

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202409-0058-11

Page: 1 of 67

RF Test Report FCC ID:2BDR5-30T

Report No. : TBR-C-202409-0058-11

Applicant : Videotimes Technology (Hubei) Co., Ltd

Equipment Under Test (EUT)

EUT Name : 2.4GHz Digital Wireless Video Baby Camera

Model No. : HB30

Series Model No. : HB2229,BBM874,BBM872,HB30-2,HB30TX,HB31,BBM873,

HB31-2,HB31TX,VT31,VT31-2,VT31TX,DVM64,DVM64C

Brand Name : ----

Sample ID : HC-C-202409-0058-01-01# HC-C-202409-0058-01-2#

Receipt Date : 2024-10-22

Test Date : 2024-10-22 to 2024-11-28

Issue Date : 2024-11-28

Standards : FCC Part 15, Subpart C 15.247

Test Method : ANSI C63.10:2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

Tested By : 24 show

Reviewed By : Heart Hour

Approved By : WAW SV

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	10
	1.7 Measurement Uncertainty	10
	1.8 Test Facility	
2.	TEST SUMMARY	12
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT AND TEST SITE	13
5.	CONDUCTED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	15
	5.5 EUT Operating Mode	15
	5.6 Test Data	15
6.	RADIATED EMISSION TEST	16
	6.1 Test Standard and Limit	16
	6.2 Test Setup	17
	6.3 Test Procedure	18
	6.4 Deviation From Test Standard	19
	6.5 EUT Operating Condition	19
	6.6 Test Data	
7.	RESTRICTED BANDS AND BAND-EDGE TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	
	7.6 Test Data	
8.	NUMBER OF HOPPING CHANNEL	23
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	23

8.6 Test Data......23 AVERAGE TIME OF OCCUPANCY......24 9.1 Test Standard and Limit......24 9.2 Test Setup......24 9.3 Test Procedure24 9.4 EUT Operating Condition24 9.4 Deviation From Test Standard......24 CHANNEL SEPARATION AND BANDWIDTH TEST......25 10.2 Test Setup......25 10.3 Test Procedure......25 10.4 Deviation From Test Standard......25 10.5 EUT Operating Condition25 10.6 Test Data......25 PEAK OUTPUT POWER TEST......26 11. 11.2 Test Setup.......26 11.4 Deviation From Test Standard......26 11.5 EUT Operating Condition26 ANTENNA REQUIREMENT......27 12. 12.1 Standard Requirement......27 12.2 Deviation From Test Standard......27 ATTACHMENT A-- CONDUCTED EMISSION TEST DATA28 ATTACHMENT B-- RADIATED EMISSION TEST DATA36 ATTACHMENT C-- RESTRICTED BANDS REQUIREMENT TEST DATA......50 ATTACHMENT D-- NUMBER OF HOPPING CHANNEL TEST DATA......59 ATTACHMENT E-- AVERAGE TIME OF OCCUPANCY TEST DATA......60 ATTACHMENT F-- CHANNEL SEPARATION AND BANDWIDTH TEST DATA.......61

ATTACHMENT G-- PEAK OUTPUT POWER TEST DATA66

Report No.: TBR-C-202409-0058-11 Page: 4 of 67

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202409-0058-11	Rev.01	Initial issue of report	2024-11-28
	400		mnB
30			1133
TOUS TO	Chine Contract		1000
The state of the s	A PROPERTY	COLUMN TO	0.0
Comment of the second		319	
	339	MORA MAIN	
1083	A GLOPE	TO THE WORLD	(10)
Br Wall	2		

Page: 5 of 67

1. General Information about EUT

1.1 Client Information

Applicant : Videotimes Technology (Hubei) Co., Ltd		Videotimes Technology (Hubei) Co., Ltd	
Address	•	B5-1,B5-2, Electronic Information Industry Park, Wuxue, Huanggang, Hubei, China.	
Manufacturer : Videotimes Technology (Hubei) Co., Ltd		Videotimes Technology (Hubei) Co., Ltd	
Address		B5-1,B5-2, Electronic Information Industry Park, Wuxue, Huanggang, Hu bei, China.	

1.2 General Description of EUT (Equipment Under Test)

EUT Name		2.4GHz Digital Wireless Video Baby Camera			
Models No. : HB30, HB2229,BBM874,BBM872,HB30-2,HB30TX,HB31,BBM873, HB31-2,HB31TX,VT31,VT31-2,VT31TX,DVM64,DVM64C					
Model Difference All these models are identical in the same PCB, layout and electrical control of the same problem. The only difference is that the model name and appearance material addifferent					
The same of the sa		Operation Frequency:	2.4G: 2412MHz~2469MHz		
Product		Number of Channel:	58 Channels See Note 2		
Description		Antenna Gain:	2.75dBi Copper Tube Antenna		
		Modulation Type:	GFSK		
Power Rating	: Please see Note(List:3)				
Software Version		1.0			
Hardware Version	:	1.2			

Remark: The adapter and antenna gain from the manufacturer, the verified for the RF conduction test provided by TOBY test lab. The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: TBR-C-202409-0058-11 Page: 6 of 67

(2) Channel List:

Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2412	20	2432	40	2452	
01	2413	21	2433	41	2453	
02	2414	22	2434	42	2454	
03	2415	23	2435	43	2455	
04	2416	24	2436	44	2456	
05	2417	25	2437	45	2457	
06	2418	26	2438	46	2458	
07	2419	27	2439	47	2459	
08	2420	28	2440	48	2460	
09	2421	29	2441	49	2461	
10	2422	30	2442	50	2462	
11	2423	31	2443	51	2463	
12	2424	32	2444	52	2464	
13	2425	33	2445	53	2465	
14	2426	34	2446	54	2466	
15	2427	35	2447	55	2467	
16	2428	36	2448	56	2468	
17	2429	37	2449	57	2469	
18	2430	38	2450		1 (25)	
19	2431	39	2451			

Note: Test frequencies are lowest channel: 2412MHz, middle channel: 2442MHz and

highest channel: 2469MHz.

Report No.: TBR-C-202409-0058-11 Page: 7 of 67

(3) List:

AC Adapter 1# (Model: K05V050100U): Input: 100-240V~50/60Hz, 0.2A Output: 5.0V==1.0A
AC Adapter 1# (Model: K05S050100U): Input: 100-240V~50/60Hz, 0.2A Output: 5.0V==1.0A
AC Adapter 1# (Model: K05E050100U): Input: 100-240V~50/60Hz, 0.2A Output: 5.0V==1.0A
AC Adapter 1# (Model: A318-050100W-US2): Input: 100-240V~50/60Hz, 0.2A Output: 5.0V=1.0A

Page: 8 of 67

1.3 Block Diagram Showing the Configuration of System Tested

Adapter & TX Mode

Adapter	EUT		

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Fo	or Conducted Test		
Final Test Mode	Description		
Mode 1	Adapter#1+ TX Mode Channel 00		
Mode 2	Adapter#2+ TX Mode Channel 00		
Mode 3	Adapter#3+ TX Mode Channel 00		
Mode 4	Adapter#4+ TX Mode Channel 00		
F	For Radiated Test		
Final Test Mode	Description		
Mode 5	Adapter#1+ TX Mode Channel 00		
Mode 6	Adapter#2+ TX Mode Channel 00		
Mode 7	Adapter#3+ TX Mode Channel 00		
Mode 8	Adapter#4+ TX Mode Channel 00		
Mode 9 TX Mode Channel 00/30/57			
Mode 10 Hopping TX Mode			

Page: 9 of 67

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 67

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version		ntrol the correspondincy through the EUT e	
Frequency	2412MHz	2442MHz	2469MHz
GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.20 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 11 of 67

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202409-0058-11 Page: 12 of 67

