

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA23112202201 FCC ID....... 2BDHJINSRA01

Compiled by

(position+printed name+signature) .: File administrators Zoey Cao

Supervised by

(position+printed name+signature) .: Project Engineer Amy Wen

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Nov. 27, 2023

Testing Laboratory Name...... Shenzhen CTA Testing Technology Co., Ltd.

Address...... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Inster Tecnologia y Comunicaciones

Test specification:

Standard..... FCC Part 15.247

TRF Originator...... Shenzhen CTA Testing Technology Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description FoldSat LEo Ku OW

Trade Mark FoldSat LEo Ku OW

Manufacturer Inster Tecnologia y Comunicaciones

Model/Type reference: INSTER_RA01

Operation Frequency...... From 2412 - 2462MHz

Rating DC 24.0V From external circuit

Result: PASS

Report No.: CTA23112202201 Page 2 of 49

TEST REPORT

Equipment under Test : FoldSat LEo Ku OW

Model /Type : INSTER_RA01

Listed Models : N/A

Applicant : Inster Tecnologia y Comunicaciones

Address : Av. Rita Levi Montalcini, 2, Tecnogetafe, Madrid, Spain

Manufacturer : Inster Tecnologia y Comunicaciones

Address : Av. Rita Levi Montalcini, 2, Tecnogetafe, Madrid, Spain

CIP			N _G
310	Test Result:	TES	PASS
25 050	100 1100	CIP.	TING

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 49 Report No.: CTA23112202201

Contents

		TESTING Conf	tents	
		TEST STANDARDS	NG	4
	CIA	TES.		
	2	SUMMARY	-TING	5
	_		in TES	<u></u>
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under	Test (FUT)	5
	2.5	EUT operation mode	1001 (201)	6
	2.6	Block Diagram of Test Setup		6
TATE	2.7	Related Submittal(s) / Grant (s)		6
CAL	2.8	Modifications		6
Ĩ		TES		•
		CTA		
	<u>3</u>	TEST ENVIRONMENT		<u> 7</u>
			· cTA	
	3.1	Address of the test laboratory		7
	3.2	Test Facility		7
	3.3	Environmental conditions	C/L	7
	3.4	Test Description	CTATE!	8
	3.5	Statement of the measurement uncertainty		8
	3.6	Equipments Used during the Test		9
	0.0	TING		
	_	ES\\'`		
	<u>4</u>	TEST CONDITIONS AND RESUL	TS	<u> 11</u>
	4.1	AC Power Conducted Emission		11
	4.2	Radiated Emission		14
	4.3	Maximum Peak Conducted Output Power		20
	4.4	Power Spectral Density	CTA	21
	4.5	6dB Bandwidth		23
	4.6	Out-of-band Emissions	CTA TESTING	25
	4.7	Antenna Requirement		31
		·		
	CILL	TEST SETUP BUSINESS OF THE	eu T	2.0
	<u> </u>	TEST SETUP PHOTOS OF THE	EUT	3 2
CTATE				
	<u>6</u>	PHOTOS OF THE EUT		33
		CTA	ING	
			ESTITUTE	
			CTATESTING	
			k C''	
			CTATES	

Page 4 of 49 Report No.: CTA23112202201

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS), Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under CTATE §15.247 of The FCC rules.

Report No.: CTA23112202201 Page 5 of 49

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample		Nov. 22, 2023
Testing commenced on		Nov. 22, 2023
Testing concluded on	:	Nov. 27, 2023

2.2 Product Description

51.	
Product Name:	FoldSat LEo Ku OW
Model/Type reference:	INSTER_RA01
Power supply:	DC 24.0V From external circuit
Adapter information:	Input: AC 100-240V 50/60Hz 3.0A Output: 24V 10A
PC information (Auxiliary test supplied by testing Lab)	Model: E470C Trade Mark: thinkpad
testing sample ID:	CTA231122022-1# (Engineer sample), CTA231122022-2# (Normal sample)
Hardware version:	INSTER/R
Software version:	1.1.5
WIFI:	
Supported type:	802.11b
Modulation:	802.11b: DSSS
Operation frequency:	802.11b
Channel number:	802.11b: 11
Channel separation:	5MHz
Antenna type:	Internal antenna
Antenna gain:	4.50 dBi for Ant 1and Ant2
Note:	The EUT do not support MIMO Mode.
	H.G. T.

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
TES		0	12 V DC	•	24 V DC
CIF		0	Other (specified in blank bel	ow)

DC 24.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a FoldSat LEo Ku OW.

For more details, refer to the user's manual of the EUT.

