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	TELUS SmartHome+ Hub
Brand Name	TELUS
Test Model	HUF
Series Model	N/A
Model Difference(s)	N/A
Software Version	v0.8.13
Hardware Version	DVT
Power Source	DC Voltage supplied from AC adapter. Model: DSA-12PF11-05 FUS 050200
Power Rating	I/P:100-240V ~ 50/60Hz 0.5A O/P:+5.0V === 2.0A
Operation Frequency	2405 MHz ~ 2480 MHz
Modulation Type	O-QPSK
Bit Rate of Transmitter	0.25Mbps
Max. Output Power	15.36 dBm (0.0344 W)

NOTE:

1. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2405	19	2445
12	2410	20	2450
13	2415	21	2455
14	2420	22	2460
15	2425	23	2465
16	2430	24	2470
17	2435	25	2475
18	2440	26	2480

3. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	The second of th	N/A	PIFA	N/A	2.74

Note:

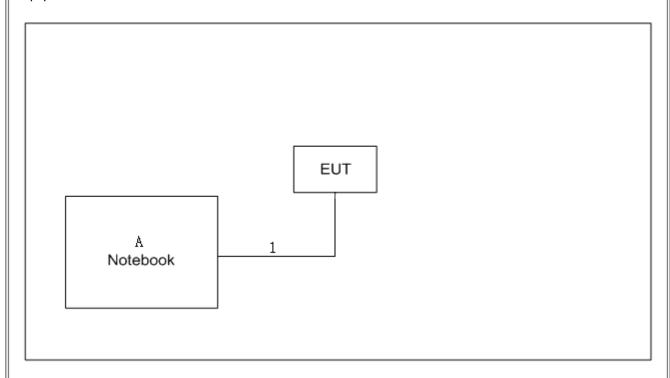
1) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Project No.: 2303E003 Page 9 of 45 Report Version: R01

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal	-	-
Transmitter Radiated Emissions (below 1GHz)	0.25Mbps	11	-
Transmitter Radiated Emissions	0.25Mbps	11/25	Bandedge
(above 1GHz)	0.25Mbps	11/18/25	Harmonic
Bandwidth	0.25Mbps	11/18/25	-
Output Power	0.25Mbps	11/18/25	-
Power Spectral Density	0.25Mbps	11/18/25	-
Antenna conducted Spurious Emission	0.25Mbps	11/18/25	-

NOTE:


- (1) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (2) For radiated emissions below 1 GHz test, the channel 11 is found to be the worst case and recorded.
- (3) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (4) The test sample with two adapters, only the cable is different. For radiated spurious emissions below 1 GHz test, two adapters had been pre-tested and in this report only recorded the worst case.

Project No.: 2303E003 Page 10 of 45 Report Version: R01

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Remarks
Α	Notebook	tinkpad	ThinkBook16+	Furnished by test lab.

Item	Cable Type	Ferrite Core	Length	Shielded	Remarks
1	USB Cable	NO	1m	NO	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

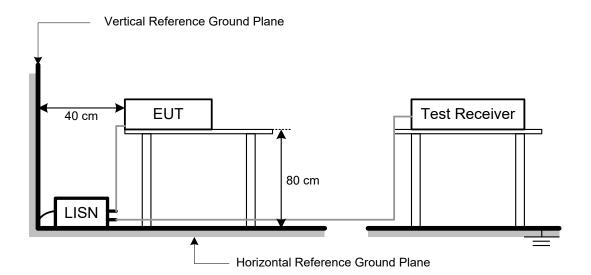
Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

Project No.: 2303E003 Page 12 of 45 Report Version: R01

3.3 TEST SETUP

3.4 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission falls within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

		1	
Frequency (MHz)	Radiated (dBu	Measurement Distance (meters)	
(1711 12)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

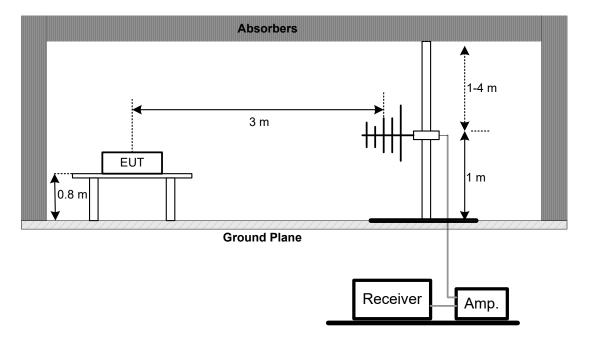
Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	II	33.55