2. Test Summary

Standard Section	Tool Hom	T(C			
FCC	Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	HC-C-202409-0058-01-01#	PASS	N/A	
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	HC-C-202409-0058-01-01#	PASS	N/A	
FCC 15.203	Antenna Requirement	HC-C-202409-0058-01-02#	PASS	N/A	
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	HC-C-202409-0058-01-02#	PASS	N/A	
FCC 15.247(b)(1)	Peak Output Power	HC-C-202409-0058-01-02#	PASS	N/A	
FCC 15.247(a)(1)	Carrier frequency separation	HC-C-202409-0058-01-02#	PASS	N/A	
FCC 15.247(a)(1)	Time of occupancy	HC-C-202409-0058-01-02#	PASS	N/A	
FCC 15.247(b)(1)	Number of Hopping Frequency	HC-C-202409-0058-01-02#	PASS	N/A	
FCC 15.247(d)	Band Edge	HC-C-202409-0058-01-02#	PASS	N/A	
FCC 15.207(a)	Conducted Unwanted Emissions	HC-C-202409-0058-01-02#	PASS	N/A	
FCC 15.205	Emissions in Restricted Bands	HC-C-202409-0058-01-02#	PASS	N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120-3	Tonscend	V3.2.22

Report No.: TBR-C-202409-0058-11 Page: 13 of 67

4. Test Equipment and Test Site

Test Site				
No.	Test Site	Manufacturer	Specification	Used
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	\checkmark
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)	X
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	X
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	√

Conducted Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 17, 2024	Jun. 16, 2025
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 17, 2024	Jun. 16, 2025
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 17, 2024	Jun. 16, 2025
LISN	Rohde & Schwarz	ENV216	101131	Jun. 17, 2024	Jun. 16, 2025
Radiation Emission	Test(B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 29, 2024	Aug. 28, 2025
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2024	Feb.22, 2025
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Jun. 14, 2024	Jun. 13, 2026
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 27, 2024	Feb.26, 2026
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 14, 2024	Jun. 13, 2026
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 29, 2024	Aug. 28, 2025
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 29, 2024	Aug. 28, 2025
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 29, 2024	Aug. 28, 2025
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G	4110	N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Cond	ucted Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 29, 2024	Aug. 28, 2025
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 29, 2024	Aug. 28, 2025
DE D	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 29, 2024	Aug. 28, 2025
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 29, 2024	Aug. 28, 2025
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 17, 2024	Jun. 16, 2025

Page: 14 of 67

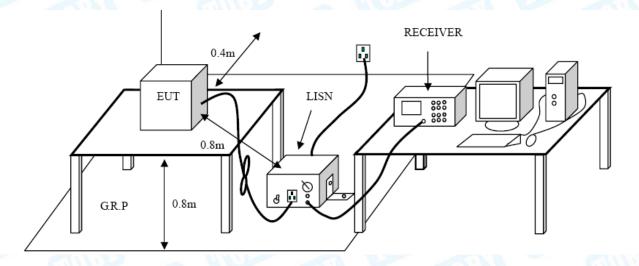
5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard

FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Execution of The State of The S	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 15 of 67

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 16 of 67

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

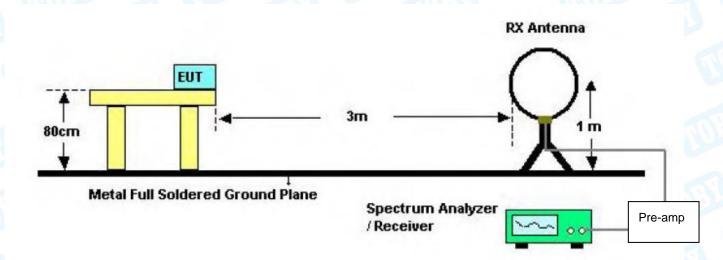
Radiated Emission Limit (9 kHz~1000MHz)

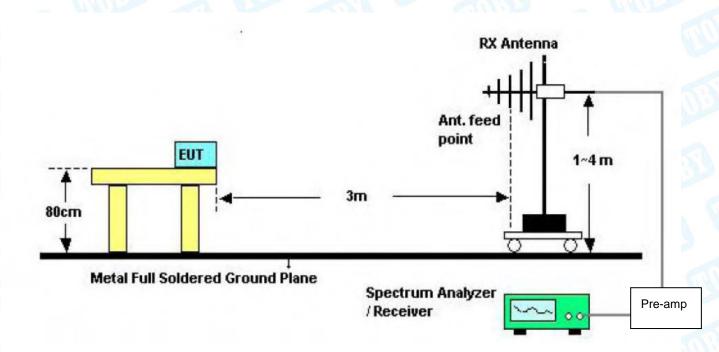
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:

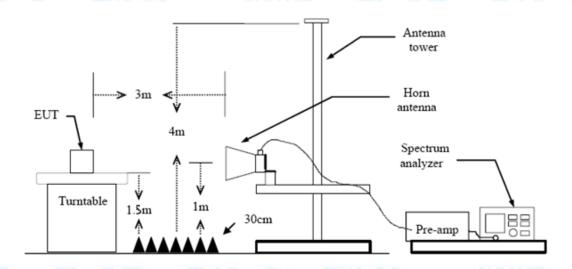

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 17 of 67

6.2 Test Setup

Below 30MHz Test Setup


Below 1000MHz Test Setup

Page: 18 of 67

Above 1GHz Test Setup

6.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 19 of 67

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

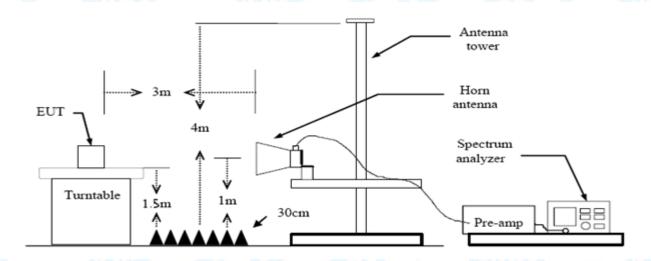
Page: 20 of 67

7. Restricted Bands and Band-edge test

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

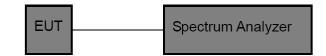

7.1.2 Test Limit

F	Radiated measurement		
Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
C	onducted measurement		
Charles of A	Peak (dBm) _{see 7.3 e)}	Average (dBm) see 7.3 e)	
2310 ~2390	-41.20	-21.20	
2483.5 ~2500	-41.20	-21.20	

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement



Conducted measurement

Page: 21 of 67

7.3 Test Procedure

---Radiated measurement

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

---Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalen t electric field strength using the following

Page: 22 of 67

relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

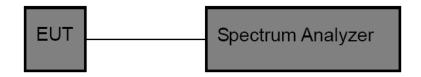
The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Please refer to the Attachment C.

Page: 23 of 67

8. Number of Hopping Channel


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

8.6 Test Data

Please refer to the Attachment D.

Page: 24 of 67

9. Average Time of Occupancy

9.1 Test Standard and Limit

9.1.1 Test Standard

FCC Part 15.247 (a)(1)

9.1.2 Test Limit

Test Item	Limit
Average Time of Occupancy	0.4 sec

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100KHz, VBW=300KHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

9.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 20 [ch] = 8.0 [s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in 8.0s = 3*(8.0/0.24) = 100

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

9.4 Deviation From Test Standard

No deviation

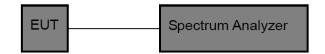
9.5 Test Data

Please refer to the Attachment E.

Page: 25 of 67

10. Channel Separation and Bandwidth Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

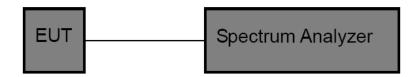
10.6 Test Data

Please refer to the Attachment F.

Page: 26 of 67

11. Peak Output Power Test

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.247 (b) (1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
	Other <125 mW(21dBm)	

11.2 Test Setup

11.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

11.4 Deviation From Test Standard

No deviation

11.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

11.6 Test Data

Please refer to the Attachment G.

