

TECT	ГО		DT
IES	Г	VI	

- <i>j</i> .								
FCC ID::	2BAHU2023009	(C)	K					
Test Report No::	TCT230901E906							
Date of issue::	Sep. 12, 2023	Sep. 12, 2023						
Testing laboratory:	SHENZHEN TONGCE TESTING LAB							
Testing location/ address:	2101 & 2201, Zhenchang Fac Fuhai Subdistrict, Bao'an Dis 518103, People's Republic of	trict, Shenzhen, Guangdo						
Applicant's name:	DIALN PRODUCTS INC.							
Address::	8312 Page Ave, Saint Louis,	Missouri 63130, United S	States					
Manufacturer's name:	SHENZHEN JREN TECHNO	LOGY CO., LTD						
Address::	B Area, 9/F, A4 Building, Tiar 1st Road, Zhancheng, Fuhai,							
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01							
Product Name::	Smart Phone							
Trade Mark::	DIALN							
Model/Type reference:	G65							
Rating(s)::	Refer to EUT description of p	age 3						
Date of receipt of test item	May 24, 2023		S. C.					
Date (s) of performance of test:	May 24, 2023 - Sep. 12, 2023	3-	Z)					
Tested by (+signature):	Brews XU	frent Johne 7						
Check by (+signature):	Beryl ZHAO	Boy (FCT)	STING					
Approved by (+signature):	Tomsin	Joms 18 84						
Conoral displainer								

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	General Product Information		3
	1.1. EUT description		
	1.2. Model(s) list		3
	1.3. Test Frequency		4
2.	Test Result Summary		5
3.	General Information		6
	3.1. Test environment and mode		6
	3.2. Description of Support Units		7
4.	Facilities and Accreditations		88
	4.1. Facilities		8
	4.2. Location		8
	4.3. Measurement Uncertainty		8
5.	Test Results and Measurement Data		9
	5.1. Antenna requirement		9
	5.2. Conducted Emission		10
	5.3. Maximum Conducted Output Power		14
	5.4. 6dB Emission Bandwidth		16
	5.5. 26dB Bandwidth and 99% Occupied Bandwidth		17
	5.6. Power Spectral Density	<u> </u>	18
	5.7. Band edge		19
	5.8. Unwanted Emissions		33
	5.9. Frequency Stability Measurement	<u> </u>	45
Α	ppendix A: Test Result of Conducted Test		
Α	ppendix B: Photographs of Test Setup		
	ppendix C: Photographs of EUT		
	· · · · · · · · · · · · · · · · · · ·		

1. General Product Information

1.1. EUT description

Product Name:	Smart Phone
Model/Type reference:	G65
Sample Number:	TCT230727E905-0101
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK
Antenna Type:	FPC Antenna
Antenna Gain:	Band 1: 0.30dBi Band 3: 0.41dBi
Rating(s)::	Adapter Information: MODEL: BOS050200-01A INPUT: AC 100-240V, 50/60Hz, 0.45A OUTPUT: DC 5V, 2000mA Rechargeable Li-ion Battery DC 3.87V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 126

1.3. Test Frequency

Band 1

20MHz		40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		(.c)
48	5240				

Band 3

20MHz		40MHz		z 40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745	151	5755	155	5775		
157	5785	159	5795				
165	5825	(C	(KO.)		YO.		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 126

2. Test Result Summary

Report No.:	TC1230901E906

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 126

TESTING CENTRE TECHNOLOGY

Report No.: TCT230901E906

General Information

3.1 Tost onvironment and mode

3.	.1.	ı est	env	ıror	ıme	ent	and	mode	9

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Software:	
Software Information:	Engineering Mode
Power Level:	Default
Test Mode:	
Engineer mode:	Keep the EUT in continuous transmitting by select channel and modulations with max. duty cycle.

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ac(VHT80)	29.3 Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	/	/	1	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 126

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT230901E906

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is FPC antenna which permanently attached, and the maximum gain of the antenna is 0.41dBi at UNII-B3.

Page 9 of 126

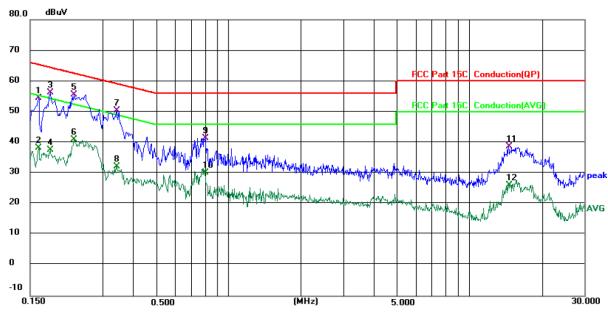
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207					
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto				
	Eroquonov rongo	Limit (d	4D+1/1/				
	Frequency range (MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Reference	e Plane					
Test Setup:	Test table/Insulation plane Remark E.U.T: Equipment Under Test	E.U.T AC power Test table/Insulation plane Remark: E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network					
Test Mode:	Charging + Transmitting	ng Mode					
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
Test Result:	PASS						
120							

5.2.2. Test Instruments

Cond	Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024		
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 20, 2024		
Line-5	тст	CE-05	1 65	Jul. 03, 2024		
EMI Test Software	Shurple Technology	EZ-EMC	1	1		


Page 11 of 126

5.2.3. Test data

Report No.: TCT230901E906

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Please refer to following diagram for individual

Site 844 Shielding Room

Phase: L1

Temperature: 23.5 (°C)

Humidity: 52 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/ 60 Hz

				•					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1		0.1620	44.36	10.12	54.48	65.36	-10.88	QP	
2		0.1620	28.21	10.12	38.33	55.36	-17.03	AVG	
3		0.1814	46.21	10.13	56.34	64.42	-8.08	QP	
4		0.1814	27.41	10.13	37.54	54.42	-16.88	AVG	
5	*	0.2278	45.64	9.95	55.59	62.53	-6.94	QP	
6		0.2278	31.11	9.95	41.06	52.53	-11.47	AVG	
7		0.3420	40.44	9.95	50.39	59.15	-8.76	QP	
8		0.3420	22.35	9.95	32.30	49.15	-16.85	AVG	
9		0.8020	32.29	9.17	41.46	56.00	-14.54	QP	
10		0.8020	21.07	9.17	30.24	46.00	-15.76	AVG	
11		14.5618	28.47	10.17	38.64	60.00	-21.36	QP	
12		14.5618	15.97	10.17	26.14	50.00	-23.86	AVG	

Note:

Freq. = Emission frequency in MHz

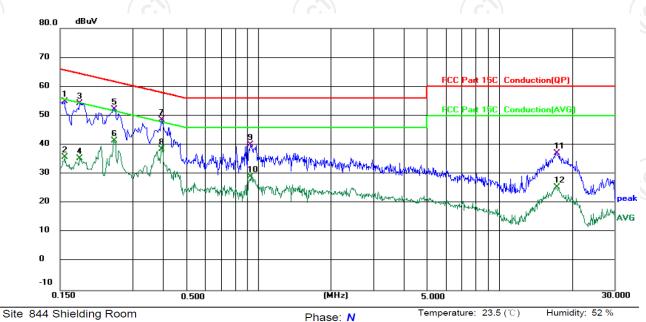
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/ 60 Hz

					,					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
_			MHz	dBu∀	dB	dBuV	dBu∀	dB	Detector	Comment
	1		0.1564	44.84	10.10	54.94	65.65	-10.71	QP	
_	2		0.1564	25.78	10.10	35.88	55.65	-19.77	AVG	
_	3		0.1804	44.13	10.13	54.26	64.47	-10.21	QP	
	4		0.1804	25.26	10.13	35.39	54.47	-19.08	AVG	
	5		0.2519	42.34	9.94	52.28	61.69	-9.41	QP	
)	6		0.2519	31.46	9.94	41.40	51.69	-10.29	AVG	
	7	*	0.3940	39.02	9.56	48.58	57.98	-9.40	QP	
	8		0.3940	28.94	9.56	38.50	47.98	-9.48	AVG	
	9		0.9260	31.07	9.06	40.13	56.00	-15.87	QP	
	10		0.9260	20.08	9.06	29.14	46.00	-16.86	AVG	
	11		17.2457	26.90	10.30	37.20	60.00	-22.80	QP	
	12		17.2457	15.07	10.30	25.37	50.00	-24.63	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Lowest channel and 802.11n(VHT20)) was submitted only.

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Maximum Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section		
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E			
	Frequency Band (MHz)	Limit		
	5180 - 5240	24dBm(250mW) for client device		
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz		
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz		
	5745 - 5825	30dBm(1W)		
Test Setup:	Power meter	EUT		
Test Mode:	Transmitting mode w	vith modulation		
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS			
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power			

Page 14 of 126

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Power Meter	Agilent	E4418B	MY45100357	Jun. 27, 2024
Power Sensor	Agilent	8481A	MY41091497	Jun. 27, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C				
Limit:	>500kHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 				
Test Result:	PASS				

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	1	/

Page 16 of 126

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049					
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D					
Limit:	No restriction limits					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 					
Test Result:	PASS					

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

Page 17 of 126

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F			
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 			
Test Result:	PASS			

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

Page 18 of 126

5.7. Band edge

5.7.1. Test Specification

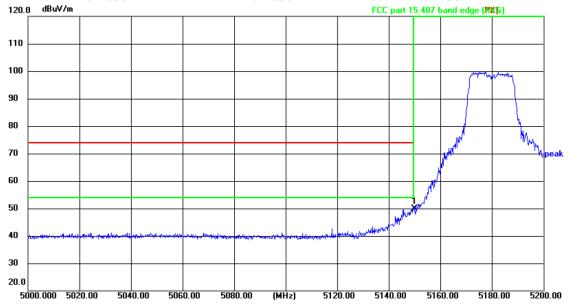
Test Requirement:	FCC CFR47 Pa	rt 15E Section	n 15.407	
Test Method:	ANSI C63.10 20)13		
	In un-restricted ba For Band 1&2A&2 For Band 3:		Z	
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)
	< 5650	-27	5850~5855	27~15.6
Limit:	5650~5700	-27~10	5855~5875	15.6~10
Emile:	5700~5720	10~15.6	5875~5925	10~-27
	5720~5725	15.6~27	> 5925	-27
	E[dBµV/m] = EIR In restricted band:		@3m	(C)
	Detect		Limit@	23m
	Peak		74dBµ	
	AVG		54dBµ	
Test Setup:	AE EU	Horn Antenna T	ower	
Test Mode:	Transmitting mo	de with modu	ılation	
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a varia 3. The antennameters above the value of the field polarizations of measurement. 4. For each suspect to its worst case heights from 1 meters above the value of the field polarization of measurement. 5. The test-received function and Sp. Mode.	ne ground at a degrees to don. It is set 3 meters eiving antennable-height are ground to do a strength. Bothe antenna a pected emission and then the egrees to 360 ng. It is system with the enter to 4 meters to 4 meters to 360 ng. It is is a system with the egrees to 360 ng.	a 3 meter camber as way from the a, which was intenna tower. The forming the rotte of the forming the rotte of the forming the rotte of the forming was ters and the rotte of the forming was set to Peak was	cer. The table cosition of the mounted on eter to four maximum and vertical ethe was arranged tuned to table was ad the contact the cost of the cost o

