

RF exposure

FCC ID : 2BFRP-FANCLASSIC3

According to FCC part 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength(V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Average time
(A) Limits for Occupational / Control Exposures				
300 – 1 500	--	--	f/300	6
1 500 - 100000	--	--	5	6
(B) Limits for General Population / Uncontrol Exposures				
300 – 1 500	--	--	f/1500	6
1 500 – 100 000	--	--	1	30

f= frequency in MHz

Friis transmission formula: $P_d = (P_{out} \times G) / (4 \times \pi \times R^2)$

Where,

P_d = power density in mW/cm^2

P_{out} = output power to antenna in mW

G = gain of antenna in linear scale

$\pi = 3.1416$

R = distance between observation point and center of the radiator in cm

P_d the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Results

Operation mode	Frequency (MHz)	Maximum Average output power (dBm)	Antenna gain (dBi)	Power density at 20 cm(mW/cm^2)	Limit (mW/cm^2)
LE (1 Mbps)	2 402 MHz ~ 2 480 MHz	7.0	2.54	0.001 79	1
802.11b	2 412 MHz ~ 2 462 MHz	16.0		0.014 21	
802.11g		16.5		0.015 95	
802.11n_HT20		16.0		0.014 21	