Page: 27 of 67

12. Antenna Requirement

12.1 Standard Requirement

12.1.1 Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

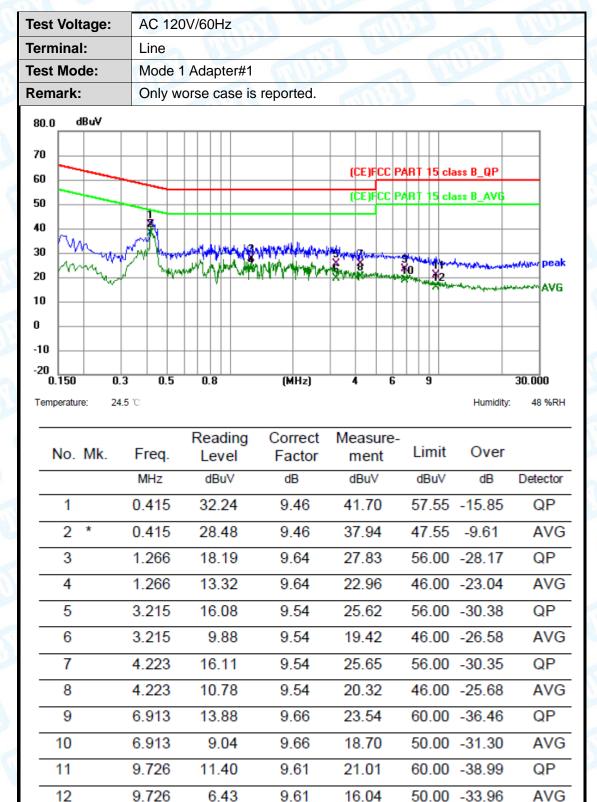
No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.75dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Result

The EUT antenna is a Copper Tube Antenna. It complies with the standard requirement.


Antenna Type	
⊠Permanent attached antenna	
Unique connector antenna	Ú
Professional installation antenna	

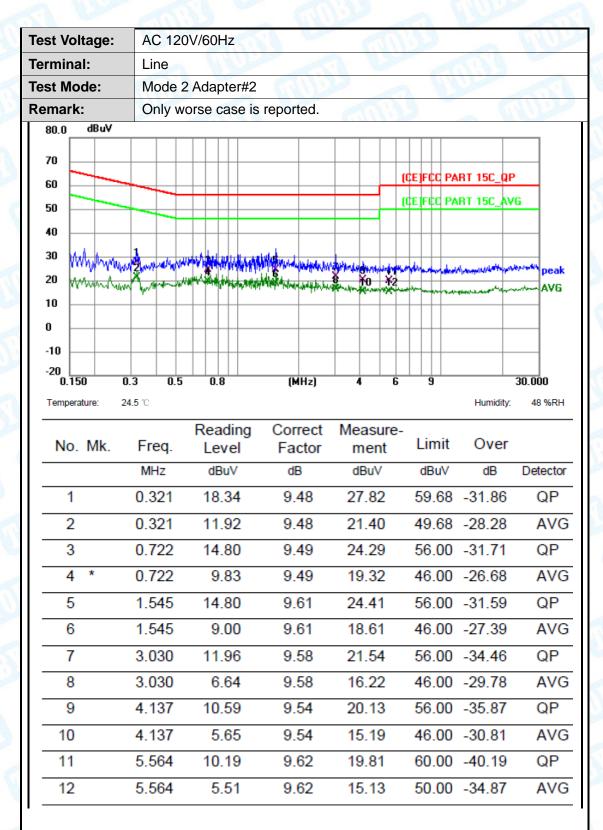
Page: 28 of 67

Attachment A-- Conducted Emission Test Data

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Test Voltage:	AC 120V/60Hz
Terminal:	Neutral
Test Mode:	Mode 1 Adapter#1
Remark:	Only worse case is reported.
80.0 dBuV	
70	(ÇEJFÇÇ PART 15C_QP
50	(CEJFCC PART 15C_AVG
30 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	The state of the s
20 ////////////////////////////////////	peal
0	
-10	
-20 0.150 0.3	0.5 0.8 (MHz) 4 6 9 30.000
Temperature: 24.5 °C	Humidity: 48 %RH

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.424	30.72	9.47	40.19	57.37	-17.18	QP
2 *	0.424	23.45	9.47	32.92	47.37	-14.45	AVG
3	0.717	21.21	9.47	30.68	56.00	-25.32	QP
4	0.717	14.08	9.47	23.55	46.00	-22.45	AVG
5	1.554	17.69	9.48	27.17	56.00	-28.83	QP
6	1.554	11.01	9.48	20.49	46.00	-25.51	AVG
7	2.445	18.52	9.56	28.08	56.00	-27.92	QP
8	2.445	10.76	9.56	20.32	46.00	-25.68	AVG
9	3.282	17.12	9.49	26.61	56.00	-29.39	QP
10	3.282	9.68	9.49	19.17	46.00	-26.83	AVG
11	4.745	16.12	9.51	25.63	56.00	-30.37	QP
12	4.745	8.75	9.51	18.26	46.00	-27.74	AVG


- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV))

Page: 30 of 67

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

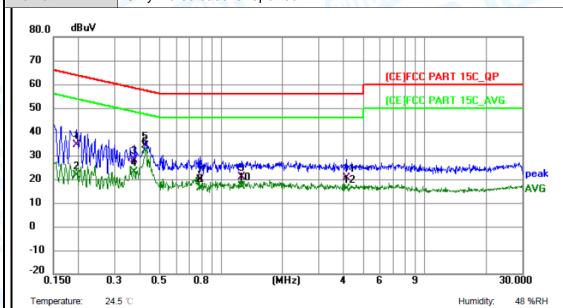
Humidity:

Test Voltage:										
Terminal:										
Test Mode:	Mode 2 Adapter#2									
Remark:	Only worse case is reported.									
80.0 dBuV										
70										
60	(ÇEJFÇC PART 15C_QP									
50	(ÇEJFCC PART 15C_AVG									
40 1	official and the second									
30	political and the state of the									
20	AVG									
10										
0										
-10										
-20 0.150 0.3	0.5 0.8 (MHz) 4 6 9 30.000									

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.317	26.28	9.47	35.75	59.79	-24.04	QP
2	*	0.317	19.05	9.47	28.52	49.79	-21.27	AVG
3		0.667	18.90	9.48	28.38	56.00	-27.62	QP
4		0.667	12.76	9.48	22.24	46.00	-23.76	AVG
5		1.514	16.96	9.48	26.44	56.00	-29.56	QP
6		1.514	9.94	9.48	19.42	46.00	-26.58	AVG
7		2.274	14.24	9.53	23.77	56.00	-32.23	QP
8		2.274	8.02	9.53	17.55	46.00	-28.45	AVG
9		3.647	12.31	9.51	21.82	56.00	-34.18	QP
10		3.647	6.41	9.51	15.92	46.00	-30.08	AVG
11		18.559	11.24	9.79	21.03	60.00	-38.97	QP
12		18.559	6.20	9.79	15.99	50.00	-34.01	AVG

Temperature:

24.5 °C


- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)