Measurement Value		Limit Value		Margin Level
33.55	-	43.50	=	-9.95

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

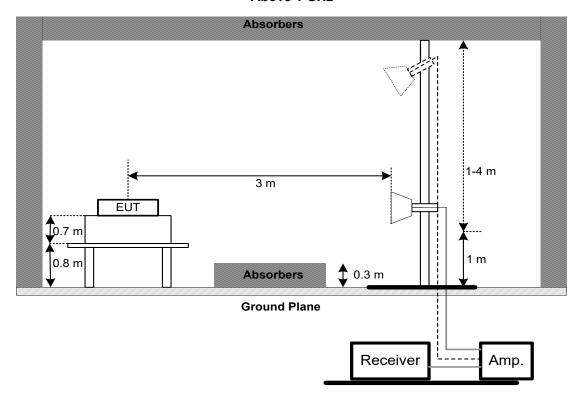
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2303E003 Page 14 of 45 Report Version: R01



4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 TEST SETUP

30 MHz to 1 GHz

Above 1 GHz

4.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.5 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.6 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit
15.247(a)(2)	6 dB Bandwidth	500 kHz

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.5 TEST RESULTS

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST


6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	
15.247(b)(3)	Maximum Output Power	1 Watt or 30dBm	

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.5 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2303E003 Page 18 of 45 Report Version: R01

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)
		(III ally 3 KHZ)

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 TEST SETUP

EUT	•	SPECTRUM
		ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULTS

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.5 **TEST RESULTS**

Please refer to the APPENDIX G.

Project No.: 2303E003 Page 20 of 45 Report Version: R01

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Reciver	MXE EMI Reciver	Agilent Technologies	N9038A	2023/6/26	2024/6/25
2	LISN Two-Line V-Network		R&S	ENV216	2023/7/21	2024/7/20

	Radiated Emissions_ Below 1G					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Trilog-Broadband Schwarzbeck		VULB 9168	01207	2023/12/18	2024/12/17
2	EMI Test Receiver	Keysight	N9038A	MY54130009	2023/6/26	2024/6/25
3	Pre-Amplifier EMCI		EMC001330-202 01222	980807	2023/12/11	2024/12/10
4	4 Test Cable EMCI		EMC-8D-NM-NM -5000	150106	2023/12/11	2024/12/10
5	Test Cable	EMCI	EMC-CFD-400-N M-NM-8000	200348	2023/12/11	2024/12/10

	Radiated Emissions_ Above 1G					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Broad-Band Horn Antenna RFSPIN DRH18-E 210109A18E 2024/1		2024/1/10	2025/1/9		
2	Pre-Amplifier	EMCI	EMC051845SE	980779	2023/12/11	2024/12/10
3	Test Cable	EMCI	EMC105-SM-SM- 1000	210119	2023/12/11	2024/12/10
4	Test Cable EMCI EMC105-SM-SN 3000		EMC105-SM-SM- 3000	210118	2023/12/11	2024/12/10
5	Test Cable	EMCI	EMC105-SM-SM- 7000	210117	2023/12/11	2024/12/10
6	EXA Spectrum Analyzer	keysight	N9010A	MY56480554	2023/9/12	2024/9/11

Bandwidth & Maximum Output Power & Power Spectral Density & Antenna conducted Spurious Emission						
Item	N I Manufacturer I IVNE NO I Serial NO I III					Calibrated Until
1	Spectrum					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

4 4	•	-1	17	TFST	ווח	_	\mathbf{r}
71)	нı	"	11-21	РН		I ()

Please refer to APPENDIX-TEST PHOTOS.