Report No.: TCT230901E906

CT通测检测 testing centre technology		Report No.: TCT230901E90
	6. If the emission level of the EUT in per 10dB lower than the limit specified, the stopped and the peak values of the EU reported. Otherwise the emissions that 10dB margin would be re-tested one by quasipeak or average method as specireported in a data sheet.	n testing could be IT would be did not have y one using peak,
Test Result:	PASS	(60)



5.7.2. Test Instruments

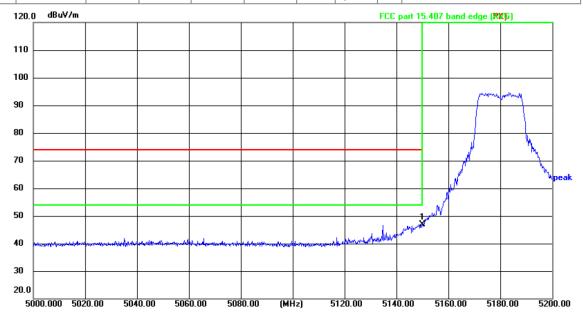

	Radiated Er	mission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Spectrum Analyzer	Agilent	N9020A	MY49100619	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jun. 27, 2024
Pre-amplifier	HP	8447D	2727A05017	Jul. 02, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 01, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Feb. 24, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jun. 29, 2024
Coaxial cable	SKET	RC-18G-N-M) /	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
Antenna Mast	Keleto	CC-A-4M	1 (3)	/
EMI Test Software	Shurple Technology	EZ-EMC	1	1

5.7.3. Test Data AC20-5180

Report No.: TCT230901E906

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

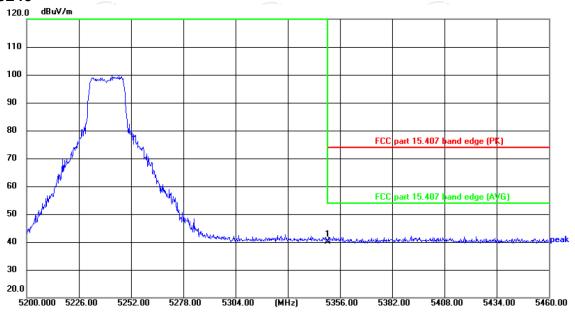
Power: DC 3.87 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5150.000	58.40	-8.63	49.77	74.00	-24.23	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

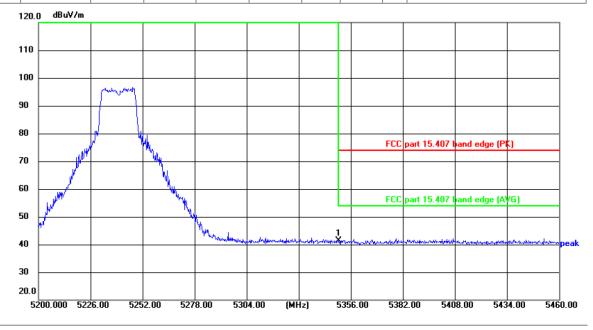
Temperature: 24(°C)


Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)		I	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5150.000	55.55	-8.63	46.92	74.00	-27.08	peak	Р	

AC20-5240

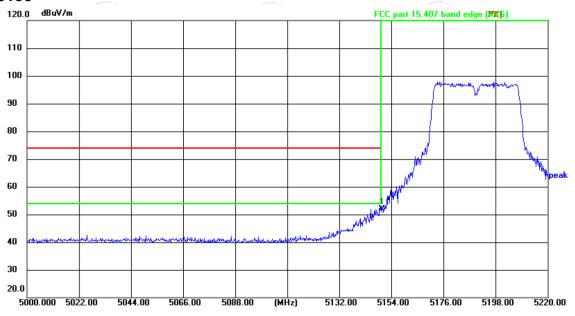


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 24(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.87 V

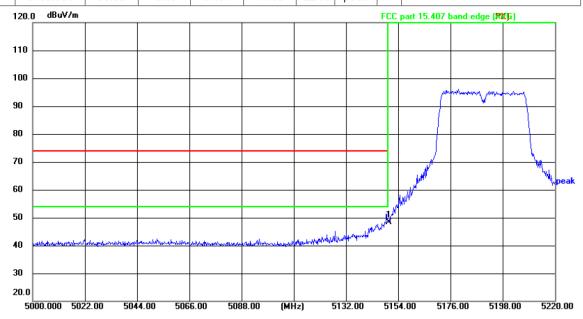
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.000	48.25	-8.22	40.03	74.00	-33.97	peak	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 24(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.000	49.69	-8.22	41.47	74.00	-32.53	peak	Р	

AC40-5190

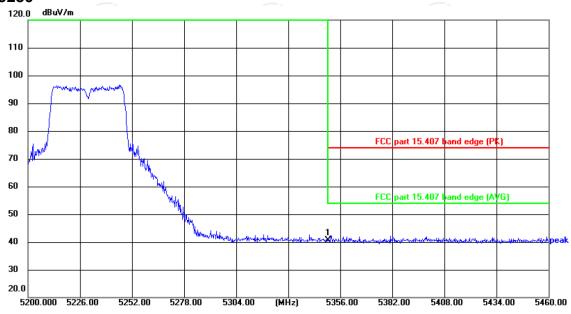


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 24(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.87 V

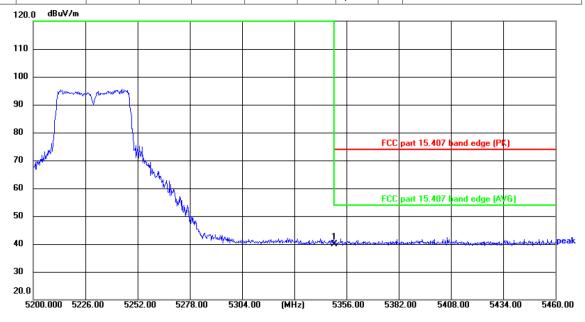
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5150.000	60.60	-8.63	51.97	74.00	-22.03	peak	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 24(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5150.000	57.07	-8.63	48.44	74.00	-25.56	peak	Р	

AC40-5230

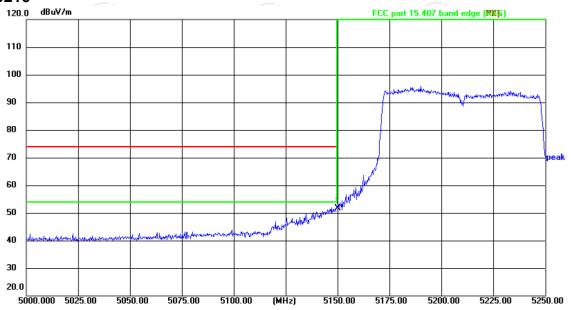


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 24(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.87 V

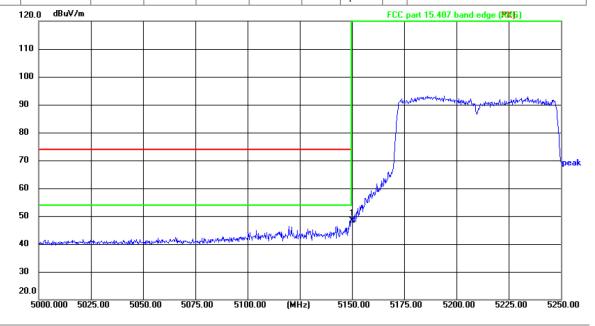
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.000	48.78	-8.22	40.56	74.00	-33.44	peak	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 24(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.000	48.22	-8.22	40.00	74.00	-34.00	peak	Р	

AC80-5210


Limit: FCC part 15.407 band edge (PK)

Site: #3 3m Anechoic Chamber

Power:DC 3.87 V

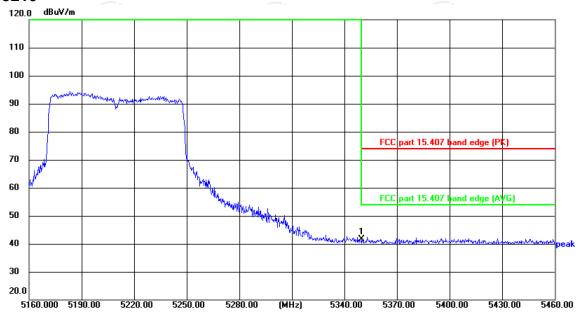
Polarization: Horizontal Temperature: 24($^{\circ}$ C) Humidity: 52 $^{\circ}$

Frequency Reading Factor Level Limit Margin P/F Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 60.24 74.00 1 * 5150.000 -8.63 51.61 -22.39 peak Ρ

Site: #3 3m Anechoic Chamber

Polarization: Vertical

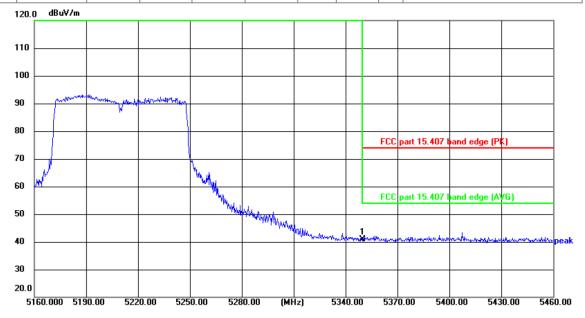
Temperature: 24(°C)


Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No	1	uency Hz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	* 5150	0.000	57.09	-8.63	48.46	74.00	-25.54	peak	Р	

AC80-5210

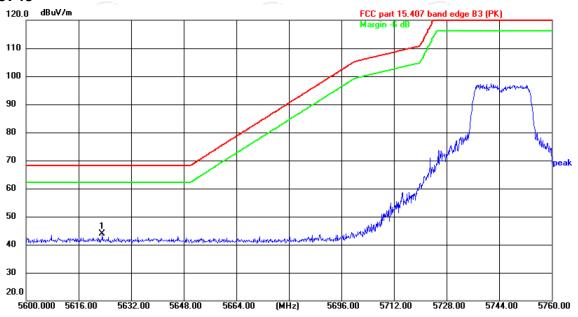


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 24(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.87 V

			0 ()						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.000	49.73	-8.22	41.51	74.00	-32.49	peak	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 24(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.000	49.10	-8.22	40.88	74.00	-33.12	peak	Р	

AC20-5745

Site: #3 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 24(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

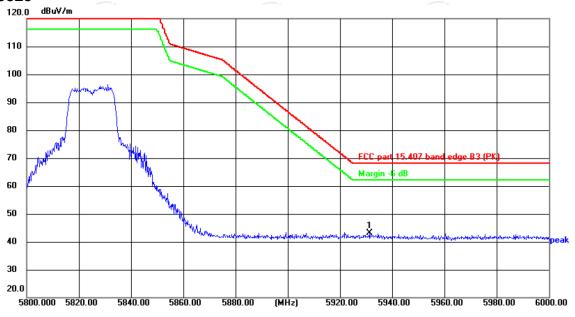
Power: DC 3.87 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5623.240	51.52	-7.62	43.90	68.20	-24.30	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