Test Voltage:	AC 120V/60Hz
Terminal:	Line
Test Mode:	Mode 3 Adapter#3
Remark:	Only worse case is reported.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.195	25.04	9.53	34.57	63.83	-29.26	QP
2	0.195	12.04	9.53	21.57	53.83	-32.26	AVG
3	0.375	18.47	9.46	27.93	58.39	-30.46	QP
4	0.375	13.47	9.46	22.93	48.39	-25.46	AVG
5	0.424	24.47	9.46	33.93	57.37	-23.44	QP
6 *	0.424	22.38	9.46	31.84	47.37	-15.53	AVG
7	0.793	10.29	9.48	19.77	56.00	-36.23	QP
8	0.793	6.60	9.48	16.08	46.00	-29.92	AVG
9	1.266	11.11	9.64	20.75	56.00	-35.25	QP
10	1.266	7.46	9.64	17.10	46.00	-28.90	AVG
11	4.137	11.12	9.54	20.66	56.00	-35.34	QP
12	4.137	6.27	9.54	15.81	46.00	-30.19	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Test Volta	age:	AC 120V/60Hz														
Terminal:		Neutral								M						
Test Mode	e:	Mode 3 Adapter#3														
Remark:		Onl	y wo	rse c	ase	is repo	rted.	300			N	M				1
80.0 dE	BuV															_
70																
60											(CE)F	CC F	PART 1	5C_	QP	
50		_									(CE JF	ÇC F	PART 1	5C_/	AVG	
401		_														
30	Mara															
20	MANAGE AND	w	Jan Jan	WykyHI	MARCH	enterphysioty (t.)	, 7 2		(Y -	***	Marie N	-	المحسمية	-	an make the	₩ peak
10	, Media	1,4	es finite i	, Albridge	(Popisor)	e-differentian	Ulri _{tu} k ga	tradepopping	694	اله الحدادة	14/44	r lang	والمارات والمارات المارات الما	garleite van	يتسهنيدسل	AVG
0																
-10																
.0				-												
-20																
0.150	0.3	0.	.5	0.8		(M	Hz)	4	ı	6		9				000
			.5	0.8		(М	Hz)	4	ı	6		9	Н	umidi		000 48 %RH
0.150 Temperature	e: 24.5 °(R	eadii		Corre	ect	Mea	asur	e-					ty:	
0.150	e: 24.5 °C	req.	Re	eadii Leve	<u> </u>	Corre	ect tor	Mea m	asur ent	e-		nit	Ov	/er	ty:	48 %RH
0.150 Temperature	24.5 °C	req.	Re	eadii Leve dBuV	·I	Corre Fac	ect tor	Mea m	asur ent BuV	e-	dB	nit suv	Ov	/er	ty: Def	48 %RH
0.150 Temperature	24.5 °C	req.	Re	eadii Leve	·I	Corre	ect tor	Mea m	asur ent	e-	dB	nit suv	Ov	/er	ty: Def	48 %RH
0.150 Temperature	24.5 °C 1k. F 0.	req.	Ri l	eadii Leve dBuV	3	Corre Fac	ect tor	Mea m dB	asur ent BuV	e-	dB 64	mit suv	Ov	/er B 43	Def	48 %RH
No. M	24.5 °C 1k. F 0.	req. 1Hz	Ri 1	eadii Leve dBuV 26.26	3 1	Corre Fac dB	ect tor 2	Mea m dB 35.	asur ent BuV	e-	64 54	mit suv .21	Ov di -28.	/er B 43	Def	48 %RH ector
No. M	24.5 °C 1k. F 0. 0.	req. 1Hz 186	2 1	eadii Leve dBuV 26.26	3 1 2	Corre Fac dB 9.5	ect tor 2 2 7	Mea m dB 35.	asur ent .78 .33	e-	64 54 57	mit 8uV .21 .21	Ov dl -28.4	/er 8 43 88 28	Dei	48 %RH ector QP AVG
0.150 Temperature No. M 1 2 3	1k. F 0. 0.	req. 1Hz 186 186 424	2 1 2 2	eadii Leve dBuV 26.26 12.81	3 1 2	Corre Fac dB 9.5 9.5	ect tor 2 2 7	Mea m dB 35. 22. 35.	asur ent .78 .33	e-	64 54 57	mit .21 .21 .37	-28 -31.5	/er B 43 88 28 46	Dei	48 %RH Gector QP AVG
0.150 Temperature No. M 1 2 3 4 *	1k. F 0. 0. 1.	req. 1Hz 186 186 424 424	2 1 2 2 2	eadii Leve dBuV 26.26 12.81 25.62	6 1 2 4	9.5 9.4	ect tor 2 2 7 7	Mea m dB 35. 22. 35. 30.	.78 .33 .09	e-	64 54 57 47	mit .21 .21 .37 .37 .00	-28.4 -31.4 -22.4 -16.4	/er B 43 88 28 46 45	Def	48 %RH Gector QP AVG QP AVG
0.150 Temperature No. M 1 2 3 4 *	1k. F 0. 0. 1. 1.	req. 186 186 424 424 153	2 1 2 2 1	eadii Leve dBuV 26.26 12.81 25.62 21.44	6 1 2 4 3	9.5 9.5 9.4 9.4	ect tor 2 2 7 7 7	Mea m dB 35. 22. 35. 30. 21.	.78 .33 .09	e-	64 54 57 47 56	mit .21 .37 .37 .00	-28.4 -31.4 -22.2 -16.4 -34.4	/er B 43 88 28 46 45 40	Def	48 %RH Gector QP AVG QP AVG
0.150 Temperature No. M 1 2 3 4 * 5 6	1k. F 0. 0. 1. 1.	req. 186 186 424 424 153	2 1 2 2 1	eadii Leve dBuV 26.26 12.81 25.62 21.44 12.08	33 11 22 14 13 33 33	9.5 9.5 9.4 9.4 9.4	ect tor 2 2 7 7 7 7	Mea m dB 35. 22. 35. 30. 21. 17.	.78 .33 .09 .91	e-	64 54 57 47 56 46	mit .21 .21 .37 .00 .00	-28.4 -31.4 -22.2 -16.4 -34.4 -28.4	/er B 43 88 28 46 45 40 95	Def	48 %RH Gector QP AVG AVG QP AVG
0.150 Temperature No. M 1 2 3 4 * 5 6 7	24.5 °C 1k. F 0. 0. 1. 1. 2.	req. 186 186 424 424 153 153	2 1 2 2 1	eadii Leve dBuV 26.26 12.81 25.62 21.44 12.08 8.13	5 1 1 2 2 4 4 3 3 3 5	9.5 9.5 9.4 9.4 9.4 9.4	ect tor 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Mea m dB 35. 22. 35. 30. 21. 17.	.78 .33 .09 .91 .55 .60	e-	64 54 57 47 56 46 56	mit .21 .21 .37 .00 .00 .00	-28.4 -31.4 -22.3 -16.4 -34.4 -28.4 -33.5	/er 8 43 88 28 46 45 40 95	Det	48 %RH Gector QP AVG QP AVG QP AVG
0.150 Temperature No. M 1 2 3 4 * 5 6 7 8	24.5 °C 1k. F 0. 0. 0. 1. 1. 2. 4.	req. 186 186 424 424 153 153 724 724	2 1 2 2 1	eadii Leve dBuV 26.26 12.81 25.62 21.44 12.08 8.13 12.48 7.35	33 3 3 5 5 5 5 7 5	9.5 9.5 9.4 9.4 9.4 9.5 9.5	ect tor 2 2 7 7 7 7 7 7 7 7 1 1	Mea m dB 35. 22. 35. 30. 21. 17. 22. 16.	.78 .33 .09 .91 .55 .60	re-	64 54 57 47 56 46 56 46	mit .21 .21 .37 .00 .00 .00 .00	-28.4 -31.5 -22.5 -16.4 -34.4 -28.4 -33.5 -29.6	/er 8 43 88 28 46 45 40 95 08	Def	ector QP AVG QP AVG QP AVG