11 EUT PHOTOS

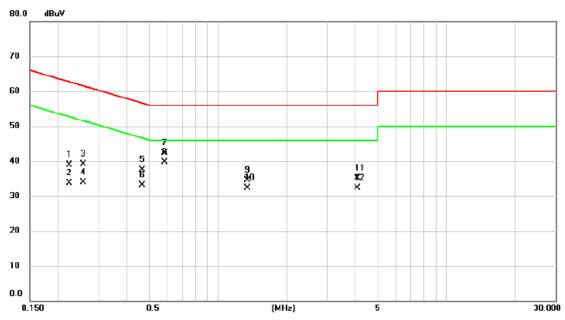
Please refer to APPENDIX-EUT PHOTOS.

Project No.: 2303E003 Page 22 of 45 Report Version: R01

APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2303E003 Page 23 of 45 Report Version: R01

Ш				
	Test Mode	Normal	Tested Date	2024/4/16
	Phase	Line		



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2091	31.12	9.67	40.79	63.24	-22.45	QP	
2		0.2091	24.60	9.67	34.27	53.24	-18.97	AVG	
3		0.4713	29.37	9.68	39.05	56.49	-17.44	QP	
4		0.4713	22.88	9.68	32.56	46.49	-13.93	AVG	
5		0.9680	23.86	9.73	33.59	56.00	-22.41	QP	
6	*	0.9680	22.61	9.73	32.34	46.00	-13.66	AVG	
7		1.4585	24.21	9.76	33.97	56.00	-22.03	QP	
8		1.4585	22.41	9.76	32.17	46.00	-13.83	AVG	
9		3.9740	25.42	9.87	35.29	56.00	-20.71	QP	
10		3.9740	22.35	9.87	32.22	46.00	-13.78	AVG	
11		10.8750	25.84	10.07	35.91	60.00	-24.09	QP	
12		10.8750	22.39	10.07	32.46	50.00	-17.54	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

L				
	Test Mode	Normal	Tested Date	2024/4/16
	Test Frequency	2475 MHz		

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2235	29.18	9.66	38.84	62.69	-23.85	QP	
2	0.2235	24.12	9.66	33.78	52.69	-18.91	AVG	
3	0.2567	29.47	9.65	39.12	61.54	-22.42	QP	
4	0.2567	24.27	9.65	33.92	51.54	-17.62	AVG	
5	0.4661	27.82	9.68	37.50	56.58	-19.08	QP	
6	0.4661	23.47	9.68	33.15	46.58	-13.43	AVG	
7	0.5855	32.60	9.70	42.30	56.00	-13.70	QP	
8 *	0.5855	30.07	9.70	39.77	46.00	-6.23	AVG	
9	1.3460	24.66	9.75	34.41	56.00	-21.59	QP	
10	1.3460	22.58	9.75	32.33	46.00	-13.67	AVG	
11	4.0865	25.19	9.88	35.07	56.00	-20.93	QP	
12	4.0865	22.39	9.88	32.27	46.00	-13.73	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2303E003 Page 26 of 45 Report Version: R01

Test Mode	TX Mode Chann		est Date	2024/4/11
Test Frequency	2405MHz	Pol	larization	Vertical
80.0 dBuV/m				
70				
60				
50				
40	*			
30 X	3 5 6 X			
20				
10				
0.0 30.000 127.00	224.00 321.00 418.0	0 515.00 612.00	0 709.00 806.00	0 1000.00 MHz
	eading Correct Measure			able
	evel Factor ment	Limit Margin		gree
MHz	dBuV dB dBuV/m	dBuV/m dB [Detector cm de	gree Comment
1 62.0100 4	14.01 -12.19 31.82	50.00 -18.18	peak 100 2	249
2 117.3000 4	11.88 -14.18 27.70	54.00 -26.30	peak 100 1	97
3 165.8000 4	11.06 -11.48 29.58	54.00 -24.42	peak 100 1	93
4 * 194.9000 5	52.46 -13.99 38.47	54.00 -15.53	peak 200 1	83
5 261.8300 4	10.02 -11.62 28.40	57.00 -28.60	peak 100 1	97
6 361.7400 3	35.54 -8.58 26.96	57.00 -30.04	peak 100 1	97