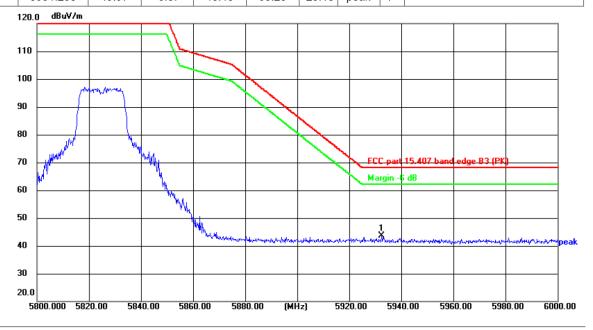
Temperature: 24(℃)


Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5627.900	50.70	-7.61	43.09	68.20	-25.11	peak	Р	

AC20-5825


Limit: FCC part 15.407 band edge B3 (PK)

Site: #3 3m Anechoic Chamber

Power: DC 3.87 V

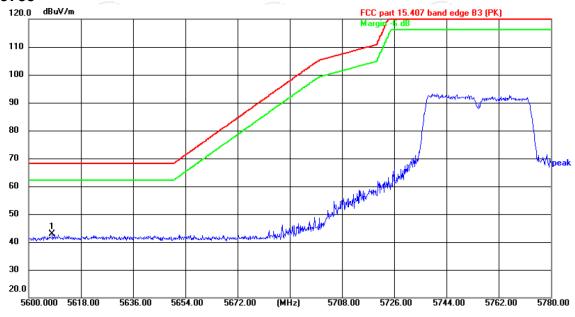
Polarization: *Horizontal* Temperature: $24(^{\circ}C)$ Humidity: 52%

				/					
No.		Reading (dBuV)			Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5931.250	49.97	-6.87	43.10	68.20	-25.10	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24(℃)


Humidity: 52 %

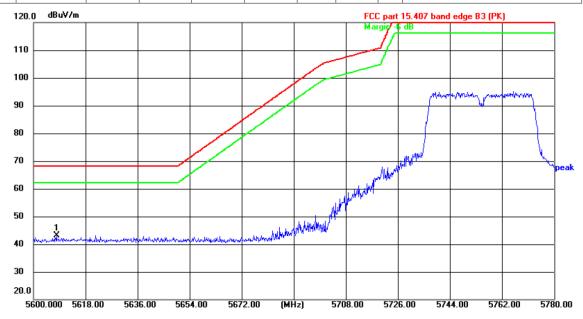
Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5932.550	50.42	-6.86	43.56	68.20	-24.64	peak	Р	

AC40-5755

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24(℃)

Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

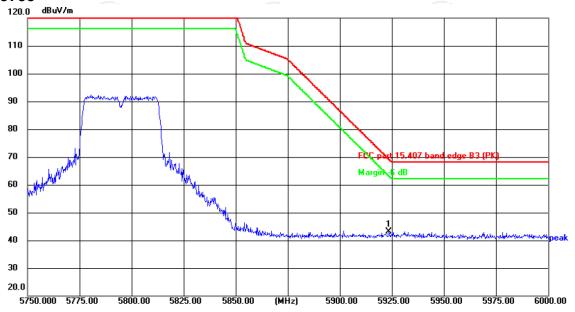
Power: DC 3.87 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5608.145	50.62	-7.65	42.97	68.20	-25.23	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24(°C)


Humidity: 52 %

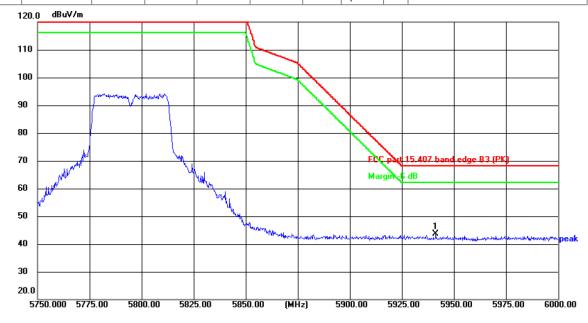
Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5607.920	50.90	-7.65	43.25	68.20	-24.95	peak	Р	

AC40-5795

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

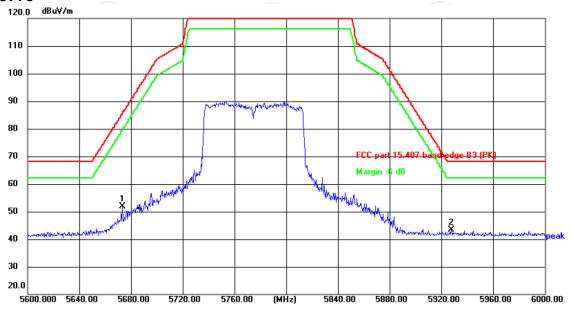
Power: DC 3.87 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5923.500	50.04	-6.89	43.15	69.31	-26.16	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24(℃)

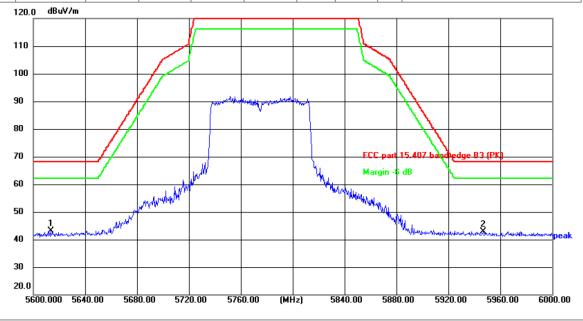

Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5941.281	50.50	-6.84	43.66	68.20	-24.54	peak	Р	

AC80-5775

Site: #3 3m Anechoic Chamber


Polarization: *Horizontal*

Temperature: 24($^{\circ}$ C) Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: DC 3.87 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5673.400	59.49	-7.50	51.99	85.52	-33.53	peak	Р	
2 *	5927.950	50.16	-6.87	43.29	68.20	-24.91	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24(°C)

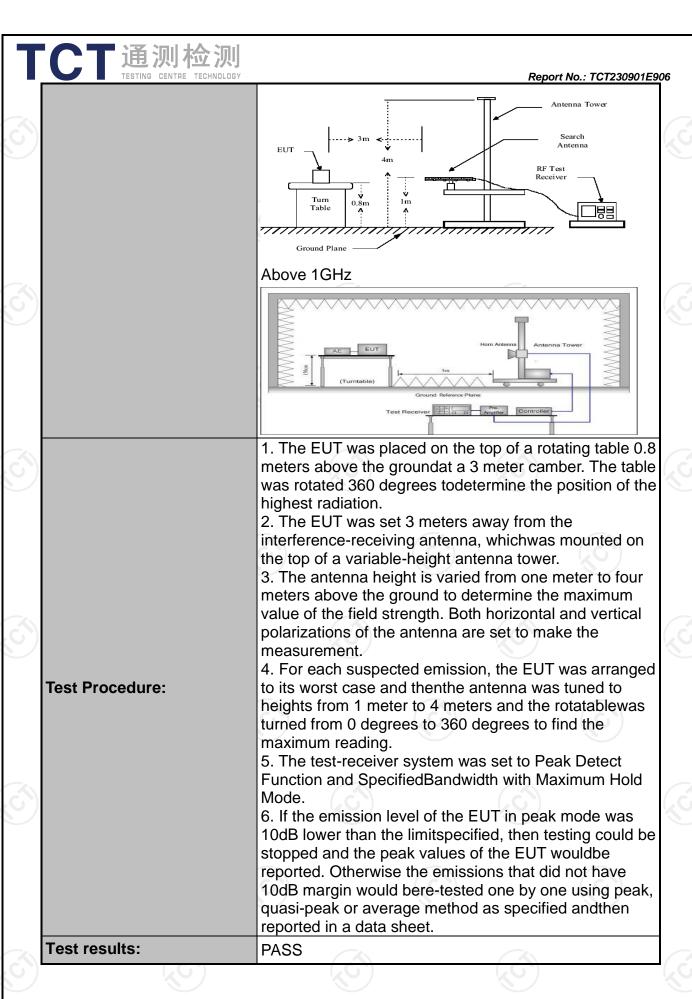
Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 3.87 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5613.900	50.74	-7.64	43.10	68.20	-25.10	peak	Р	
2	5946.900	49.82	-6.83	42.99	68.20	-25.21	peak	Р	

Note: All modulation (802.11a, 802.11n, 802.11ac) have been tested, only the worst case in 802.11ac be reported.

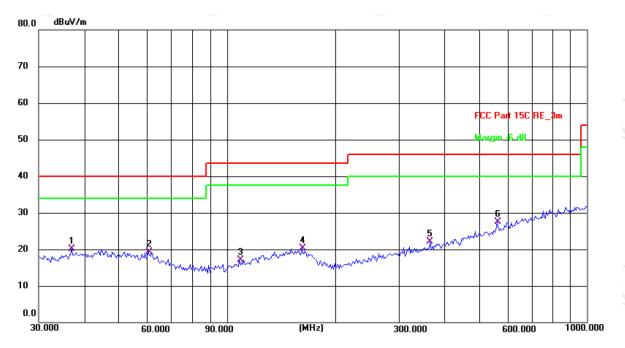


5.8. Unwanted Emissions

5.8.1. Test Specification

				'(\ '				
Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.20							
Test Method:	KDB 789033 D02 v02r01							
Frequency Range:	9kHz to 40GHz							
Measurement Distance:	3 m							
Antenna Polarization:	Horizontal & Vertical							
Operation mode:	Transmitting mode with modulation							
	Frequency	Detector	RBW	VBW	Remark			
	9kHz- 150kHz	Quasi-pea		1kHz	Quasi-peak Value			
Receiver Setup:	150kHz- 30MHz	Quasi-pea		30kHz	Quasi-peak Value			
	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	Peak	1MHz	10Hz	Average Value			
	below table, In restricted Frequer	bands:	Detec Pea	tor k	n § 15.209 as Limit@3m 74dBµV/m			
	Above 1G		AVC		54dBµV/m			
Limit:	Frequency		Field Strengtl (microvolts/m		Measurement Distance (meters)			
	0.009-0.490	X	2400/F(KHz)		300			
	0.490-1.705	3)	24000/F(KHz		3			
	1.705-30		30		30			
	30-88		100		3			
	88-216		150		3			
	216-960		500		3			
	Above 960		300					
	In un-restricted bands: 68.2dBuV/m							
	For radiated emissions below 30MHz							
	Distance = 3m							
Test setup:	Pre-Amplifier Im A Receiver 30MHz to 1GHz							

Report No.: TCT230901E906



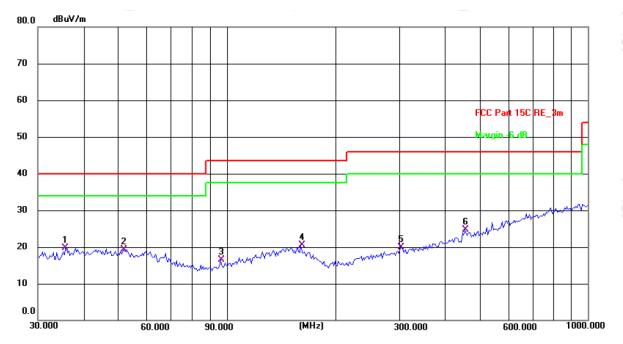
5.8.2. Test Data

Please refer to following diagram for individual Below 1GHz

Horizontal:

Site: #1 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.3(C) Humidity: 52 %

Power: DC 3.87 V


Limit: FCC Part 15C RE_3m

		_							
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	37.0248	6.25	13.82	20.07	40.00	-19.93	QP	Р	
2	60.4919	6.43	12.83	19.26	40.00	-20.74	QP	Р	
3	108.2667	5.87	11.32	17.19	43.50	-26.31	QP	Р	
4	161.4742	5.83	14.49	20.32	43.50	-23.18	QP	Р	
5	366.8231	6.61	15.57	22.18	46.00	-23.82	QP	Р	
6 *	562 6624	7 91	19.67	27 58	46.00	-18 42	OP	Р	

Vertical:

Temperature: 24.3(C) Humidity: 52 % Site: #1 3m Anechoic Chamber Polarization: Vertical

is worse reported.