Page 6 of 49 Report No.: CTA23112202201

EUT operation mode

The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

	channels are provided to the EU		-51"
Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

2.6 **Block Diagram of Test Setup**

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart CTATESTIN C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 49 Report No.: CTA23112202201

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
	10000
Atmospheric pressure:	950-1050mbar

Conducted testing:

ondation tooting.		_
Temperature:	25 ° C	
Humidity:	44 %	
EST		
Atmospheric pressure:	950-1050mbar	.NG
Carlo U.		STIN
C Power Conducted Emission		- TES
Temperature:	24 ° C	\r

AC Power Conducted Emission

AC FOWER CONTROLLED ETHISSION	il
Temperature:	24 ° C
	CIN
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTA TESTING	CTATESTING

Report No.: CTA23112202201 Page 8 of 49

3.4 Test Description

	FCC PART 15.247					
	FCC Part 15.207 AC Power Conducted Emission					
	FCC Part 15.247(a)(2) 6dB Bandwidth		PASS			
	FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS			
	FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS			
	FCC Part 15.247(e)	Power Spectral Density	PASS			
	FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS			
CIL	FCC Part 15.247(d)	Band Edge	PASS			
	FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS			

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power Power Spectral Density 6dB Bandwidth Spurious RF conducted emission Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 th Harmonic	11b/DSSS	1 Mbps	1/6/11
Band Edge	11b/DSSS	1 Mbps	1/11

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	-ING/	0.57 dB	(1)
Spectrum bandwidth	-651111	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

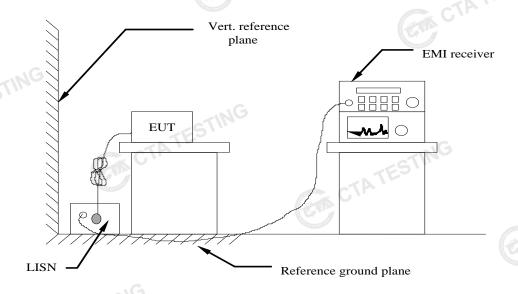
Report No.: CTA23112202201 Page 9 of 49

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
TE	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck C	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
E	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
	CTATES	GW C	TATESTING	- CTA	TESTING	

Report No.: CTA23112202201 Page 10 of 49


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
CTATE	STING					CIN.
CTA		CTATESTING				

Report No.: CTA23112202201 Page 11 of 49

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

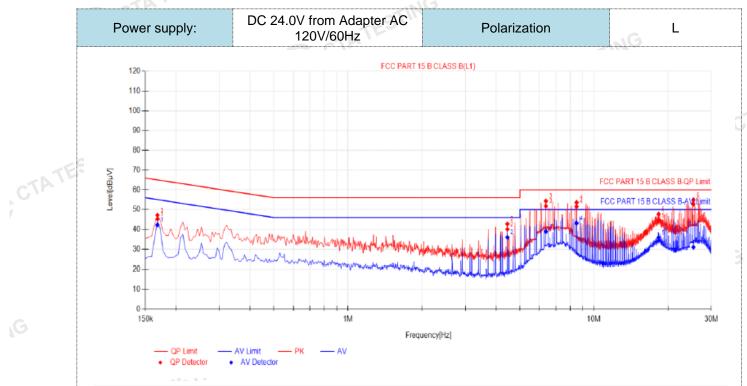
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguenay rango (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the freque	ency.				

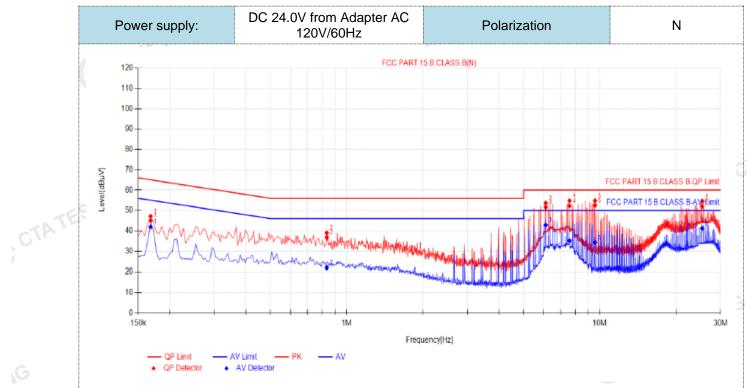

TEST RESULTS

Remark:

1. All modes of 802.11b were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:

Page 12 of 49 Report No.: CTA23112202201

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


	Final Data List												
N 7 N	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
	1	0.168	9.95	35.22	45.17	65.06	19.89	32.28	42.23	55.06	12.83	PASS	
	2	4.4475	9.95	30.13	40.08	56.00	15.92	26.03	35.98	46.00	10.02	PASS	
	3	6.378	10.20	41.58	51.78	60.00	8.22	28.68	38.88	50.00	11.12	PASS	
	4	8.5065	10.27	41.28	51.55	60.00	8.45	32.86	43.13	50.00	6.87	PASS	
	5	18.3165	10.38	34.30	44.68	60.00	15.32	25.42	35.80	50.00	14.20	PASS	
[6	25.3725	10.51	42.19	52.70	60.00	7.30	20.44	30.95	50.00	19.05	PASS	

