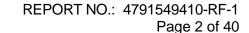


CFR 47 FCC PART 15 SUBPART C ISED RSS-210 ISSUE 11

CERTIFICATION TEST REPORT


For

NACS

MODEL NUMBER: HVCON1MA200APL0000U,HVCON1MA200ANL0000U HVCON1MA250APL0000U,HVCON1MA250ANL0000U HVCON1MA300APL0000U,HVCON1MA300ANL0000U HVCON1MB300APL0000U,HVCON1MB300ANL0000U HVCON1MA380APL0000U,HVCON1MA380ANL0000U HVCON2MA600APL0000U, HVCON2MA600ANL0000U HVCON1MA40ANL0000U, HVCON1MA40APL0000U HVCON1MA50ANL0000U, HVCON1MA50APL0000U HVCON1MA80ANL0000U, HVCON1MA80APL0000U HVCON1MA200APL0000UA, HVCON1MA200ANL0000UA HVCON1MB200APL0000UA, HVCON1MB200ANL0000UA HVCON1MA250APL0000UA, HVCON1MA250ANL0000UA HVCON1MB250APL0000UA, HVCON1MB250ANL0000UA HVCON1MA300APL0000UA,HVCON1MA300ANL0000UA HVCON1MB300APL0000UA.HVCON1MB300ANL0000UA HVCON1MA380APL0000UA,HVCON1MA380ANL0000UA HVCON1MB380APL0000UA,HVCON1MB380ANL0000UA HVCON2MA600APL0000UA, HVCON2MA600ANL0000UA HVCON2MB600APL0000UA, HVCON2MB600ANL0000UA HVCON1MB40ANL0000UA, HVCON1MB40APL0000UA HVCON1MB50ANL0000UA, HVCON1MB50APL0000UA HVCON1MB80ANL0000UA, HVCON1MB80APL0000UA HVCON1MA40ANL0000UA, HVCON1MA40APL0000UA HVCON1MA50ANL0000UA, HVCON1MA50APL0000UA HVCON1MA80ANL0000UA, HVCON1MA80APL0000UA HVCON1MA200APL0000UB,HVCON1MA200ANL0000UB HVCON1MB200APL0000UB, HVCON1MB200ANL0000UB HVCON1MA250APL0000UB,HVCON1MA250ANL0000UB HVCON1MB250APL0000UB,HVCON1MB250ANL0000UB HVCON1MA300APL0000UB, HVCON1MA300ANL0000UB HVCON1MB300APL0000UB,HVCON1MB300ANL0000UB HVCON1MA380APL0000UB,HVCON1MA380ANL0000UB HVCON1MB380APL0000UB,HVCON1MB380ANL0000UB HVCON2MA600APL0000UB,HVCON2MA600ANL0000UB

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

HVCON2MB600APL0000UB.HVCON2MB600ANL0000UB

HVCON1MB40ANL0000UB,HVCON1MB40APL0000UB HVCON1MB50ANL0000UB, HVCON1MB50APL0000UB HVCON1MB80ANL0000UB, HVCON1MB80APL0000UB HVCON1MA200APL0000UC, HVCON1MA200ANL0000UC HVCON1MB200APL0000UC,HVCON1MB200ANL0000UC HVCON1MA250APL0000UC, HVCON1MA250ANL0000UC HVCON1MB250APL0000UC, HVCON1MB250ANL0000UC HVCON1MA300APL0000UC,HVCON1MA300ANL0000UC HVCON1MB300APL0000UC, HVCON1MB300ANL0000UC HVCON1MA380APL0000UC,HVCON1MA380ANL0000UC HVCON1MB380APL0000UC, HVCON1MB380ANL0000UC HVCON2MA600APL0000UC, HVCON2MA600ANL0000UC HVCON2MB600APL0000UC, HVCON2MB600ANL0000UC HVCON1MB40ANL0000UC, HVCON1MB40APL0000UC HVCON1MB50ANL0000UC, HVCON1MB50APL0000UC HVCON1MB80ANL0000UC, HVCON1MB80APL0000UC

FCC ID: 2BD3RNACSUHF315 IC: 31765-NACSUHF315

REPORT NUMBER: 4791549410-RF-1

ISSUE DATE: January 11, 2025

Prepared for

Amphenol PCD Shenzhen Co., Ltd

101,201,301,601, Building C, Dagang Industrial Zone, Changzhen Community, Yutang Sub-district, Guangming District, Shenzhen, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 3 of 40

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	1/11/2025	Initial Issue	

Note: This report is based on 4791390828.1-1 which is issued by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. The EUT had already applied for the FCC ID, the customer added the model name. The new model has the same RF technical construction including circuit diagram, PCB Layout, components, component layout and performance with HVCON1MB200APL0000U. The only difference lies are the non-RF technical construction. Therefore, the new model will be reconsidered testing in the EMC part and spot-check in radiated in RF part. For the other data, please refer to the original report.