9.52

9.52

21.35

16.24

11

12

Remark:
1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

11.83

6.72

4.524

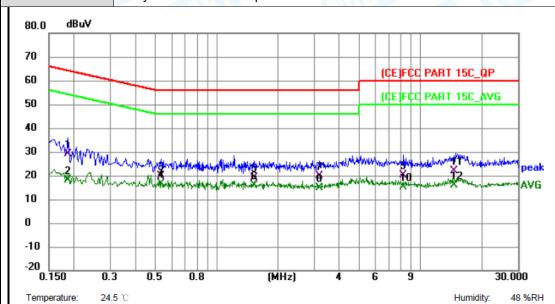
4.524

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

QP

AVG

56.00 -34.65

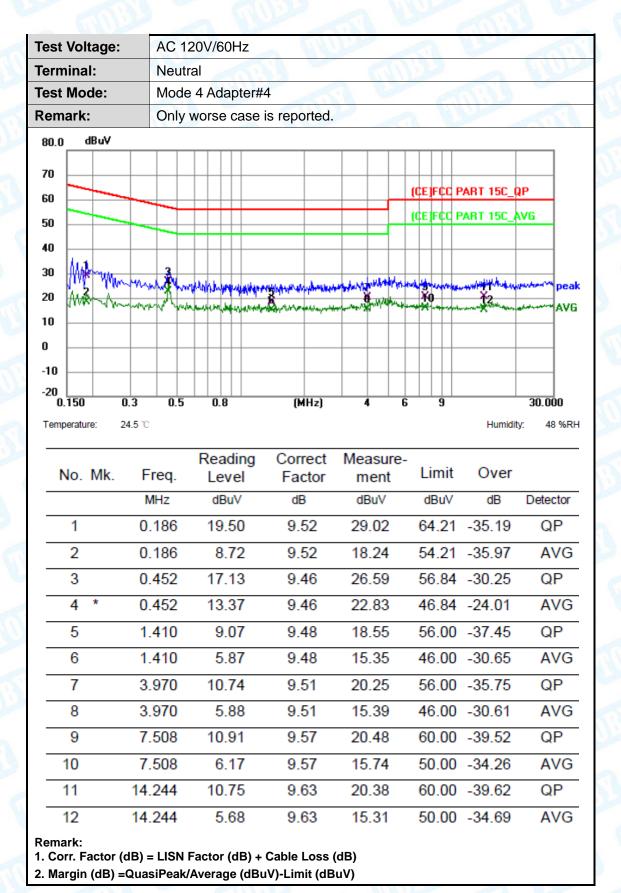

46.00 -29.76

Page: 34 of 67

Test Voltage:	AC 120V/60Hz
Terminal:	Line
Test Mode:	Mode 4 Adapter#4
Remark:	Only worse case is reported.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.186	19.57	9.54	29.11	64.21	-35.10	QP
2		0.186	8.56	9.54	18.10	54.21	-36.11	AVG
3		0.532	10.36	9.47	19.83	56.00	-36.17	QP
4	*	0.532	7.05	9.47	16.52	46.00	-29.48	AVG
5		1.527	9.39	9.61	19.00	56.00	-37.00	QP
6		1.527	6.16	9.61	15.77	46.00	-30.23	AVG
7		3.183	10.10	9.55	19.65	56.00	-36.35	QP
8		3.183	5.31	9.55	14.86	46.00	-31.14	AVG
9		8.245	10.49	9.62	20.11	60.00	-39.89	QP
10		8.245	5.57	9.62	15.19	50.00	-34.81	AVG
11		14.572	12.24	9.65	21.89	60.00	-38.11	QP
12		14.572	6.22	9.65	15.87	50.00	-34.13	AVG

Remark

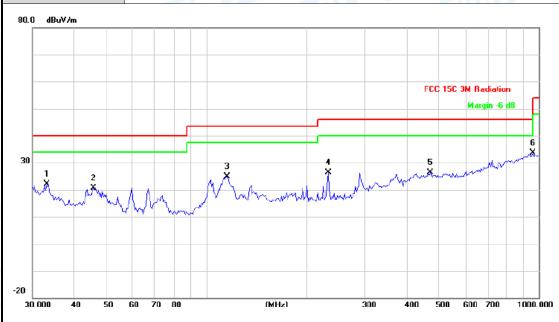

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 35 of 67

Page: 36 of 67

Attachment B-- Radiated Emission Test Data

9KHz~30MHz


From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	23.5℃	Relative Humidity:	46%						
Test Voltage:	AC 120V/60Hz	TIVE TO THE REAL PROPERTY.							
Ant. Pol.	Horizontal	MILLER							
Test Mode:	Mode 5 Adapter1	Mode 5 Adapter1#							
Remark:	Only worse case i	is reported							

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		33.0949	33.05	-10.91	22.14	40.00	-17.86	peak
2		45.6948	36.01	-15.30	20.71	40.00	-19.29	peak
3		115.3204	40.49	-15.61	24.88	43.50	-18.62	peak
4		232.5318	39.43	-12.98	26.45	46.00	-19.55	peak
5		472.1759	31.82	-5.40	26.42	46.00	-19.58	peak
6	*	958.7943	28.96	4.67	33.63	46.00	-12.37	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 37 of 67

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	Troiding Training	1070
Ant. Pol.	Vertical		ORY
Test Mode:	Mode 5 Adapter1	#	
Remark:	Only worse case	is reported	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	46.0162	49.28	-15.33	33.95	40.00	-6.05	peak
2		54.0711	43.84	-16.64	27.20	40.00	-12.80	peak
3		151.5971	41.52	-15.07	26.45	43.50	-17.05	peak
4		232.5318	39.49	-12.98	26.51	46.00	-19.49	peak
5		524.5538	33.20	-4.11	29.09	46.00	-16.91	peak
6		965.5421	28.44	4.67	33.11	54.00	-20.89	peak


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 38 of 67

Temperature:	23.5℃	Relative Humidity:	46%	
Test Voltage:	AC 120V/60Hz	THU.		
Ant. Pol.	Horizontal			UNU
Test Mode:	Mode 6 Adapter2#			
Remark:	Only worse case is	reported	Alle	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		33.5623	34.64	-11.51	23.13	40.00	-16.87	peak
2		54.4515	33.19	-16.63	16.56	40.00	-23.44	peak
3		121.9753	33.07	-15.50	17.57	43.50	-25.93	peak
4		242.5252	41.17	-12.87	28.30	46.00	-17.70	peak
5	*	440.1963	36.03	-6.19	29.84	46.00	-16.16	peak
6		782.3451	28.19	0.92	29.11	46.00	-16.89	peak

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 39 of 67

	Temperature:	23.5℃	Relative Humidity:	46%						
V	Test Voltage:	AC 120V/60Hz	AC 120V/60Hz							
	Ant. Pol.	Vertical	Vertical							
	Test Mode:	Mode 6 Adapter2	Mode 6 Adapter2#							
2	Remark:	Only worse case i	is reported							

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	47.6584	44.40	-15.91	28.49	40.00	-11.51	peak
2		94.7600	37.80	-16.86	20.94	43.50	-22.56	peak
3		200.6879	32.22	-13.20	19.02	43.50	-24.48	peak
4		440.1963	34.11	-6.19	27.92	46.00	-18.08	peak
5		603.5392	33.01	-2.61	30.40	46.00	-15.60	peak
6		900.1472	29.21	3.81	33.02	46.00	-12.98	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 40 of 67

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V/60Hz		Alter					
Ant. Pol.	Horizontal	orizontal						
Test Mode:	Mode 7 Adapter3#	Mode 7 Adapter3#						
Remark:	Only worse case i	is reported	alline					

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	×	33.5623	37.46	-11.51	25.95	40.00	-14.05	peak
2		104.5361	37.56	-16.06	21.50	43.50	-22.00	peak
3		179.3863	39.01	-14.04	24.97	43.50	-18.53	peak
4		289.0020	39.56	-11.54	28.02	46.00	-17.98	peak
5		437.1197	31.15	-6.14	25.01	46.00	-20.99	peak
6		919.2866	27.76	4.09	31.85	46.00	-14.15	peak

- Remark:

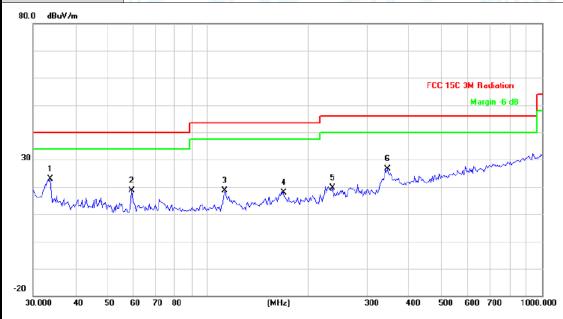
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 41 of 67