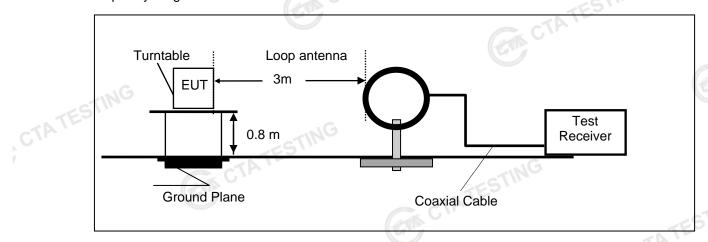
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - CTA TESTING 4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV)

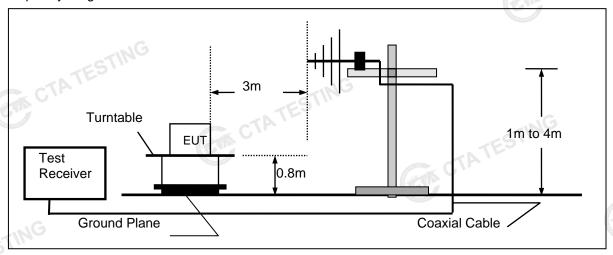
CTA TESTING

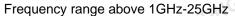
Report No.: CTA23112202201 Page 13 of 49

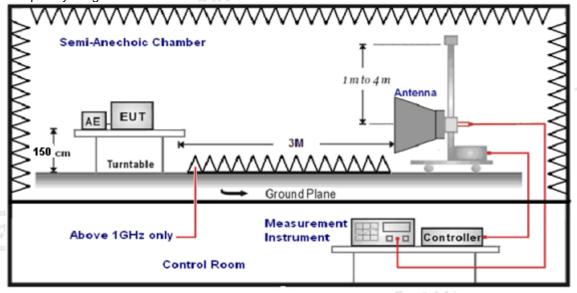
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
1	0.168	10.08	34.92	45.00	65.06	20.06	31.89	41.97	55.06	13.09	PASS	
2	0.834	10.14	26.66	36.80	56.00	19.20	11.92	22.06	46.00	23.94	PASS	
3	6.117	10.27	41.33	51.60	60.00	8.40	32.58	42.85	50.00	7.15	PASS	
4	7.593	10.42	41.83	52.25	60.00	7.75	24.71	35.13	50.00	14.87	PASS	
5	9.5775	10.40	42.10	52.50	60.00	7.50	23.88	34.28	50.00	15.72	PASS	
6	25.386	10.71	41.24	51.95	60.00	8.05	30.47	41.18	50.00	8.82	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV)												


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) EM CTATES

Report No.: CTA23112202201 Page 14 of 49


4.2 Radiated Emission


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Report No.: CTA23112202201 Page 15 of 49

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	ALL STATES
9KHz-30MHz	Active Loop Antenna	3	A Thursday
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

FS = RA + AF + CL - AG	CTATESTING
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(EVI)

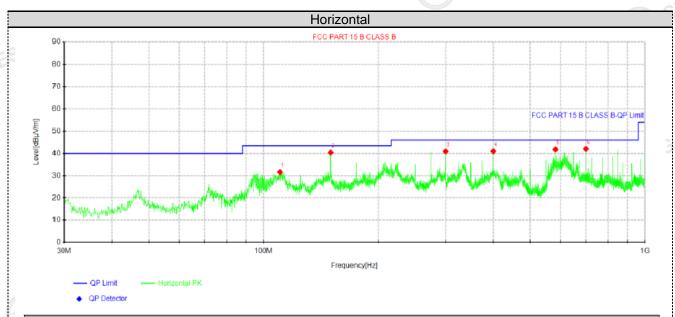
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


Report No.: CTA23112202201 Page 16 of 49

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevity		
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	110.388	45.34	31.62	-13.72	43.50	11.88	100	170	Horizontal		
2	149.916	56.37	40.43	-15.94	43.50	3.07	100	332	Horizontal		
3	300.023	52.32	40.95	-11.37	46.00	5.05	100	182	Horizontal		
4	400.055	51.51	41.02	-10.49	46.00	4.98	100	3	Horizontal		
5	582.415	48.29	41.86	-6.43	46.00	4.14	100	113	Horizontal		
6	700.027	47.38	42.10	-5.28	46.00	3.90	100	148	Horizontal		

CTA TESTING

CTATE Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)