REPORT NO.: 4791549410-RF-1 Page 4 of 40

Summary of Test Results Test Results Clause Test Items **FCC Rules** CFR 47 FCC §15.231 (a) (1) 1 **Transmitter Timeout** Note 3 ISED RSS-210 Annex A.1.1 20 dB Bandwidth and CFR 47 FCC §15.231 (c) 2 99 % Occupied Note 3 ISED RSS-210 Annex A.1.3 Bandwidth CFR 47 FCC §15.231 (b)(e) CFR 47 FCC §15.205 and §15.209 RSS-210 Annex A.1.2 Radiated Emission 3 **Pass RSS-GEN Clause 8.9** RSS-GEN Clause 8.10 AC Power Line Conducted 4 ANSI C63.10-2013, Clause 6.2 Note 3 **Emission** CFR 47 FCC §15.203 5 Antenna Requirement **Pass** ISED RSS-Gen Clause 6.3

Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

Note 2: The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C and ISED RSS-210> when <Accuracy Method> decision rule is applied.

Note 3: Please refer to the original report.

N/A: In this whole report not applicable.

TABLE OF CONTENTS

1.	AT	ΓEST	ATION OF TEST RESULTS	6
2.	TES	ST ME	THODOLOGY	9
3.	FAG	CILITI	ES AND ACCREDITATION	9
4.	CA	LIBRA	ATION AND UNCERTAINTY	10
	4.1.	ME	ASURING INSTRUMENT CALIBRATION	10
	4.2.	ME	ASUREMENT UNCERTAINTY	10
5.	EQ	UIPMI	ENT UNDER TEST	11
	5.1.	DES	SCRIPTION OF EUT	11
	5.2.	MAX	KIMUM FIELD STRENGTH	12
	5.3.	DES	SCRIPTION OF AVAILABLE ANTENNAS	12
	5.4.	TES	T ENVIRONMENT	13
	5.5.	DES	SCRIPTION OF TEST SETUP	14
	5.6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	15
6.	AN ⁻	TENN	A PORT TEST RESULTS	16
	6.1.	ON	TIME AND DUTY CYCLE	16
	6.2.	TRA	NSMITTER TIMEOUT	18
	6.3.	20 c	IB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	20
	<i>6.4.</i> 6.4.		DIATED TEST RESULTS	
	6.4.		SPURIOUS EMISSIONS BELOW 1 GHz AND ABOVE 30 MHz	_
	6.4.	3.	SPURIOUS EMISSIONS ABOVE 1 GHz	
	6.4.	4.	SPURIOUS EMISSIONS BELOW 30 MHz	35
7.	AC	POW	ER LINE CONDUCTED EMISSION	38
0	A NI	TENINI	A DECLUDEMENTS	40

Page 6 of 40

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Amphenol PCD Shenzhen Co., Ltd

101,201,301,601, Building C, Dagang Industrial Zone, Changzhen

Address: Community, Yutang Sub-district, Guangming District, Shenzhen,

China

Manufacturer Information

Company Name: Amphenol PCD Shenzhen Co., Ltd

101,201,301,601, Building C, Dagang Industrial Zone, Changzhen

Address: Community, Yutang Sub-district, Guangming District, Shenzhen,

China

EUT Information

EUT Name: NACS

HVCON1MA200APL0000U,HVCON1MA200ANL0000U
HVCON1MA250APL0000U,HVCON1MA250ANL0000U
HVCON1MA300APL0000U,HVCON1MA300ANL0000U
HVCON1MB300APL0000U,HVCON1MB300ANL0000U
HVCON1MA380APL0000U,HVCON1MA380ANL0000U
HVCON2MA600APL0000U,HVCON2MA600ANL0000U
HVCON1MA40ANL0000U,HVCON1MA40APL0000U
HVCON1MA50ANL0000U,HVCON1MA50APL0000U
HVCON1MA80ANL0000U,HVCON1MA80APL0000U
HVCON1MA200APL0000UA,HVCON1MA200ANL0000U

HVCON1MA200APL0000UA,HVCON1MA200ANL0000UA HVCON1MB200APL0000UA,HVCON1MB200ANL0000UA HVCON1MA250APL0000UA,HVCON1MA250ANL0000UA HVCON1MB250APL0000UA,HVCON1MB250ANL0000UA HVCON1MA300APL0000UA,HVCON1MA300ANL0000UA HVCON1MB300APL0000UA,HVCON1MB300ANL0000UA HVCON1MB380APL0000UA,HVCON1MB380ANL0000UA HVCON1MB380APL0000UA,HVCON1MB380ANL0000UA HVCON2MA600APL0000UA,HVCON2MA600ANL0000UA

Model:

HVCON2MB600APL0000UA,HVCON2MB600ANL0000UA HVCON1MB40ANL0000UA, HVCON1MB40APL0000UA HVCON1MB50ANL0000UA, HVCON1MB50APL0000UA HVCON1MB80ANL0000UA,HVCON1MB80APL0000UA HVCON1MA40ANL0000UA, HVCON1MA40APL0000UA HVCON1MA50ANL0000UA, HVCON1MA50APL0000UA HVCON1MA80ANL0000UA, HVCON1MA80APL0000UA HVCON1MA200APL0000UB, HVCON1MA200ANL0000UB HVCON1MB200APL0000UB, HVCON1MB200ANL0000UB HVCON1MA250APL0000UB, HVCON1MA250ANL0000UB HVCON1MB250APL0000UB,HVCON1MB250ANL0000UB HVCON1MA300APL0000UB, HVCON1MA300ANL0000UB HVCON1MB300APL0000UB,HVCON1MB300ANL0000UB HVCON1MA380APL0000UB,HVCON1MA380ANL0000UB HVCON1MB380APL0000UB,HVCON1MB380ANL0000UB HVCON2MA600APL0000UB, HVCON2MA600ANL0000UB

Page 7 of 40

HVCON2MB600APL0000UB,HVCON2MB600ANL0000UB HVCON1MB40ANL0000UB,HVCON1MB40APL0000UB HVCON1MB50ANL0000UB, HVCON1MB50APL0000UB HVCON1MB80ANL0000UB, HVCON1MB80APL0000UB HVCON1MA200APL0000UC, HVCON1MA200ANL0000UC HVCON1MB200APL0000UC, HVCON1MB200ANL0000UC HVCON1MA250APL0000UC, HVCON1MA250ANL0000UC HVCON1MB250APL0000UC, HVCON1MB250ANL0000UC HVCON1MA300APL0000UC, HVCON1MA300ANL0000UC HVCON1MB300APL0000UC, HVCON1MB300ANL0000UC HVCON1MA380APL0000UC, HVCON1MA380ANL0000UC HVCON1MB380APL0000UC,HVCON1MB380ANL0000UC HVCON2MA600APL0000UC, HVCON2MA600ANL0000UC HVCON2MB600APL0000UC, HVCON2MB600ANL0000UC HVCON1MB40ANL0000UC,HVCON1MB40APL0000UC HVCON1MB50ANL0000UC, HVCON1MB50APL0000UC HVCON1MB80ANL0000UC, HVCON1MB80APL0000UC

Sample Received Date: December 16, 2024

Sample Status: Normal Sample ID: 7940887

Date of Tested: December 16, 2024 ~ January 11, 2025

REPORT NO.: 4791549410-RF-1 Page 8 of 40

APPLICABLE STANDARDS

OARD TEST RESULTS

ISED RSS-210 Issue 11		
ISED RSS-GEN Issue 5		
CFR 47 FCC PART 15 SUBPART C		
Checked By:		
Kebo Zhang		
Senior Project E	Engineer	
	Checked By: Kebo . Thurs Kebo Zhang	

STANDARD

Page 9 of 40

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-210 Issue 11 and RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
Aggraditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation	has been registered and fully described in a report filed with ISED.
Certificate	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

Page 10 of 40

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiation Emission test (include Fundamental emission) (9 kHz-30 MHz)	2.2 dB
Radiation Emission test (include Fundamental emission) (30 MHz-1 GHz)	4.00 dB
Radiation Emission test	5.78 dB (1 GHz-18 GHz)
(1 GHz to 26GHz) (include Fundamental emission)	5.23 dB (18 GHz-26 GHz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: 4791549410-RF-1 Page 11 of 40

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	NACS
Model	HVCON1MA200APL0000U,HVCON1MA200ANL0000U

REPORT NO.: 4791549410-RF-1 Page 12 of 40

	HVCON2MA600APL0000UC,HVCON2MA600ANL0000UC HVCON2MB600APL0000UC,HVCON2MB600ANL0000UC HVCON1MB40ANL0000UC,HVCON1MB40APL0000UC HVCON1MB50ANL0000UC,HVCON1MB50APL0000UC HVCON1MB80ANL0000UC, HVCON1MB80APL0000UC		
Model differences	For the detail, please refer to the model declaration letter.		
Remark	All the models have been considered, only the worst data for model HVCON1MA200APL0000U were recorded in the report.		
Product Description	Operation Frequency 315 MHz		
Modulation	dulation FSK		
Power Supply	3.3~15 Vdc		
Remark	All the power supply Voltage has been considered, only the worst case voltage 12Vdc test data record in this report.		

5.2. MAXIMUM FIELD STRENGTH

Frequency (MHz)	Maximum Peak Field Strength (dBµV/m)
315	77.94

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
315	PCB	0

Note: The value of the antenna gain was declared by customer.

Page 13 of 40

5.4. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests		
Relative Humidity	55 ~ 70 %		
Atmospheric Pressure:	1	025 Pa	
Temperature	TN	23 ~ 28 °C	
	VL	/	
Voltage:	VN	DC 12 V	
	VH	/	

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

Page 14 of 40

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Load	/	/	/
2	AC/DC Adapter	TP	T120	Input: 100~240Vac, 50/60 Hz 0.6A Output: 12V, 1A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
/	/	/	1	/

SETUP DIAGRAM FOR TEST

The test sample can be into a transmission mode through the power on.