ť	Temperature:	23.5℃ Relative Humidity: 46%
V	Test Voltage:	AC 120V/60Hz
	Ant. Pol.	Vertical
	Test Mode:	Mode 7 Adapter3#
Ì	Remark:	Only worse case is reported

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	42.8997	43.02	-15.16	27.86	40.00	-12.14	peak
2		63.0915	44.35	-17.18	27.17	40.00	-12.83	peak
3		175.6516	40.71	-13.71	27.00	43.50	-16.50	peak
4		437.1197	36.38	-6.14	30.24	46.00	-15.76	peak
5		535.7073	33.41	-3.84	29.57	46.00	-16.43	peak
6		979.1802	28.42	5.07	33.49	54.00	-20.51	peak


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Page: 42 of 67

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	THU	
Ant. Pol.	Horizontal		
Test Mode:	Mode 8 Adapter4#		
Remark:	Only worse case is	reported	

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	33.7986	34.61	-11.81	22.80	40.00	-17.20	peak
2			59.2325	35.53	-16.85	18.68	40.00	-21.32	peak
3	3		112.1303	34.58	-16.00	18.58	43.50	-24.92	peak
4			168.4138	31.97	-14.20	17.77	43.50	-25.73	peak
5			235.8163	32.54	-12.96	19.58	46.00	-26.42	peak
6	;		344.3854	35.82	-9.30	26.52	46.00	-19.48	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 43 of 67

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V/60Hz	120V/60Hz						
Ant. Pol.	Vertical	ertical						
Test Mode:	Mode 8 Adapter	Node 8 Adapter4#						
Remark:	Only worse case	is reported						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		33.5623	37.47	-11.51	25.96	40.00	-14.04	peak
2		43.2017	42.51	-15.24	27.27	40.00	-12.73	peak
3	*	49.3594	44.00	-16.37	27.63	40.00	-12.37	peak
4		94.0978	39.28	-17.01	22.27	43.50	-21.23	peak
5		206.3976	37.43	-13.11	24.32	43.50	-19.18	peak
6		475.4990	34.14	-5.33	28.81	46.00	-17.19	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

Page: 44 of 67

Above 1GHz (Only worse case is reported)

Temperature:	23.8℃	Relative Humidity:	52%
Test Voltage:	AC 120V	WORK	AMO
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2412MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9440.500	46.06	6.16	52.22	74.00	-21.78	peak	Р
2	13546.000	42.01	7.18	49.19	74.00	-24.81	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.8℃	Relative Humidity:	52%
Test Voltage:	AC 120V	D A W	
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2412MHz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9415.000	46.13	5.76	51.89	74.00	-22.11	peak	Р
2	13367.500	41.73	6.98	48.71	74.00	-25.29	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value.

Page: 45 of 67

Temperature:		23.8℃			Relative	Relative Humidity:			5
Test Vo	ltage:	AC	120V					P. P.	Market St.
Ant. Po	ol.	Но	rizontal					3	
Test Mo	ode:	TX	GFSK Mod	de 2442MH	lz				
No.	Frequenc (MHz)	су	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F

50.11

49.15

74.00

74.00

-23.89

-24.85

peak

peak

Ρ

5.51

7.01

10919.500

13418.500

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

44.60

42.14

- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.8℃	Relative Humidity:	52%
Test Voltage:	AC 120V	THE STATE OF THE S	0
Ant. Pol.	Vertical	WILLIAM STATE	
Test Mode:	TX GFSK Mode 2442MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9797.500	45.66	5.09	50.75	74.00	-23.25	peak	Р
2	13265.500	42.60	6.72	49.32	74.00	-24.68	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 46 of 67

Ę	Temperature:	23.5℃	Relative Humidity:	46%
	Test Voltage:	AC 120V	COUNTY OF	A HILL
	Ant. Pol.	Horizontal		133
	Test Mode:	TX GFSK Mode 2469MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10792.000	45.95	4.91	50.86	74.00	-23.14	peak	Р
2	14107.000	42.91	7.60	50.51	74.00	-23.49	peak	Р

Remark:

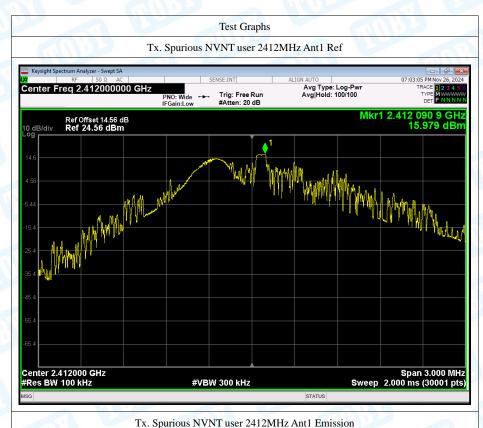
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V		A CALL
Ant. Pol.	Vertical	1	
Test Mode:	TX GFSK Mode 2469MHz		MAG

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10715.500	45.10	4.67	49.77	74.00	-24.23	peak	Р
2 *	13316.500	43.08	6.98	50.06	74.00	-23.94	peak	Р

Remark

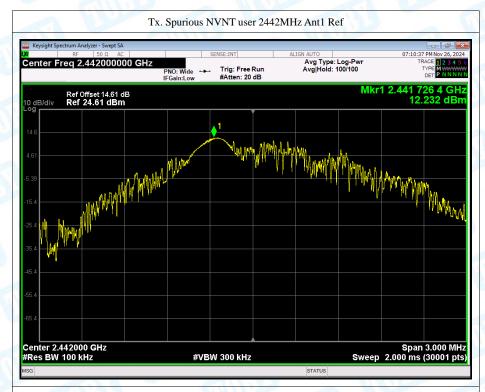
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.



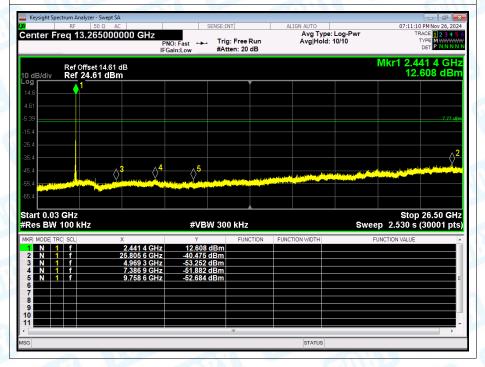
Page: 47 of 67

Conducted Emission Test Data

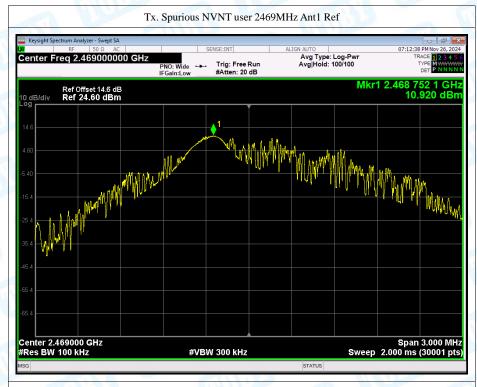
Condition	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2412	-57.23	-20	Pass
NVNT	2442	-52.7	-20	Pass
NVNT	2469	-52.46	-20	Pass