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

To	est Mode		TX Mod	e Channel	11	Ī	est Dat	:e		2024/4/11	
Test	Frequen	су	24	05MHz		Po	olarizati	on		Horizontal	
80.0	dBuV/m										1
70											
60											
50											
40	1 X	4 ×	5 X								
30	^	3 2 X	×	6 X							
20											
10											
0.0											
3	0.000 127	.00 224.0	00 321.0	0 418.00	515.0	00 612.	.00 70	D9.00	806.00	1000.00	MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1 *	62.0100	47.00	-12.19	34.81	50.00	-15.19	peak	200	0		
2	136.7000	39.40	-12.31	27.09	54.00	-26.91	peak	200	100		

54.00 -24.00

54.00 -19.50

57.00 -23.15

57.00 -27.66

peak

QP

peak

peak

200

100

100

100

100

234

323

146

REMARKS:

3

4

5

6

163.8600

194.9000

303.5400

408.3000

41.34

48.49

44.01

36.57

-11.34

-13.99

-10.16

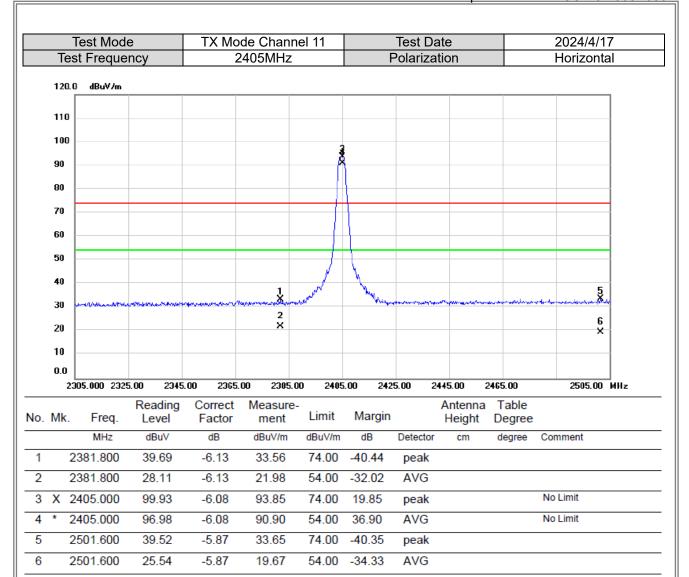
-7.23

30.00

34.50

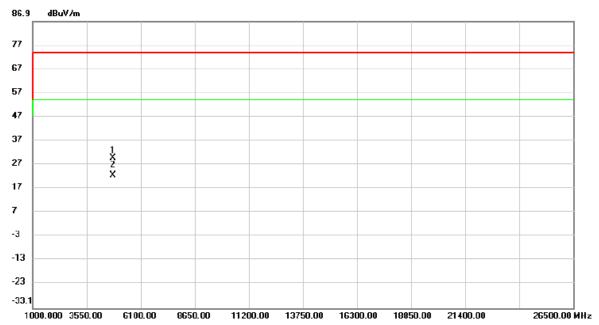
33.85

29.34


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

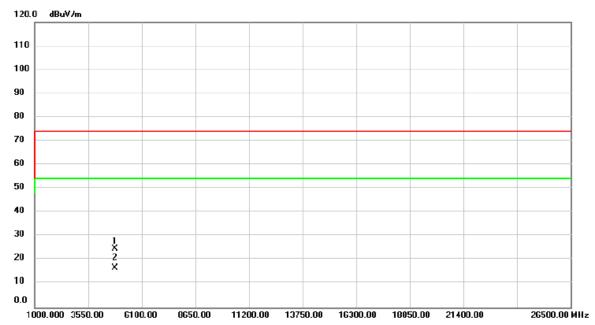
Project No.: 2303E003 Page 29 of 45 Report Version: R01