Setup Diagram For Tests

REPORT NO.: 4791549410-RF-1 Page 15 of 40

5.6. MEASURING INSTRUMENT AND SOFTWARE USED

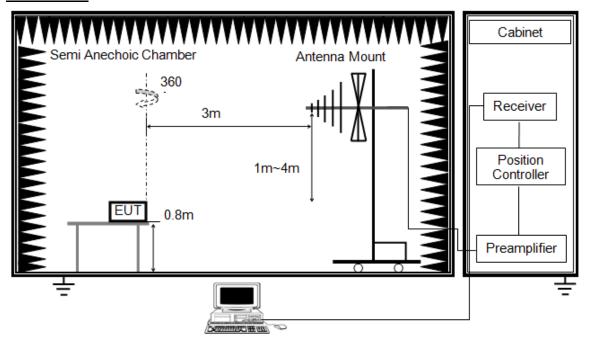
Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Sep.28, 2024	Sep.27, 2025
Two-Line V- Network	R&S	ENV216	101983	Sep.28, 2024	Sep.27, 2025
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Sep.28, 2024	Sep.27, 2025
Software					
Description			Manufacturer	Name	Version
Test Software for Conducted Emissions			Farad	EZ-EMC	Ver. UL-3A1

Radiated Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Sep.28, 2024	Sep.27, 2025
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	May.08, 2023	May.07 2026
Preamplifier	HP	8447D	2944A09099	Sep.28, 2024	Sep.27, 2025
EMI Measurement Receiver	R&S	ESR26	101377	Sep.28, 2024	Sep.27, 2025
Horn Antenna	TDK	HRN-0118	130939	Apr.29, 2022	Apr.28, 2025
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Sep.28, 2024	Sep.27, 2025
Horn Antenna	Schwarzbeck	BBHA9170	697	Jun 30, 2024	Jun 29, 2027
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Sep.28, 2024	Sep.27, 2025
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Sep.28, 2024	Sep.27, 2025
Loop antenna	Schwarzbeck	1519B	80000	Dec.14, 2021	Dec.13, 2024
	Software				
	Description			Name	Version
Test Software	Test Software for Radiated Emissions			EZ-EMC	Ver. UL-3A1

Page 16 of 40

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

FCC Reference:	CFR 47 §15.35(c)
Test Method Used:	ANSI C63.10 Section 7.5

TEST SETUP

- a. Set RBW of spectrum analyzer to 3 MHz and VBW to 3 MHz.
- b. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- c. Sweep Time is at least a 100 ms.
- d. Set the center frequency on any frequency would be measure and set the frequency span to
- e. Measure the maximum time duration of one single pulse.

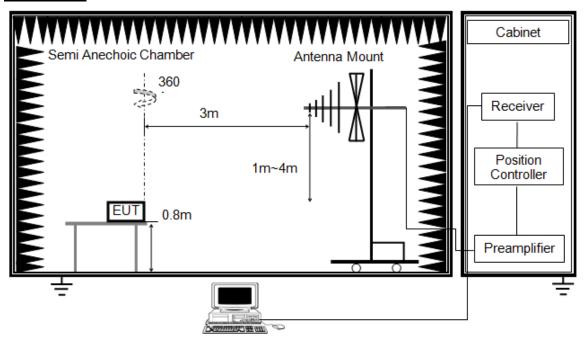
TEST ENVIRONMENT

Temperature	1	Relative Humidity	/
Atmosphere Pressure	/	Test Voltage	/

Page 17 of 40

RESULTS

Please refer to the original report.



6.2. TRANSMITTER TIMEOUT

TEST PROCEDURE

Rule Reference:	CFR 47 FCC §15.231(a) (1) ISED RSS-210 Annex A.1.1
Test Method Used:	The EUT transmitter was activated and monitored using a spectrum analyser for a period of 10 seconds.

TEST SETUP

Page 19 of 40

For CFR 47 Part 15.231(a):

- a. Set RBW of spectrum analyzer to 8 MHz and VBW to 8 MHz.
- b. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- c. Sew Sweep Time to 10 s.
- d. Set the center frequency on any frequency would be measure and set the frequency span to
- e. Measure the maximum time duration of one single pulse.

LIMITS

CFR 47 §15.231(a):

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

TEST ENVIRONMENT

Temperature	/	Relative Humidity	/
Atmosphere Pressure	/	Test Voltage	/

RESULTS

Please refer to the original report.

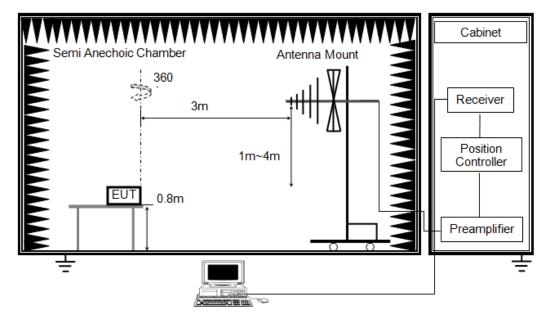
Page 20 of 40

6.3. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC §15.231 (c), ISED RSS-210 Annex A.1.3

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.