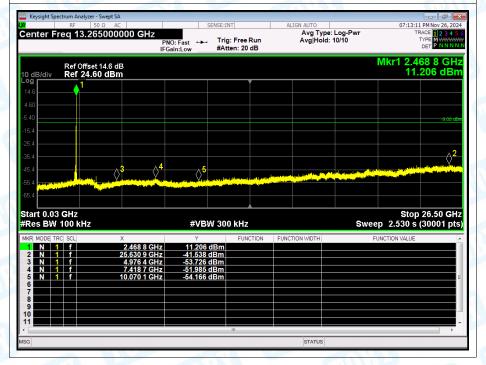






Page: 48 of 67

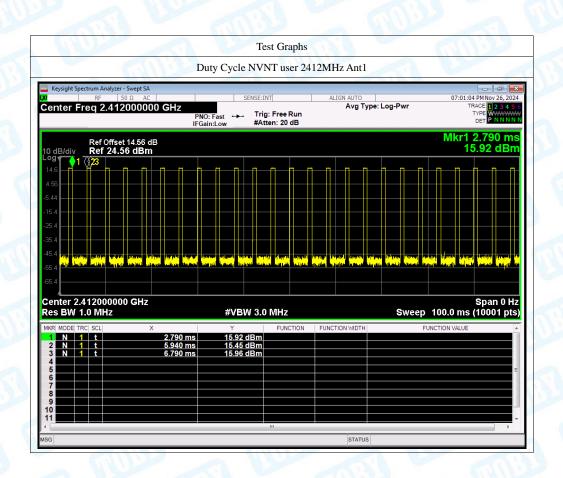




TOBY

Page: 49 of 67

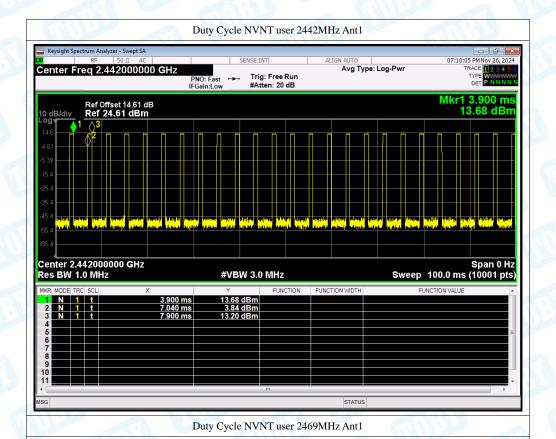
Tx. Spurious NVNT user 2469MHz Ant1 Emission



Page: 50 of 67

Attachment C-- Restricted Bands Requirement Test Data

1. Duty Cycle


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	user	2412	Ant1	21.25	6.73	1.18
NVNT	user	2442	Ant1	21.5	6.68	1.16
NVNT	user	2469	Ant1	21.25	6.73	1.18

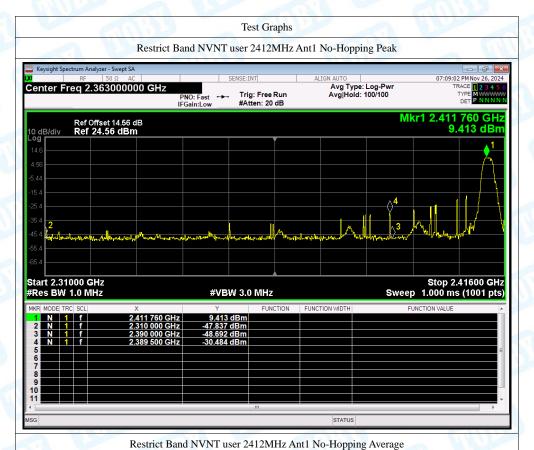
TOBY
Part of the Cotecna Group

Page: 51 of 67

| No. | Fast | No. | No.

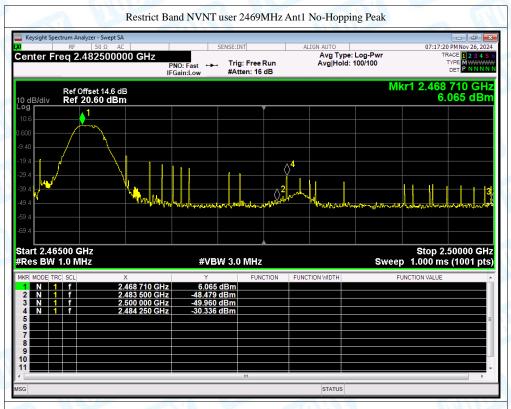
STATUS

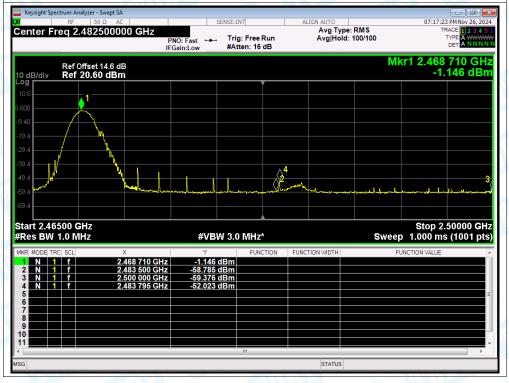
Report No.: TBR-C-202409-0058-11 Page: 52 of 67


2.Restricted Bands Test Data

Condition	Frequency	Antenna	Hopping	Spur Freq	Power	Gain	Duty	E	Detector	Limit	Verdict
	(MHz)		Mode	(MHz)	(dBm)	(dBi)	Factor	(dBuV/m)		(dBuV/m)	
							(dB)				
NVNT	2412	Ant1	No-Hopping	2310	-47.84	2.75	-	50.17	Peak	74	Pass
NVNT	2412	Ant1	No-Hopping	2310	-56.78	2.75	6.73	47.96	Average	54	Pass
NVNT	2412	Ant1	No-Hopping	2389.5	-30.48	2.75		67.53	Peak	74	Pass
NVNT	2412	Ant1	No-Hopping	2389.5	-51.41	2.75	6.73	53.33	Average	54	Pass
NVNT	2412	Ant1	No-Hopping	2390	-48.69	2.75	31 - X	49.32	Peak	74	Pass
NVNT	2412	Ant1	No-Hopping	2390	-56.3	2.75	6.73	48.44	Average	54	Pass
NVNT	2469	Ant1	No-Hopping	2483.5	-48.48	2.75	-	49.53	Peak	74	Pass
NVNT	2469	Ant1	No-Hopping	2483.5	-58.79	2.75	6.73	45.95	Average	54	Pass
NVNT	2469	Ant1	No-Hopping	2484.25	-30.34	2.75	-	67.67	Peak	74	Pass
NVNT	2469	Ant1	No-Hopping	2483.795	-52.02	2.75	6.73	52.72	Average	54	Pass
NVNT	2469	Ant1	No-Hopping	2500	-49.96	2.75	410	48.05	Peak	74	Pass
NVNT	2469	Ant1	No-Hopping	2500	-59.38	2.75	6.73	45.36	Average	54	Pass

Page: 53 of 67

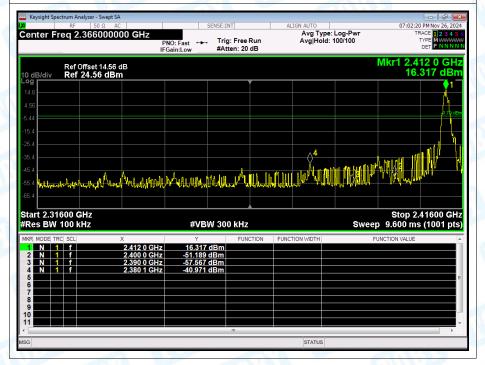




Page: 54 of 67

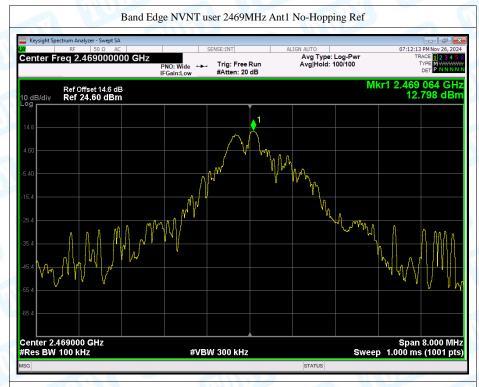
Restrict Band NVNT user 2469MHz Ant1 No-Hopping Average