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

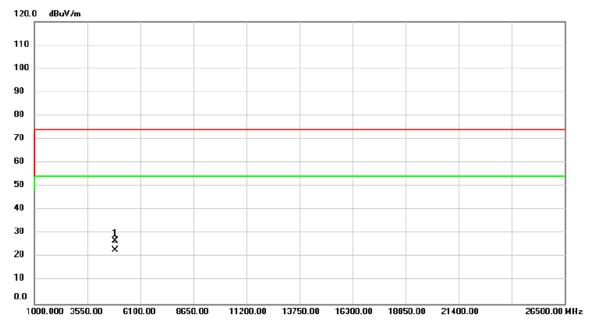
Test Mode	TX Mode Channel 25	Test Date	2024/4/17
Test Frequency	2475MHz	Polarization	Horizontal
120.0 dBuV/m			
110			
100			
90			
80			
70			
60			
50			
40		\5	
30	and which the second of the se	6 Myria dan James Barre dan da Mayar	and the second of the second o
20 2		X	
10			
0.0			
			2535.00 2575.00 MHz
Readin No. Mk. Freq. Level	g Correct Measure- Factor ment Limit	Antenna Margin Height	Table Degree
MHz dBuV	dB dBuV/m dBuV/m	dB Detector cm	degree Comment
1 2386.600 38.89	-6.13 32.76 74.00	•	
2 2386.600 25.53	-6.13 19.40 54.00		
3 X 2475.000 99.96	-5.93 94.03 74.00	<u>'</u>	No Limit
4 * 2475.000 97.19	-5.93 91.26 54.00		No Limit
5 2484.800 42.89	-5.91 36.98 74.00	<u> </u>	
6 2484.800 31.99	-5.91 26.08 54.00	-27.92 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


Test Mode	TX Mode Channel 11	Test Date	2024/4/17
Test Frequency	2405MHz	Polarization	Vertical

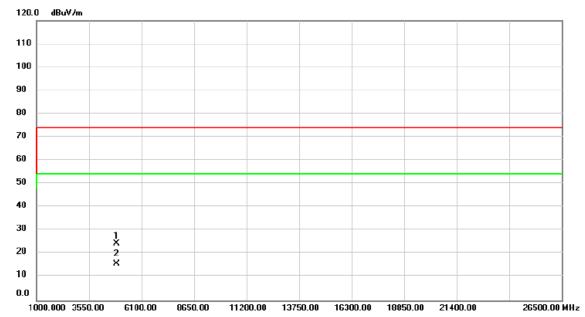
No. M	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	799.500	38.48	-8.63	29.85	74.00	-44.15	peak			
2 '	* 4	799.500	31.07	-8.63	22.44	54.00	-31.56	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


Test Mode	TX Mode Channel 11	Test Date	2024/4/17
Test Frequency	2406MHz	Polarization	Horizontal

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	810.000	33.28	-8.60	24.68	74.00	-49.32	peak			
2	* 4	810.000	25.23	-8.60	16.63	54.00	-37.37	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


Test Mode	TX Mode Channel 18	Test Date	2024/4/17
Test Frequency	2440MHz	Polarization	Vertical

N	lo.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		4876.000	35.14	-8.43	26.71	74.00	-47.29	peak			
	2	*	4876.000	31.45	-8.43	23.02	54.00	-30.98	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

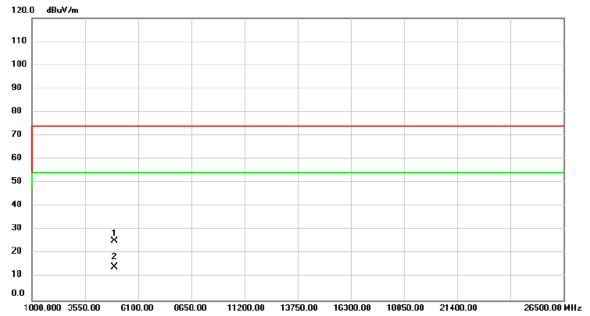
Test Mode	TX Mode Channel 18	Test Date	2024/4/17
Test Frequency	2440MHz	Polarization	Horizontal

No.	Mk	. Freq.			Measure- ment		Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4880.000	32.98	-8.43	24.55	74.00	-49.45	peak			
2	*	4880.000	24.26	-8.43	15.83	54.00	-38.17	AVG			

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2303E003 Page 35 of 45 Report Version: R01


Test Mode	TX Mode Channel 25	Test Date	2024/4/17
Test Frequency	2475MHz	Polarization	Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4950.000	33.07	-8.26	24.81	74.00	-49.19	peak			
2	*	4950.000	22.14	-8.26	13.88	54.00	-40.12	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	TX Mode Channel 25	Test Date	2024/4/17
Test Frequency	2475MHz	Polarization	Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4950.000	33.68	-8.26	25.42	74.00	-48.58	peak			
2	*	4950.000	22.39	-8.26	14.13	54.00	-39.87	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