So, the limit calculated as: 0.0025 * 315 MHz = 0.7875 MHz

TEST PROCEDURE

FCC Reference:	CFR 47 Part 15.231(c)
Test Method Used:	ANSI C63.10 Section 6.9.2

TEST SETUP

- 1. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 2. The EUT was placed on a turntable with 0.8 meter above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower
- 4. Set the spectrum analyzer in the following setting as:

RBW is set to 3kHz and VBW is set 10kHz.

Note: Because the measured signal is CW or CW-like adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

TEST ENVIRONMENT

Temperature	/	Relative Humidity	/
Atmosphere Pressure	/	Test Voltage	/

RESULTS

Please refer to the original report.

Page 22 of 40

6.4. RADIATED TEST RESULTS

LIMITS

CFR 47 FCC §15.231 (b)(e)

CFR 47 FCC §15.205 and §15.209

1. In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

Note:

1. To obtain the average limit at the test frequency the values given in the table of FCC part 15.231(b) have to be linear interpolated and then converted to dB μ V/m. The limit at 260 MHz is 3750 μ V/m and at 470 MHz it is 12500 μ V/m. Limit at 315 MHz is calculated as shown in ANSI C63.10 Section 7.6.2:

Limit [
$$\mu$$
V/m] = Limlower + Δ F [(Limupper – Limlower) / (f upper – f lower)] where Δ F = f c – f lower = 315 – 260 = 55
Limit = 3750 + 55 * [(12500 – 3750) / (470 - 260)] = 3750 + 55 * [8750 / 210] = 6041.666 μ V/m dB μ V/m = 20 * log (μ V/m) = 20 * log (6041.67)

Average Limit at 315 MHz = $75.62 \text{ dB}\mu\text{V/m}$

2. If the average limit is specified for the EUT, the peak limit is 20 dB above the average limit as specified in FCC 15.35 (b)

REPORT NO.: 4791549410-RF-1 Page 23 of 40

2. Please refer to CFR 47 FCC part 15.231(e)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

Note:

1. To obtain the average limit at the test frequency the values given in the table of FCC part 15.231(b) have to be linear interpolated and then converted to dB μ V/m. The limit at 260 MHz is 3750 μ V/m and at 470 MHz it is 12500 μ V/m. Limit at 315 MHz is calculated as shown in ANSI C63.10 Section 7.6.2:

Limit [
$$\mu$$
V/m] = Limlower + Δ F [(Limupper – Limlower) / (f upper – f lower)] where Δ F = f c – f lower = 315 – 260 = 55
Limit = 1500 + 55 * [(5000 – 1500) / (470 - 260)] = 1500 + 55 * [3500 / 210] = 2416.667 μ V/m dB μ V/m = 20 * log (μ V/m) = 20 * log (2416.667)

Average Limit at 315 MHz = 67.66 dBµV/m

If the average limit is specified for the EUT, the peak limit is 20 dB above the average limit as specified in FCC 15.35 (b)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

REPORT NO.: 4791549410-RF-1 Page 24 of 40

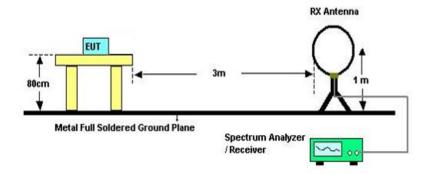
4. Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: (1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements). Note: (2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Restricted bands of operation

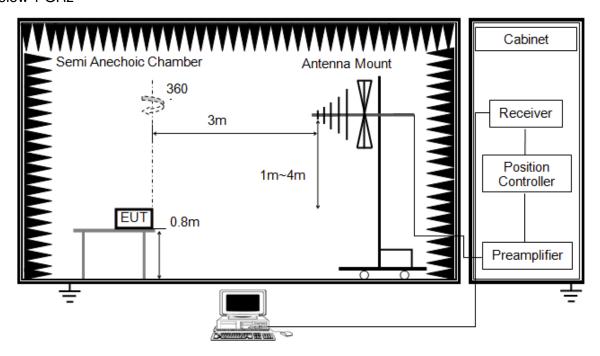
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6c

TEST SETUP AND PROCEDURE

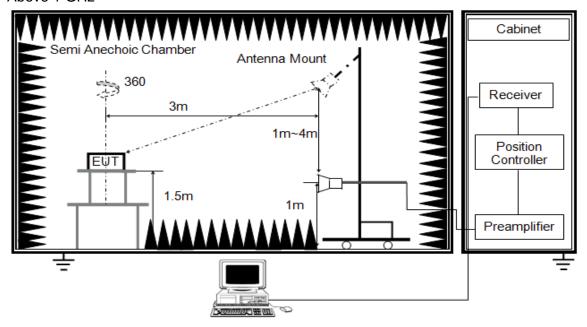
Below 30 MHz


The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω ; For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same

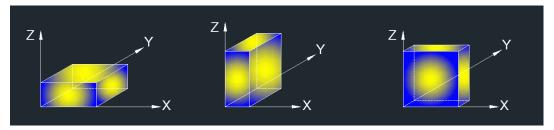
Below 1 GHz


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 7. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