L	Limit: FCC Part 15C RE_3m						Power: DC 3.87 V				
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark	
	1 *	35.7490	6.24	13.54	19.78	40.00	-20.22	QP	Р		
	2	51.8430	5.96	13.39	19.35	40.00	-20.65	QP	Р		
	3	96.0986	6.14	10.27	16.41	43.50	-27.09	QP	Р		
	4	160.3456	5.88	14.55	20.43	43.50	-23.07	QP	Р		
	5	303.5437	5.76	14.08	19.84	46.00	-26.16	QP	Р		
ĭ	6	455.9058	6.95	17.76	24.71	46.00	-21.29	QP	Р		

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Lowest channel and 802.11n(VHT20) in UNII-B1) was submitted only. Both AC mode and Internal battery mode have been tested, only the Internal battery mode which
- 3. Measurement (dBµV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss -Pre-amplifier.

				/lodulation	· ·	1			
					5180MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		n Level	Peak limit (dBµV/m)	AV limit	Margir
(IVII IZ)	1 I/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(ασμν/ιιι)	(dBµV/m)	(dB)
10360	Н	38.14	(8.02	46.16	40.	68.2	4.0	-22.04
15540	Н	38.58		9.87	48.45	<u></u>	74	54	-5.55
	Н								
10360	V	38.03		8.02	46.05		68.2		-22.15
15540	V	38.61		9.87	48.48		74	54	-5.52
	V								
				11a CH40	: 5200MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	reak	Emission Level Feak Av (dBµV/m)		AV limit (dBµV/m)	Margir (dB)
40400		00.70		7.07	` ' '	(ασμν/ιιι)	22.2		
10400	H	39.78		7.97	47.75		68.2		-20.45
15600	H	38.21		9.83	48.04		74	54	-5.96
	Н	(C_{-3})		(C)				
			Ī						
10400	V	40.65		7.97	48.62		68.2		-19.58
15600	V	38.08		9.83	47.91		74	54	-6.09
	V							-7.5	
					5240MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	n Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	reak (dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.24		7.97	46.21		68.2		-21.99
15720	Н	37.81		9.83	47.64		74	54	-6.36
	Н								
	7.								
10480	V	38.56	(- C)	7.97	46.53	·C -1	68.2	-t.G	-21.67
15720	V	36.39		9.83	46.22		74	54	-7.78
	V								
			11	n(HT20) CH	136: 5180M	Hz			
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		n Level	Peak limit (dBµV/m)		Margir
(MHz)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(ασμν/π)	(dBµV/m)	(dB)
10360	Н	41.69		8.02	49.71		68.2		-18.49
15540	Н	37.04	(<u>-</u> -)	9.87	46.91		74	54	-7.09
() H					(<u>)</u>		-100)
10360	V	42.15		8.02	50.17		68.2		-18.03
าบงทบ เ					00.17	i			. 0.00
15540	V	37.36		9.87	47.23		74	54	-6.77

Report No.: TCT230901E906 11n(HT20) CH40: 5200MHz ΑV Peak Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10400 Η 40.67 7.97 48.64 68.2 -19.56 15600 Н 38.42 9.83 -5.75 48.25 74 54 Н 77----10400 ٧ 40.15 ---7.97 48.12 68.2 ----20.08 15600 ٧ 37.28 9.83 47.11 74 54 -6.8911n(HT20) CH48: 5240MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) (dBµV) (dBµV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ 10480 41.05 Н 44 7.97 49.02 68.2 -19.1815720 Η 39.89 9.83 74 -4.28 49.72 54 Н ---٧ 10480 40.21 7.97 48.18 68.2 -20.02 15720 39.48 9.83 ٧ ---49.31 ---74 54 -4.69٧ ----11n(HT40) CH38: 5190MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV** limit Margin reading reading n Factor $(dB\mu V/m)$ (MHz) H/V (dBµV/m) (dB) (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Η 39.26 7.75 47.01 68.2 -21.19 15570 Η 37.71 ---9.87 47.58 ---74 54 -6.42 Η 10380 ٧ 40.63 7.75 68.2 48.38 -19.82 15570 ٧ 37.45 9.87 47.32 74 54 -6.68 ------77 ---11n(HT40) CH46: 5230MHz Peak A۷ Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) $(dB\mu V/m) \mid (dB\mu V/m)$ 10460 Н 41.02 7.97 48.99 68.2 -19.21 15690 Н 38.65 9.83 48.48 74 54 -5.52 Н ---------------------10460 ٧ 41.84 7.97 68.2 -18.39 49.81 15690 ٧ 38.31 9.83 48.14 74 54 -5.86

	TESTING	CENTRE TECHNO	LOGY				Rep	ort No.: TCT	230901E90
			11a	c(VHT20) C	H36: 5180	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Feak (dBµV/m)	on Level Av (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
10360	Н	40.12		8.02	48.14		68.2		-20.06
15540	_ H	37.45		9.87	47.32		74	54	-6.68
	Н				(<u></u>		+- 6	
				•	· ·				
10360	V	38.69		8.02	46.71		68.2		-21.49
15540	V	39.04		9.87	48.91		74	54	-5.09
	V	(A)			·		(- X)		
			11a	c(VHT20) C	H40: 5200I	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Feak (dBµV/m)	n Level Av (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
40400	1 711	00.47		7.07	` ' /	, , ,	00.0	[. (.)	
10400) H	39.47		7.97	47.44	<u>-</u>	68.2		-20.76
15600	H	38.51		9.83	48.34		74	54	-5.66
	Н								
10400	V	39.02		7.97	46.00		68.2		24.24
15600	V	38.94		9.83	46.99 48.77		74	54	-21.21 -5.23
	V			3.03	40.11				-5.25
	V			1 ac(VHT20					
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	37.38		7.97	45.35		68.2		-22.85
15720	Н	37.12		9.83	46.95		74	54	-7.05
)	Н	(C_1)		/20)		((0))		
10480	V	38.66		7.97	46.63		68.2		-21.57
15720	V	38.49	- /.	9.83	48.32		74	54	-5.68
(, (V				(· C - 1 -		7.6	
			1	1ac(VHT40) CH38:519	90			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(αυμν/π)	(αυμ ۷/111)	(ab)
10380	Н	40.89		7.75	48.64		68.2		-19.56
15570	Н	39.25		9.87	49.12		74	54	-4.88
	Н								
	<u> </u>								
10380	9 / V	38.61	14.0	7.75	46.36	(0)	68.2	77.0	-21.84
15570	V	38.37)-	9.87	48.24)	74	54	-5.76
	V								

	TESTING CENTRE TECHNOLOGY Report No.: TCT230901E90								30901E906
			11	1ac(VHT40) CH46:523	30			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Feak (dBµV/m)	on Level Av (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10460	Н	38.05		7.97	46.02		68.2		-22.18
15690	_, H	38.96	-	9.83	48.79		74	54	-5.21
(Н				(+.0	
10460	V	39.87		7.97	47.84		68.2		-20.36
15690	V	37.34		9.83	47.17		74	54	-6.83
	V	*							/
			11	1ac(VHT80) CH42:521	0			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Feak (dBµV/m)	on Level Av (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
10420) H	41.85		7.96	49.81		68.2	-140	-18.39
15630	Н	39.17)	9.84	49.01)	74	54	-4.99
	Н								
					7/2.				
10420	V	41.23		7.96	49.19		68.2		-19.01
15630	V	39.55		9.84	49.39		74	54	-4.61
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Both AC mode and Internal battery mode have been tested, only the Internal battery mode which is worse reported.

Page 40 of 126

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

			N	Modulation 1	Гуре: Band	3			
): 5745MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	37.48	(8.09	45.57		74	54	-8.43
17235	Н	37.15		9.67	46.82	<i>-</i> /-	68.2		-21.38
	Н								
11490	V	40.24		8.09	48.33		74	54	-5.67
17235	V	38.69		9.67	48.36		68.2		-19.84
	V				/				
				11a CH157	': 5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Feak (dBµV/m)	n Level Av (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	39.85		8.10	47.95		74	54	-6.05
17355	H	38.17		9.65	47.82		68.2		-20.38
	H								
)		(C)		XC)		$-(C_{C_{i}})$		
11570	V	38.63		8.10	46.73		74	54	-7.27
17355	V	39.42		9.65	49.07		68.2		-19.13
	V			3.00	49.07				-19.13
	V			11a CH165					
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	37.17		8.12	45.29		74	54	-8.71
17475	Н	36.42		9.62	46.04		68.2		-22.16
	Н								
11650	V	38.56		8.12	46.68	<u> </u>	74	54	-7.32
17475	V	38.03	W.	9.62	47.65	(U)	68.2		-20.55
	V								
			11r	(HT20) CH	149: 5745N	ЛНг			
		Peak	AV	Correctio					
Frequency (MHz)	Ant. Pol. H/V	reading	reading	n Factor	Feak	on Level	Peak limit (dBµV/m)		Margin (dB)
		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)			
11490	Н	38.68		8.09	46.77		74	54	-7.23
17235	Н	38.51	<i>/ /</i>	9.67	48.18		68.2	A	-20.02
😾)H					(O)		-4,0)
				_					
11490	V	39.44		8.09	47.53		74	54	-6.47
17235	٧	37.25		9.67	46.92		68.2		-21.28
17200	V							· ·	