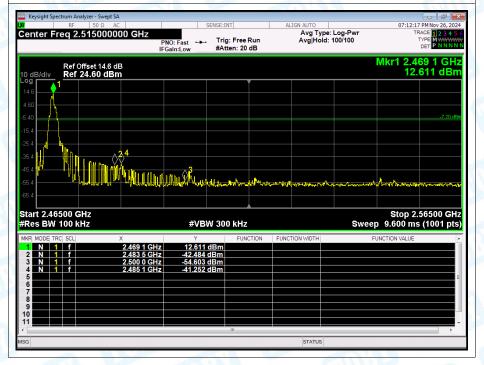



Page: 55 of 67

(1) Band Edge

Condition	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2412	No-Hopping	-57.18	-20	Pass
NVNT	2469	No-Hopping	-54.05	-20	Pass

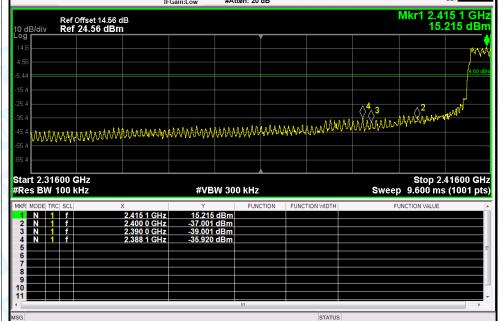

Band Edge NVNT user 2412MHz Ant1 No-Hopping Emission



Page: 56 of 67

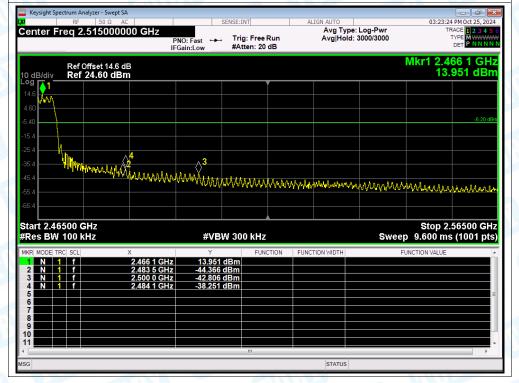
Band Edge NVNT user 2469MHz Ant1 No-Hopping Emission





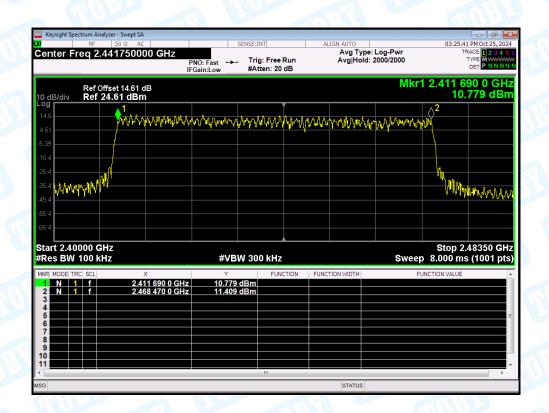
Page: 57 of 67

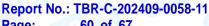
Condition	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2412	Hopping	-51.33	-20	Pass
NVNT	2469	Hopping	-52.05	-20	Pass



Page: 58 of 67

Band Edge(Hopping) NVNT user 2469MHz Ant1 Hopping Emission




Page: 59 of 67

Attachment D-- Number of Hopping Channel Test Data

Condition	Hopping Number	Limit	Verdict	
NVNT	58	15	Pass	

Page: 60 of 67

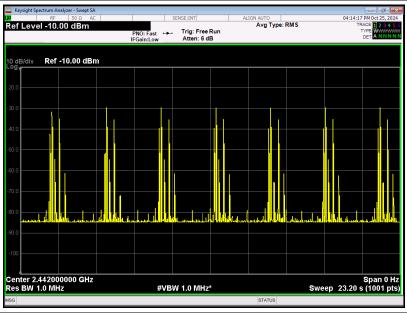
Attachment E-- Average Time of Occupancy Test Data

Temperature: 23.5℃ **Relative Humidity:** 52% Test Voltage: **AC 120V**

Test Mode: Hopping Mode (GFSK)

Test	Channel	Reading	Total hops	Test Result	Limit	Pocult	
Mode	(MHz)	Time (ms)	Total Hops	(ms)	(ms)	Result	
GFSK	2442	6	7	48	400	PASS	

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:


The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 58 [ch] =23.2[s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in 23.2s is 7

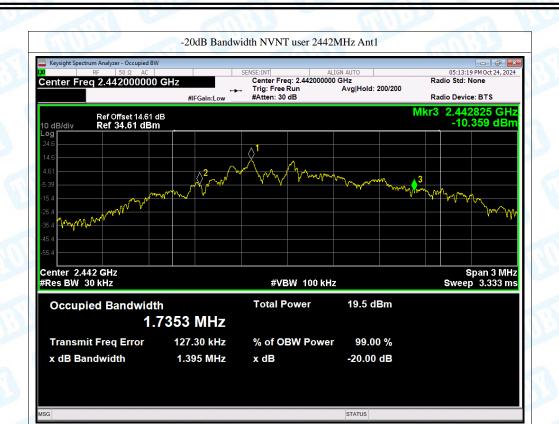
Reading Time=6 ms

GFSK Hopping Mode

Page: 61 of 67

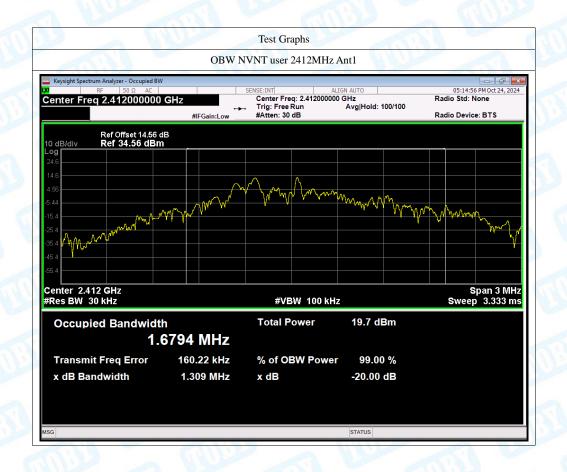
Attachment F-- Channel Separation and Bandwidth Test Data

Bandwidth Test Data:


Condition	Francis (MIII-)	-20 dB Bandwidth	2/3 *-20 dB Bandwidth
Condition	Frequency (MHz)	(MHz)	(MHz)
NVNT	2412	1.36	0.907
NVNT	2442	1.39	0.927
NVNT	2469	1.31	0.873



Page: 62 of 67



Page: 63 of 67

Condition	Frequency (MHz)	99% OBW (MHz)
NVNT	2412	1.679
NVNT	2442	1.674
NVNT	2469	1.648



TOBY
Part of the Cotecna Group

Page: 64 of 67

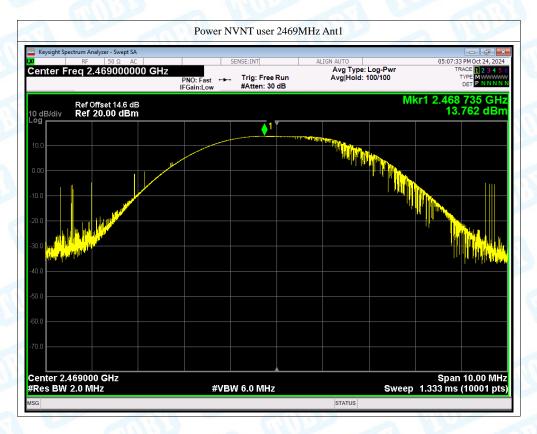
Page: 65 of 67

Channel Separation Test data:

Condition	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	2442.102	2443.11	1.008	0.927	Pass

Page: 66 of 67

Attachment G-- Peak Output Power Test Data


Condition	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	2412	15.15	21	Pass
NVNT	2442	14.516	21	Pass
NVNT	2469	13.762	21	Pass

Report N
Page:

----END OF THE REPORT----