Above 1 GHz


The setting of the spectrum analyser

RBW	1 MHz
1VBVV	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

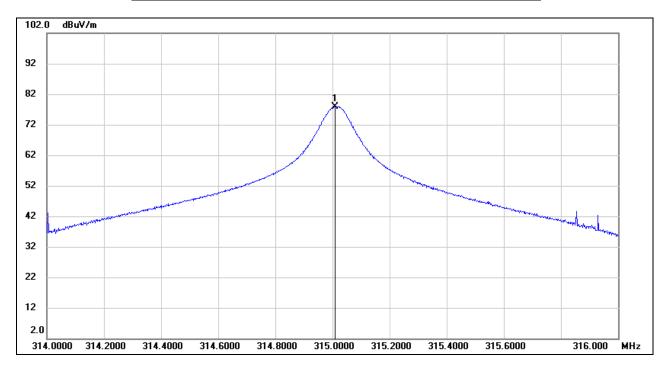
- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. Where necessary, average emission are determined by applying the Duty Cycle Correction Factor to the peak measurements. For the Duty Cycle and Correction Factor please refer to clause 6.1. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

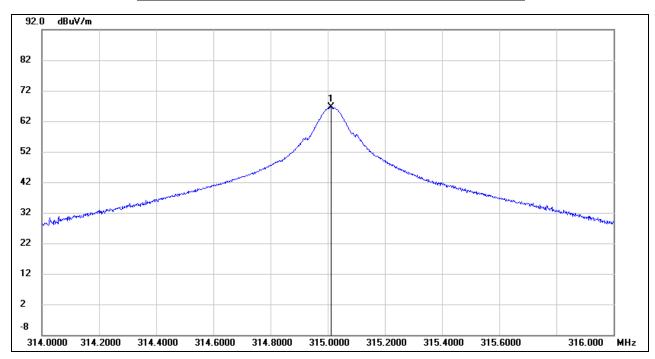
Radiated Emissio	ns - Below 1 GHz	Radiated Emissions - Above 1 GHz		
Temperature:	23.2 °C	Temperature:	24.5 °C	
Humidity:	54.3 %	Humidity:	59 %	
Atmosphere Pressure	101 kPa	Atmosphere Pressure	101 kPa	
Test Voltage	DC 12 V	Test Voltage	DC 12 V	


RESULTS

REPORT NO.: 4791549410-RF-1 Page 29 of 40

6.4.1. FIELD STRENGTH OF INTENTIONAL EMISSIONS

FIELD STRENGTH OF INTENTIONAL EMISSIONS (HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	315.0100	87.96	-10.02	77.94	95.62	-17.68	peak
/	/	/	/	71.84	75.62	-3.78	AVG

- 2. Peak: Peak detector.
- 3. Average Result = Peak Result + Duty Correction Factor.

REPORT NO.: 4791549410-RF-1 Page 30 of 40

FIELD STRENGTH OF INTENTIONAL EMISSIONS (VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	315.0120	76.71	-10.02	66.69	95.62	-28.93	peak
/	/	/	/	60.59	75.62	-15.03	AVG

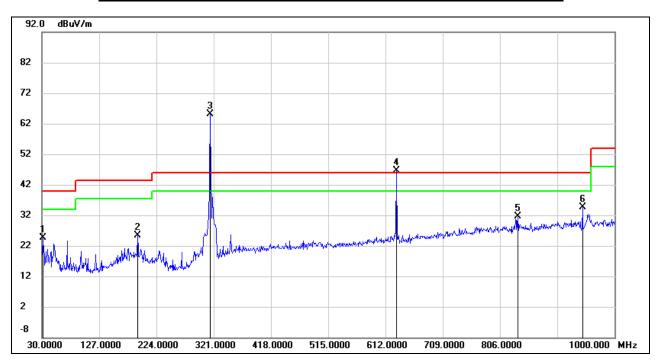
Note: 1. Result Level = Read Level + Correct Factor.


2. Peak: Peak detector.

3. Average Result = Peak Result + Duty Correction Factor.

REPORT NO.: 4791549410-RF-1 Page 31 of 40

6.4.2. SPURIOUS EMISSIONS BELOW 1 GHz AND ABOVE 30 MHz SPURIOUS EMISSIONS (HORIZONTAL)

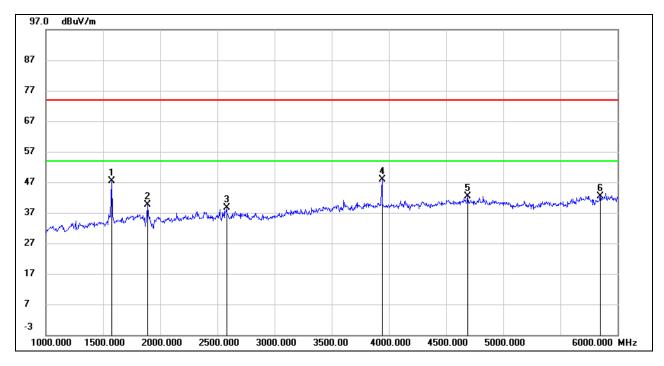

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	55.2200	33.72	-15.06	18.66	40.00	-21.34	QP
2	191.9900	37.26	-11.11	26.15	43.50	-17.35	QP
3	315.1800	86.62	-10.01	76.61	/	/	fundamental
4	630.4300	48.79	-4.74	44.05	75.62	-31.57	peak
/	/	/	/	37.95	55.62	-17.67	AVG
5	838.9800	31.32	-1.08	30.24	46.00	-15.76	QP
6	945.6800	39.35	-0.40	38.95	75.62	-36.67	peak
/	/	/	/	32.85	55.62	-22.77	AVG