			11r	(HT20) CH	157: 5785N	ЛНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Feak (dBµV/m)	on Level Av (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	38.93		8.10	47.03		74	54	-6.97
17355	Н	39.47	(9.65	49.12		68.2	+ 6	-19.08
	Н					<i>-</i> /-			/
				1	ı	ı	I		
11570	V	38.21		8.10	46.31		74	54	-7.69
17355	V	39.58		9.65	49.23		68.2		-18.97
°)	V	(₂ G- ²)		(¿C)		(~ G .)		
				(HT20) CH	165: 5825N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Feak (dBµV/m)	n Level Av (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	Н	38.04		8.12	46.16	<u></u>	74	E4	-7.84
17475	Н	37.23		9.62	46.16			54	
	H			9.02	40.65		68.2		-21.35
	11								
11650	V	38.65		8.12	46.77		74	54	-7.23
17475	V	39.17		9.62	48.79		68.2		-19.41
	V								
	•			(HT40) CH	151· 5755N	ЛНг			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissio	n Level	Peak limit (dBµV/m)		Margin (dB)
11510	Н	40.56		8.09	48.65		74	54	-5.35
17265	H	37.14		9.67	46.81		68.2		-21.39
	H	37.14		3.07	40.01				-21.39
	- ''			!				ļ	
11510	V	41.98		8.09	50.07		74	54	-3.93
17265	V	38.47		9.67	48.14		68.2		-20.06
\	V		<u></u>			<u> </u>)
			11r	(HT40) CH	159: 5795N	ЛНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Feak (dBµV/m)	n Level Av (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11590	Н	38.18		8.10	46.28		74	54	-7.72
17385	Н	38.67		9.65	48.32		68.2		-19.88
/	Н		/ X			(-)-		/	
(2)	J')		(20)			(O)		120)
11590	V	38.52		8.10	46.62		74	54	-7.38
17385	V	37.36		9.65	47.01		68.2		-21.19
						•			

17265

٧

36.06

Report No.: TCT230901E906 11ac(VHT20) CH149: 5745MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11490 Η 40.63 8.09 48.72 -5.28 74 54 17235 Н 37.14 9.67 -21.39 46.81 68.2 Н 77-----4-11490 ٧ 40.78 ---8.09 48.87 -5.1374 54 17235 ٧ 38.52 9.67 48.19 68.2 -20.01 11ac(VHT20) CH157: 5785MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ 11570 Н 38.03 8.10 ---46.13 74 54 -7.8717355 Η 36.28 9.65 68.2 45.93 -22.27 Н ---٧ 11570 37.47 8.10 45.57 74 54 -8.43 17355 ٧ 38.12 9.65 ---47.77 ---68.2 ----20.43 ٧ ---11ac(VHT20) CH165: 5825MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading reading n Factor $(dB\mu V/m)$ (MHz) H/V (dBµV/m) (dB) reak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11650 Η 40.35 8.12 48.47 74 -5.5354 17475 Η 38.91 ---9.62 48.53 ---68.2 ----19.67Η 11650 ٧ 38.63 8.12 46.75 74 54 -7.25 17475 ٧ 40.45 9.62 50.07 68.2 -18.13 ------____ ------11ac(VHT40) CH151: 5755MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) $(dB\mu V/m) \mid (dB\mu V/m)$ 11510 Н 39.78 8.09 47.87 74 54 -6.13 17265 37.21 Η 9.67 46.88 68.2 -21.32 Н ------------------------11510 ٧ 40.58 8.09 74 -5.33 48.67 54

-22.47

68.2

45.73

9.67

٧

Report No.: TCT230901E906 11ac(VHT40) CH159: 5795MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11590 Η 40.25 8.10 48.35 74 54 -5.65 17385 Н 37.87 9.65 47.52 68.2 -20.68 Н 77-4----11590 39.39 ٧ ---8.10 47.49 74 -6.51---54 ٧ 17385 38.16 9.65 47.81 68.2 -20.3911ac(VHT80) CH155: 5775MHz A۷ Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) (dBµV) (dBµV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ 11550 Н 40.34 8.09 ---48.43 74 54 -5.5717325 Η 38.91 9.66 68.2 48.57 -19.63Н ---11550 ٧ 41.24 8.09 49.33 74 54 -4.6717325 ٧ 38.58 9.66 ---48.24 68.2 ----19.96

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Both AC mode and Internal battery mode have been tested, only the Internal battery mode which is worse reported.

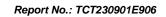
Page 44 of 126

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.



Test plots as follows:

Test mode:	802.11ac	(HT20)	Freque	ency(MHz):	5180
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	Result
Temperature (C)	voitage(vDC)	Frequen	cy(MHz)	Frequency(H	lz)
45		517	9.96	-40000	PASS
35		5179.98 -20000		PASS	
25	3.87V	517	9.98	-20000	PASS
15	5179.96		9.96	-40000	PASS
5		517	9.98	-20000	PASS
0		517	9.98	-20000	PASS
	2.75V	517	9.98	-20000	PASS
25	3.87V	517	9.96	-40000	PASS
	4.35V	517	9.96	-40000	PASS

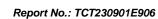
Test mode:	802.11ac(HT20)	Freque	ency(MHz):	5200	
Temperature (°C)	Voltage(VDC)	Measu Frequen		Delta Frequency(H	Hz)	Result
45		52		0		PASS
35		5199	9.98	-20000		PASS
25	2.07\/	3,87V 5199.98		-20000		PASS
15	3.07 V	5199	9.98	-20000		PASS
5		5199	9.98	-20000		PASS
0		5199	9.98	-20000		PASS
	2.75V	5199	9.98	-20000		PASS
25	3.87V	5199	9.96	-40000		PASS
	4.35V	5199	9.98	-20000		PASS

Test mode:	802.11ac(HT20) F	reque	ency(MHz):	5240
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)		Delta	_\ Result
45				Frequency(H	,
45		5239.98	5	-20000	PASS
35		5239.98	3	-20000	PASS
25	2.07\/	3.87V 5239.98		-20000	PASS
15	5239.98		}	-20000	PASS
5		5239.98	}	-20000	PASS
0	(₂ C ₂)	5240		0	PASS
-/	2.75V	5240		0	PASS
25	3.87V	5239.98	}	-20000	PASS
	4.35V	5240		0	PASS

Test mode:	802.11ac(HT20) Fi	reque	ency(MHz):		5745	
Temperature (°C)	Voltage(VDC)	Measureme	Measurement			Result	
Temperature (C)	voltage(vDC)	Frequency(MHz)		Frequency(Hz)		Nesuit	
45		5744.98		-20000		PASS	
35		5744.98		-20000		PASS	
25	3.87V	5744.98		-20000		PASS	
15	3.07 V	5744.98		-20000		PASS	
5		5744.98		-20000		PASS	
0		5744.98		-20000		PASS	
	2.75V	5744.98		-20000		PASS	
25	3.87V	5744.98		-20000)	PASS	K
	4.35V	5745		0		PASS	

Test mode:	802.11ac(HT20) Fro	equency(MHz):	5785
Temperature (°C)	Voltage(VDC)	Measureme Frequency(M		I RASHIT I
45		5784.98	-2000	D PASS
35		5784.98	-2000	D PASS
25	25 3.87V		-2000	PASS
15	3.07 V	5785	0	PASS
5		5784.98	-2000	D PASS
0		5784.96	-4000	D PASS
(.c)	2.75V	5784.98	-2000	D PASS
25	3.87V	5784.98	-2000	D PASS
	4.35V	5785	0	PASS

Test mode:	802.11a	ac(HT20)	Freque	ency(MHz):	5825
Temperature (°C)	Voltage(VDC	1	rement cy(MHz)	Delta Frequency(Hz) Result
45		582	4.96	-40000	PASS
35		582	4.98	-20000	PASS
25	3.87V	582	4.96	-40000	PASS
15	3.01 V	582	4.98	-20000	PASS
5		582	4.96	-40000	PASS
0		582	4.96	-40000	PASS
	2.75V	582	4.98	-20000	PASS
25	3.87V	58	25	0	PASS
	4.35V	582	4.96	-40000	PASS



Test mode:		802.11ac(HT40)	Freque	ency(MHz	MHz): 5190		
Tomporature (°C)	Voltage(VDC)		Measurement		Delta		Result	
Temperature (°C)	VOI	itage(VDC)	Frequency(MHz)		Frequency(Hz)		Result	
45		51		9.92	-80000		PASS	3
35			5189	9.96	-40000		PASS	3
25	0.071/		5189.92		-80000		PASS	3
15		3.87V	5189.96		-40	000	PASS	3
5			5189.92		-80	000	PASS	3
0			5189	9.92	-80	000	PASS	3
		2.75V	5189	9.96	-40	000	PASS	3
25	KO	3.87V	5189.96		-40000		PASS	3
		4.35V	5189	9.96	-40	000	PASS	3

Test mode:	802.11ac(HT40)	Freque	ency(MHz):		5230	
Temperature (°C)	Voltage(VDC)	Measur Frequenc		Delta Frequency(Hz)		Result	
45		5229	.96	-40000		PASS	
35		523	30	0	-X\	PASS	
25	3.87V	5229	.96	-40000	C,)	PASS	
15	3.07 V	5229	.96	-40000		PASS	
5		5229	.96	-40000		PASS	
0		5229	.96	-40000		PASS	
(G)	2.75V	523	30	0		PASS	
25	3.87V	523	30	0		PASS	
	4.35V	523	30	0		PASS	

Test mode:	Test mode: 802.11ac(H		Freque	5755	
Temperature (°C)	Voltage(VD)(:)	rement ncy(MHz)	Delta Frequency(Hz	z) Result
45		575	4.96	-40000	PASS
35		57	' 55	0	PASS
25	2.07\/	5754.96		-40000	PASS
15	3.87V	575	4.96	-40000	PASS
5		575	4.96	-40000	PASS
0		57	' 55	0	PASS
	2.75V	575	4.96	-40000	PASS
25	3.87V	575	4.96	-40000	PASS
	4.35V	575	4.96	-40000	PASS

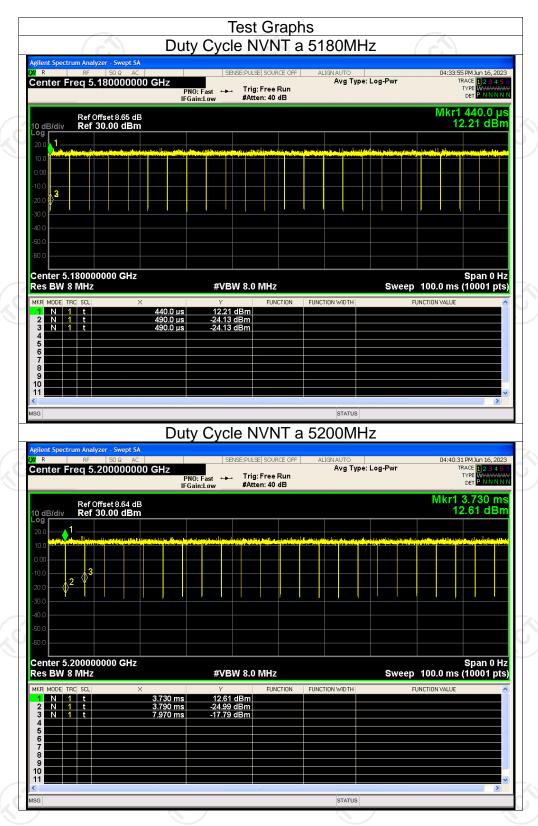
Test mode:	802.	11ac(HT4	0) F	reque	ency(MHz):	5795	
Temperature (°C)	Voltage(VI)(;)	Measurement		Delta		Result	t
- 1		' Fre	quency(MHZ)	Frequen	icy(Hz)		
45			5795		0		PASS	
35			5795		0		PASS	
25	0.07\/		5795		0		PASS	
15	3.87V		5795		0		PASS	
5			5795		0		PASS	
0			5795		0		PASS	
	2.75V		5794.9	3	-400	000	PASS	
25	3.87V		5794.96		-40000		PASS	K
	4.35V		5794.90	3	-400	000	PASS	