APPENDIX D	BANDWIDTH

Project No.: 2303E003 Page 38 of 45 Report Version: R01

Test Mode: Channel 11, Channel 18, Channel 25

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2405	1.260	2.220	500	Pass
2440	1.090	2.230	500	Pass
2475	1.080	2.220	500	Pass

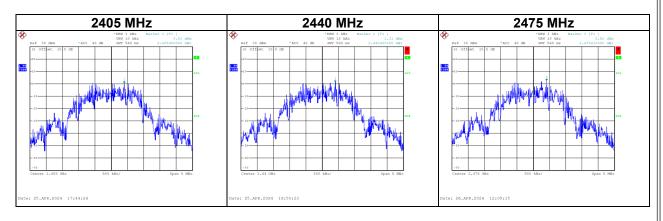
	Report No.: BTL-FCCF-3-2303E003
APPENDIY F	MAXIMUM OUTPUT POWER
AI I LIIDIA L	MAXIMOM OUT OT LOVER

Project No.: 2303E003 Page 40 of 45 Report Version: R01

Test Mode:	Channel 11, Channel 18, Channel 25	Tested Date	2024/4/25

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2405	15.36	0.0344	30.00	1.0000	Pass
2440	15.07	0.0321	30.00	1.0000	Pass
2475	14.68	0.0294	30.00	1.0000	Pass

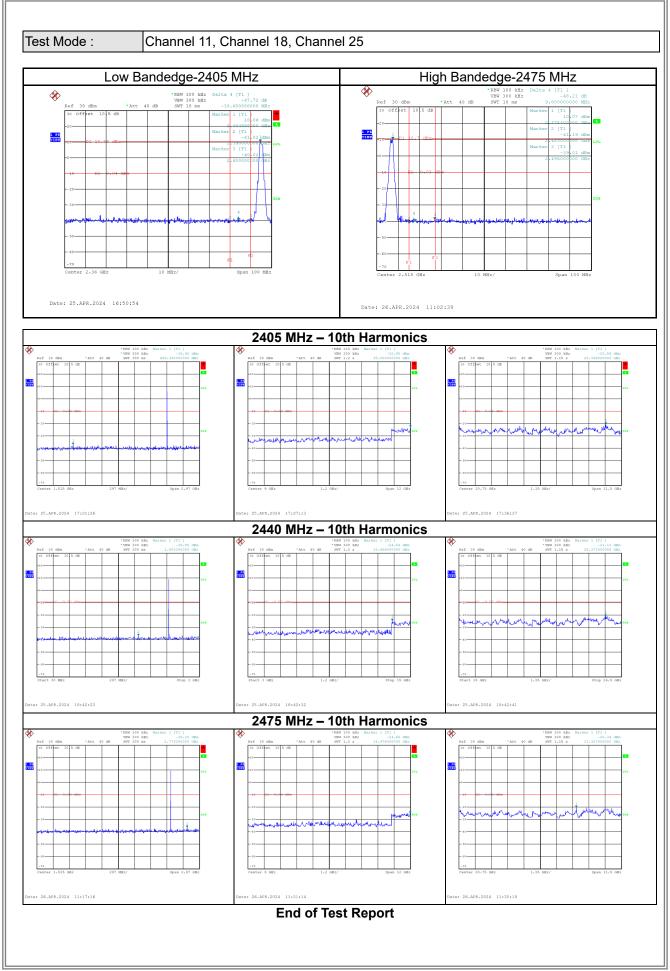
Project No.: 2303E003 Page 41 of 45 Report Version: R01


	APPENDIX F	POWER SPECTRAL DENSITY TEST	-

Project No.: 2303E003 Page 42 of 45 Report Version: R01

Test Mode: Channel 11, Channel 18, Channel 25

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2405	0.53	8	Pass
2440	1.31	8	Pass
2475	2.52	8	Pass



Project No.: 2303E003 Page 44 of 45 Report Version: R01