- 2. Peak: Peak detector.
- 3. Average Result = Peak Result + Duty Correction Factor.
- 4. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 5. Mark 3 is the fundamental frequency, Mark 4, 6 are harmonics.

REPORT NO.: 4791549410-RF-1 Page 32 of 40

FIELD STRENGTH HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)

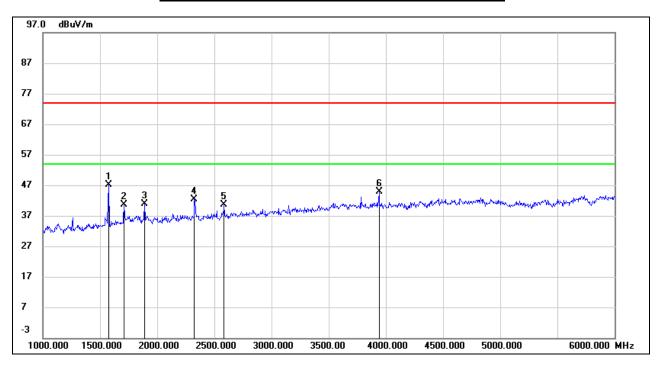
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	31.9400	38.76	-14.12	24.64	40.00	-15.36	QP
2	191.9900	36.50	-11.11	25.39	43.50	-18.11	QP
3	315.1800	75.10	-10.01	65.09	/	/	fundamental
4	630.4300	51.42	-4.74	46.68	75.62	-28.94	peak
/	1	/	/	40.58	55.62	-15.04	AVG
5	836.0700	32.72	-1.10	31.62	46.00	-14.38	QP
6	945.6800	35.06	-0.40	34.66	75.62	-40.96	peak
1	1	1	1	28.56	55.62	-27 06	AVG


- 2. Peak: Peak detector.
- 3. Average Result = Peak Result + Duty Correction Factor.
- 4. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 5. Mark 3 is the fundamental frequency, Mark 4, 6 are harmonics.

REPORT NO.: 4791549410-RF-1 Page 33 of 40

6.4.3. SPURIOUS EMISSIONS ABOVE 1 GHz

HARMONICS AND SPURIOUS EMISSIONS (HORIZONTAL)

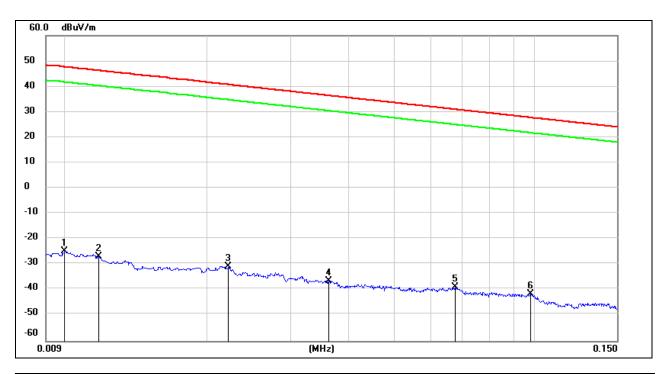

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1575.000	59.32	-11.90	47.42	75.62	-28.20	peak
/	/	/	/	41.32	55.62	-14.30	AVG
2	1890.000	49.76	-10.11	39.65	75.62	-35.97	peak
/	/	/	/	33.55	55.62	-22.07	AVG
3	2580.000	46.92	-8.32	38.60	74.00	-35.40	peak
4	3940.000	51.15	-3.24	47.91	74.00	-26.09	peak
5	4690.000	43.86	-1.44	42.42	74.00	-31.58	peak
6	5850.000	40.79	1.63	42.42	74.00	-31.58	peak

- 2. Peak: Peak detector.
- 3. Average Result = Peak Result + Duty Correction Factor.
- 4. The average limit for harmonics out of the restrict bands are 60.8 dBuV/m, the average limit in the restrict bands bands is 54 dBuV/m.
- 5. If peak result complies with average limit, the average result is deemed to comply with average limit.
 - 6. Mark 1,2 are harmonics in nonrestricted bands.
 - 7. No burst found in Restricted bands.