Test mode:		802.11ac(V	/HT80)	Freque	ency(Mi	Hz):	5210		
Temperature (°C)	Vc	ltage(VDC)	Measurement Frequency(MHz)		Delta Frequency(Hz)		Hz)	Result	
45			5210		0		PASS		
35		<u> </u>	52	10		0		PASS	
25		3.87V	52	10	0 0		(`د	PASS	X
15		3.07 V	52	10		0		PASS	
5			52	10		0		PASS	
0-			52	10	-2	0		PASS	
(20)		2.75V	52	10	.C'\	0		PASS	
25		3.87V	52	10		0		PASS	
		4.35V	52	10		0		PASS	

Test mode:	802.11ac(\	HT80) Freque		ency(MHz):	5775
Temperature (°C)	Voltage(VDC)	Measurement		Delta	Result
Temperature (C)	voltage(vDC)	Frequency(MHz)		Frequency(F	lz)
45		5774.	97	-30000	PASS
35		5774.	97	-30000	PASS
25	2.07\/	5774.	97	-30000	PASS
15	3.87V	5774.	97	-30000	PASS
5		5774.97		-30000	PASS
0		5774.97		-30000	PASS
	2.75V	5774.	1.97 -30000		PASS
25	3.87V	5774.	5774.97		PASS
	4.35V	5774.97		-30000	PASS

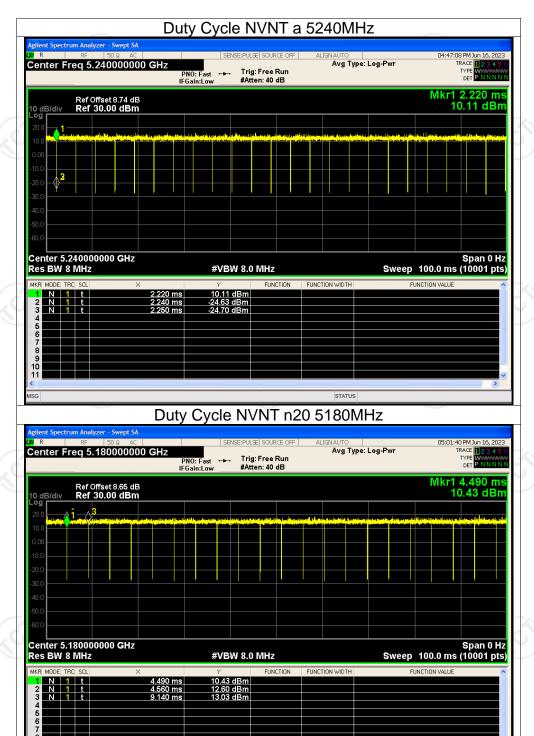
Appendix A: Test Result of Conducted Test

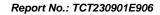
Duty Cycle

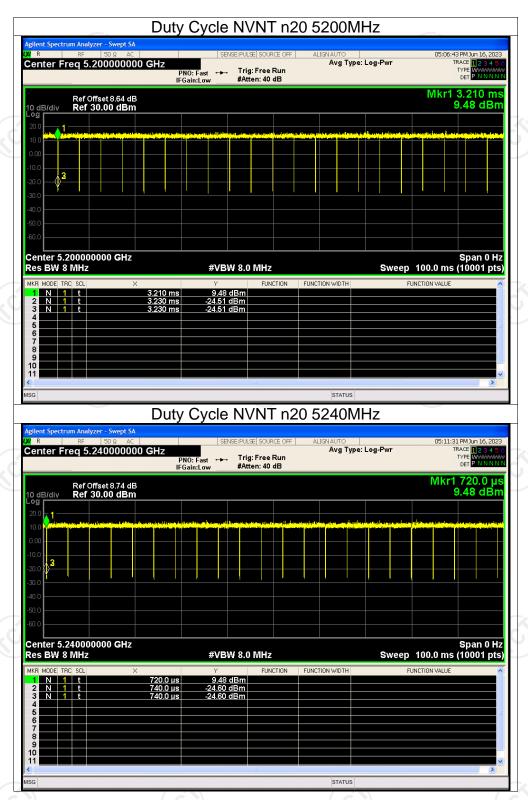

		Duty Cycle							
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)					
NVNT	а	5180	98.73	0					
NVNT	а	5200	98.83	0 (0)					
NVNT	а	5240	98.79	0					
NVNT	n20	5180	98.89	0					
NVNT	n20	5200	98.99	0					
NVNT	n20	5240	98.90	0					
NVNT	n40	5190	97.71	0.10					
NVNT	n40	5230	97.68	0.10					
NVNT	ac20	5180	98.89	0					
NVNT	ac20	5200	98.89	0					
NVNT	ac20	5240	98.97	0					
NVNT	ac40	5190	97.68	0.10					
NVNT	ac40	5230	97.85	0.09					
NVNT	ac80	5210	95.45	0.20					
NVNT	а	5745	99.45	(, C) 0					
NVNT	а	5785	99.54	0					
NVNT	а	5825	99.51	0					
NVNT	n20	5745	98.23	0					
NVNT	n20	5785	98.61	0					
NVNT	n20	5825	98.73	0					
NVNT	n40	5755	97.27	0.12					
NVNT	n40	5795	97.22	0.12					
NVNT	ac20	5745	98.61	0					
NVNT	ac20	5785	98.71	(60)0					
NVNT	ac20	5825	98.70	0					
NVNT	ac40	5755	97.29	0.12					
NVNT	ac40	5795	97.37	0.12					
NVNT	ac80	5775	94.11	0.26					

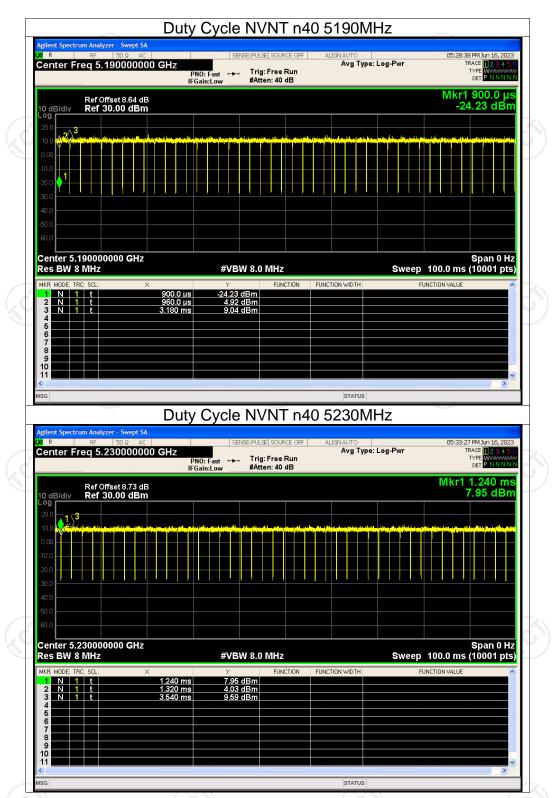
Page 50 of 126

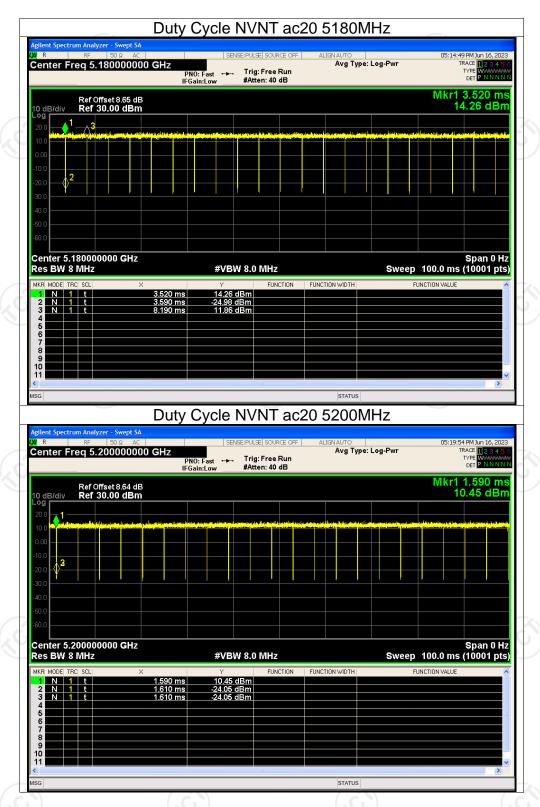
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