REPORT NO.: 4791549410-RF-1 Page 34 of 40

HARMONICS AND SPURIOUS EMISSIONS (VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1575.000	58.79	-11.67	47.12	75.62	-28.50	peak
/	/	/	/	41.02	55.62	-14.60	AVG
2	1710.000	51.02	-10.28	40.74	74.00	-33.26	peak
3	1890.000	50.20	-9.39	40.81	75.62	-34.81	peak
/	/	/	/	34.71	55.62	-20.91	AVG
4	2325.000	50.80	-8.46	42.34	74.00	-31.66	peak
5	2585.000	48.16	-7.41	40.75	74.00	-33.25	peak
6	3940.000	46.99	-2.15	44.84	74.00	-29.16	peak

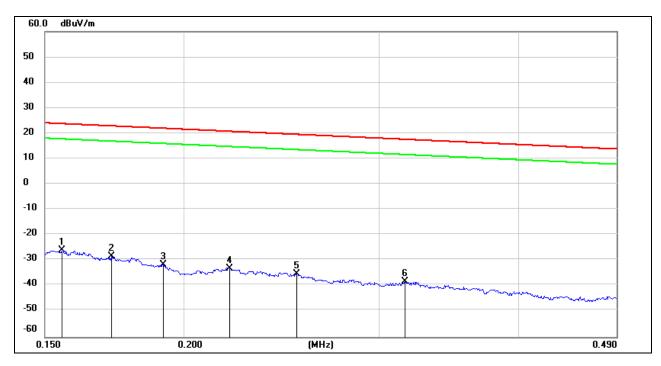

- 2. Peak: Peak detector.
- 3. Average Result = Peak Result + Duty Correction Factor.
- 4. The average limit for harmonics out of the restrict bands are 60.8 dBuV/m, the average limit in the restrict bands bands is 54 dBuV/m.
- 5. If peak result complies with average limit, the average result is deemed to comply with average limit.
 - 6. Mark 1,2,3, 4, 5 are harmonics in nonrestricted bands.
 - 7. No burst found in Restricted bands.

REPORT NO.: 4791549410-RF-1 Page 35 of 40

6.4.4. SPURIOUS EMISSIONS BELOW 30 MHz SPURIOUS EMISSIONS (LOOP ANTENNA FACE ON TO THE EUT)

0.09 kHz ~ 150 kHz

No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	76.72	-101.40	-24.68	47.60	-76.18	-3.90	-72.28	peak
2	0.0117	74.44	-101.39	-26.95	46.24	-78.45	-5.26	-73.19	peak
3	0.0221	70.63	-101.35	-30.72	40.71	-82.22	-10.79	-71.43	peak
4	0.0362	65.01	-101.42	-36.41	36.43	-87.91	-15.07	-72.84	peak
5	0.0675	62.64	-101.56	-38.92	31.02	-90.42	-20.48	-69.94	peak
6	0.0981	60.27	-101.78	-41.51	27.77	-93.01	-23.73	-69.28	peak


Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

REPORT NO.: 4791549410-RF-1 Page 36 of 40

150 kHz ~ 490 kHz

No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	75.75	-101.65	-25.90	23.77	-77.40	-27.73	-49.67	peak
2	0.1720	73.19	-101.67	-28.48	22.90	-79.98	-28.60	-51.38	peak
3	0.1917	70.04	-101.70	-31.66	21.95	-83.16	-29.55	-53.61	peak
4	0.2200	68.74	-101.75	-33.01	20.75	-84.51	-30.75	-53.76	peak
5	0.2530	66.64	-101.80	-35.16	19.54	-86.66	-31.96	-54.70	peak
6	0.3163	63.70	-101.87	-38.17	17.60	-89.67	-33.90	-55.77	peak


Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

REPORT NO.: 4791549410-RF-1 Page 37 of 40

490 kHz ~ 30 MHz

No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.6671	61.25	-62.10	-0.85	31.12	-52.35	-20.38	-31.97	peak
2	1.5380	56.85	-62.03	-5.18	23.86	-56.68	-27.64	-29.04	peak
3	2.1463	55.27	-61.79	-6.52	29.54	-58.02	-21.96	-36.06	peak
4	4.9165	53.88	-61.48	-7.60	29.54	-59.10	-21.96	-37.14	peak
5	8.9001	53.41	-60.95	-7.54	29.54	-59.04	-21.96	-37.08	peak
6	16.3959	54.67	-60.96	-6.29	29.54	-57.79	-21.96	-35.83	peak

Note: 1. Measurement = Reading Level + Correct Factor.

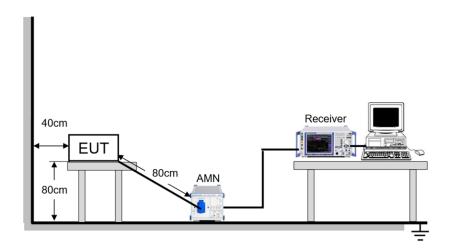
- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes had been tested, only the worst data was recorded in the report.

7. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

Page 39 of 40

TEST ENVIRONMENT

Temperature	/	Relative Humidity	/
Atmosphere Pressure	/	Test Voltage	/

TEST RESULTS

Please refer to the original report.

Page 40 of 40

8. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RESULTS Complies	
	END OF REPORT