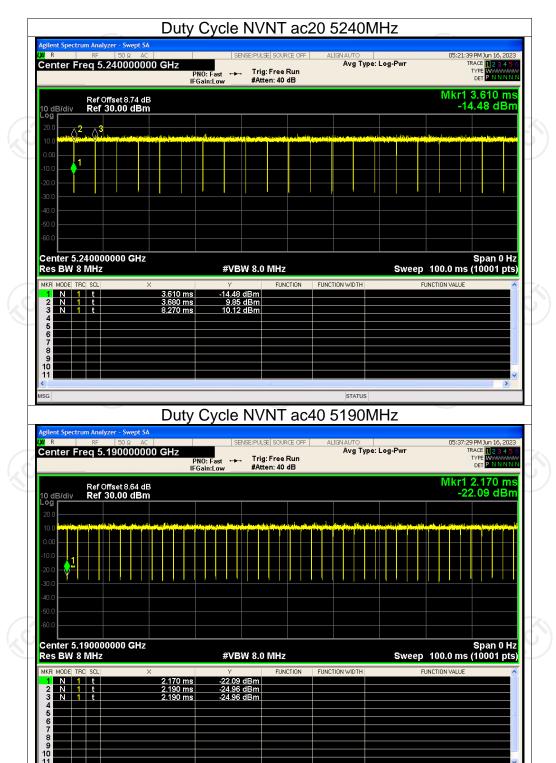


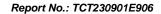


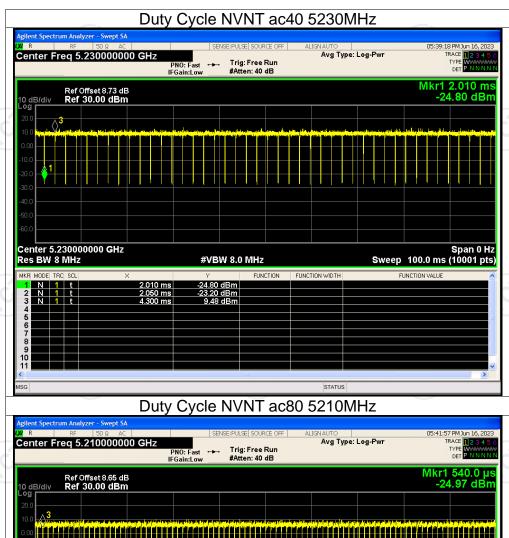


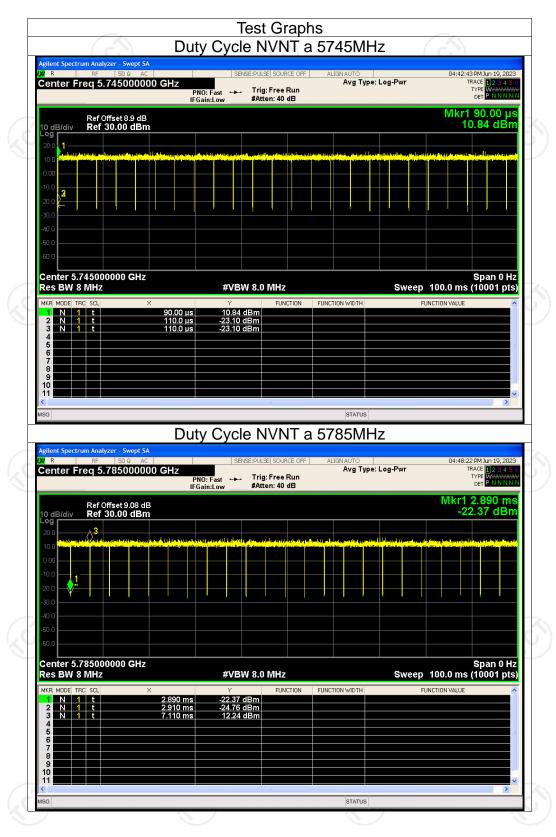


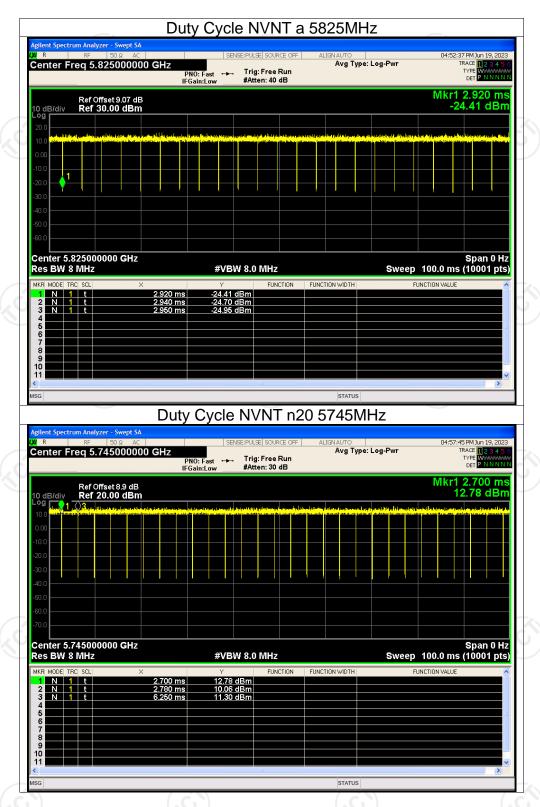


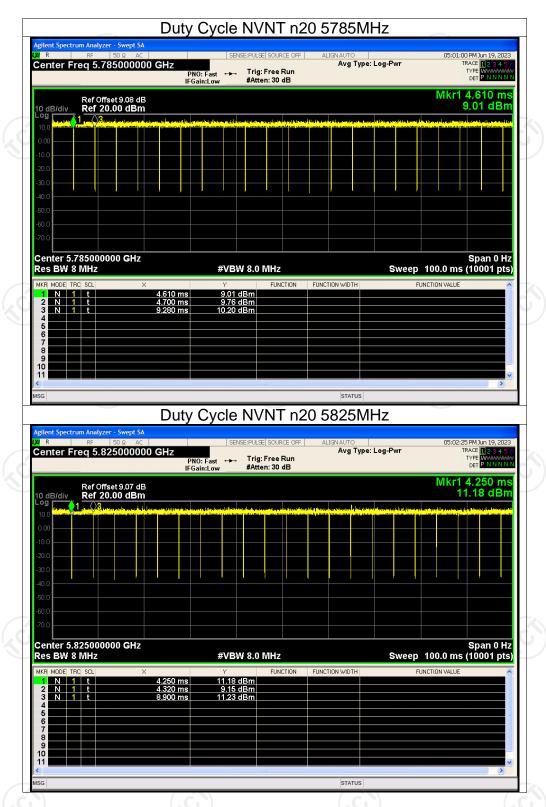


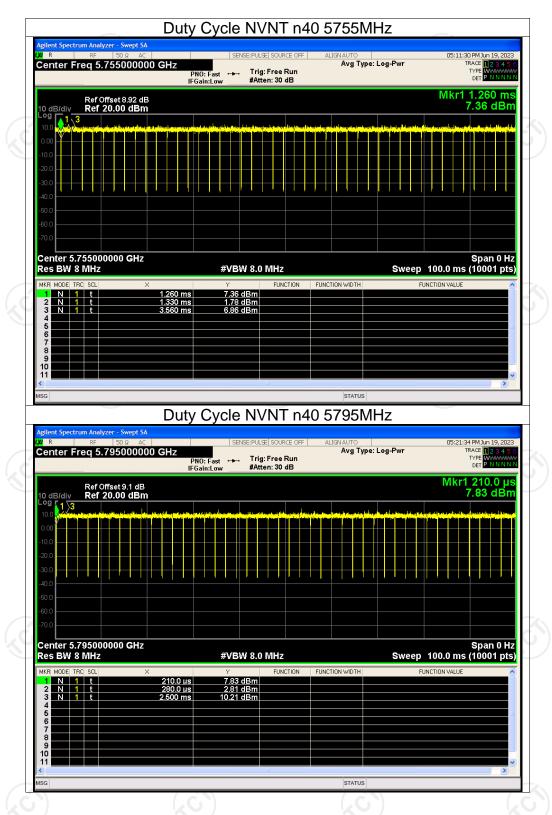


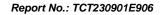


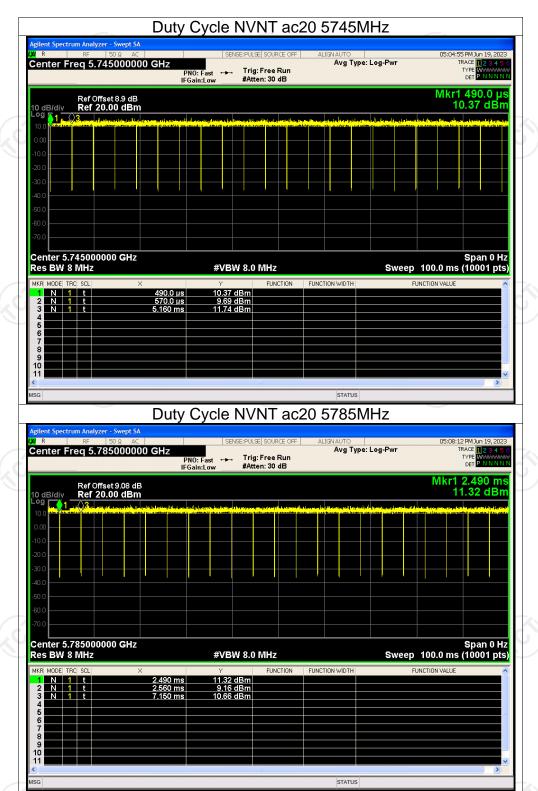


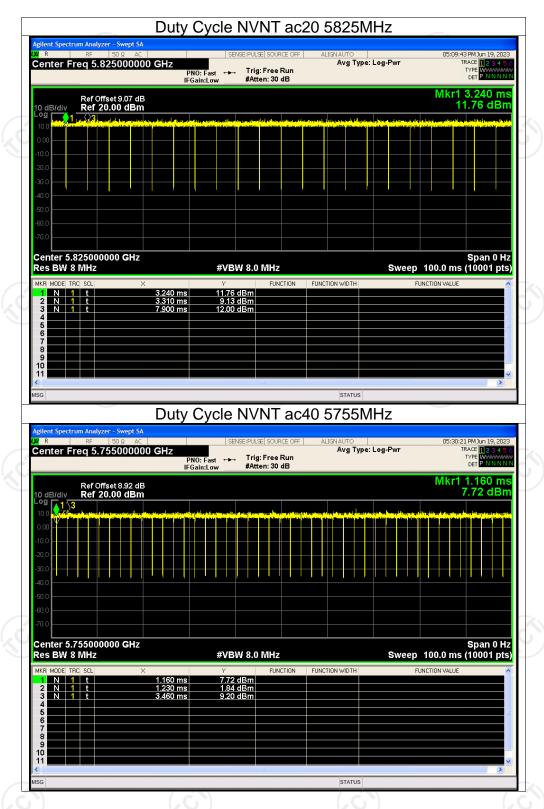


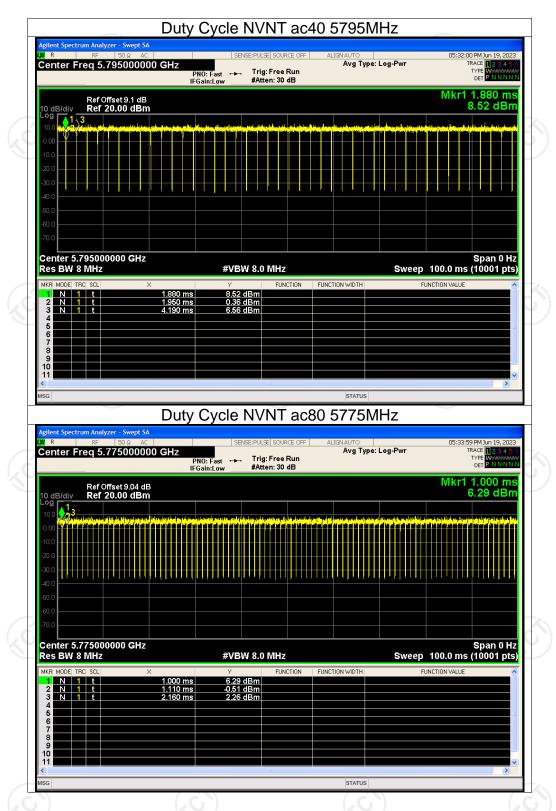


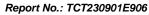


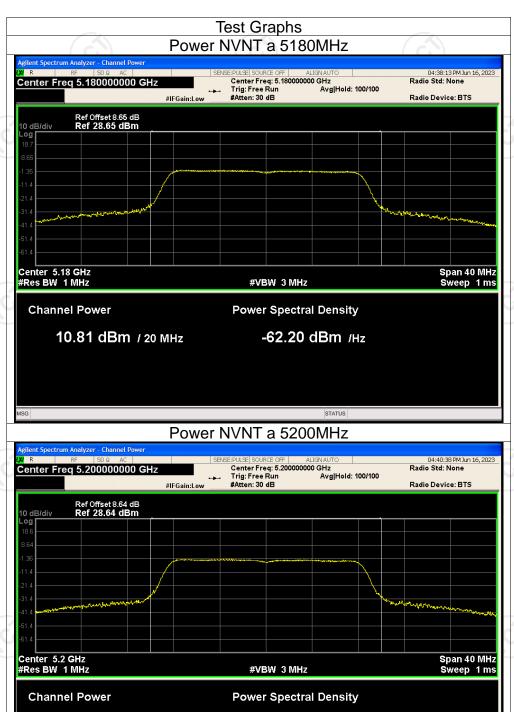






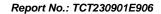


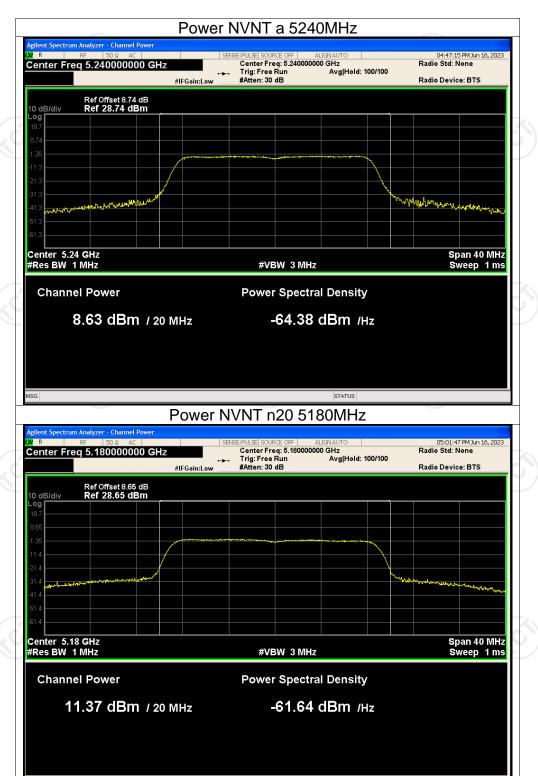




Maximum Conducted Output Power

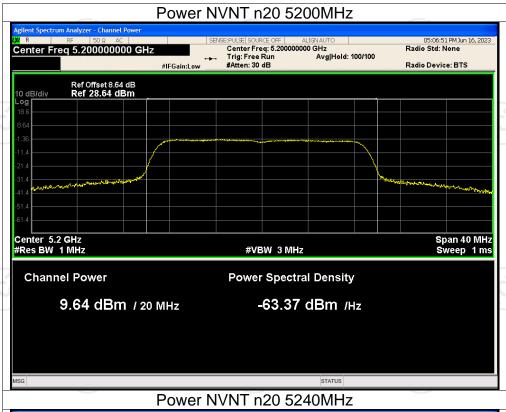
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	10.81	0	10.81	24	Pass
NVNT	а	5200	9.21	0	9.21	24	Pass
NVNT	а	5240	8.63	0	8.63	24	Pass
NVNT	n20	5180	11.37	0	11.37	24	Pass
NVNT	n20	5200	9.64	0	9.64	24	Pass
NVNT	n20	5240	7.80	0	7.80	24	Pass
NVNT	n40	5190	10.03	0.10	10.13	24	Pass
NVNT	n40	5230	8.65	0.10	8.75	24	Pass
NVNT	ac20	5180	10.13	0	10.13	24	Pass
NVNT	ac20	5200	8.80	0	8.80	24	Pass
NVNT	ac20	5240	7.95	0	7.95	24	Pass
NVNT	ac40	5190	10.17	0.10	10.27	24	Pass
NVNT	ac40	5230	8.53	0.09	8.62	24	Pass
NVNT	ac80	5210	9.50	0.20	9.70	24	Pass
NVNT	а	5745	7.96	0	7.96	30	Pass
NVNT	а	5785	8.13	0	8.13	30	Pass
NVNT	а	5825	7.70	0	7.70	30	Pass
NVNT	n20	5745	8.27	0	8.27	30	Pass
NVNT	n20	5785	8.39	0	8.39	30	Pass
NVNT	n20	5825	8.16	0	8.16	30	Pass
NVNT	n40	5755	7.79	0.12	7.91	30	Pass
NVNT	n40	5795	8.25	0.12	8.37	30	Pass
NVNT	ac20	5745	8.31	0	8.31	30	Pass
NVNT	ac20	5785	8.42	0	8.42	30	Pass
NVNT	ac20	5825	8.07	0	8.07	30	Pass
NVNT	ac40	5755	7.60	0.12	7.72	30	Pass
NVNT	ac40	5795	8.14	0.12	8.26	30	Pass
NVNT	ac80	5775	7.83	0.26	8.09	30	Pass

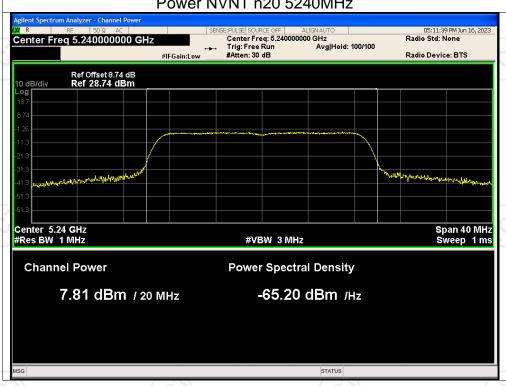


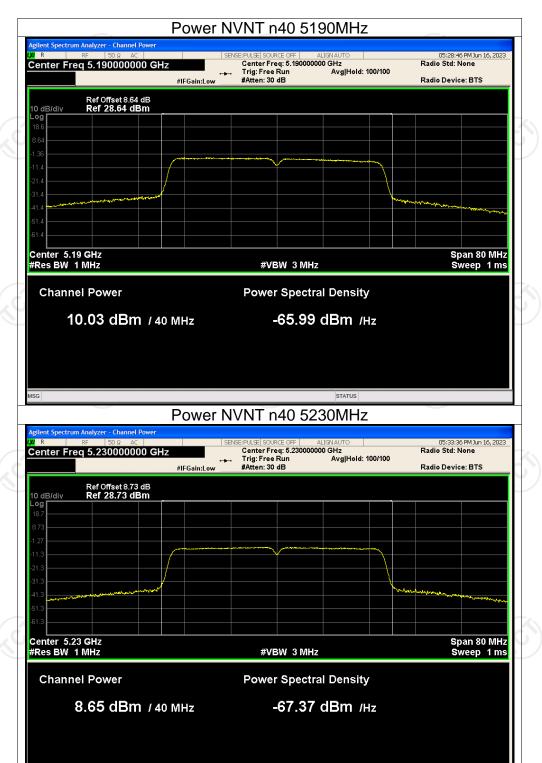


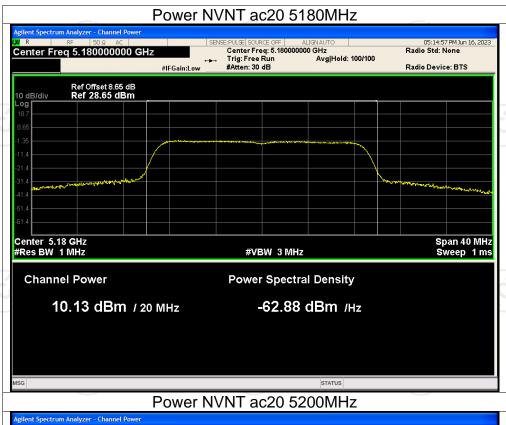
-63.80 dBm /Hz

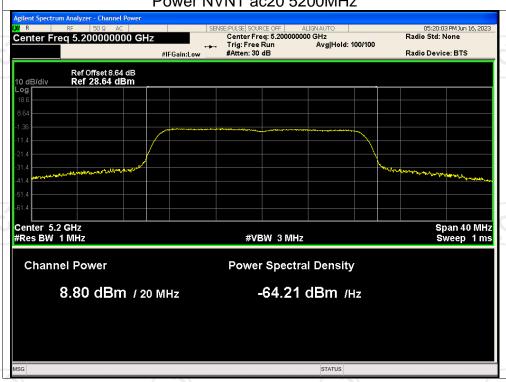
9.21 dBm / 20 MHz

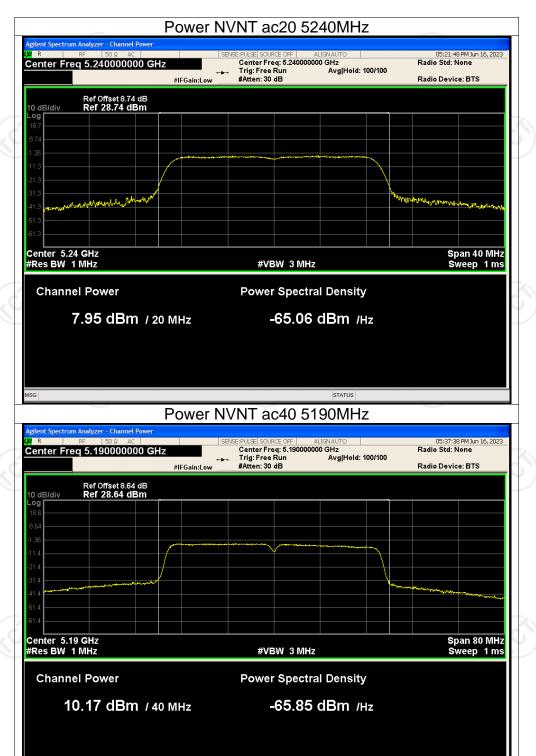


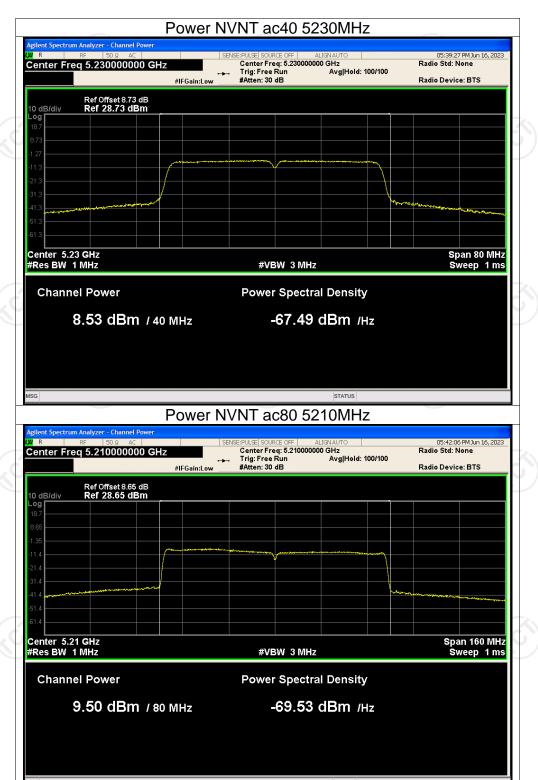


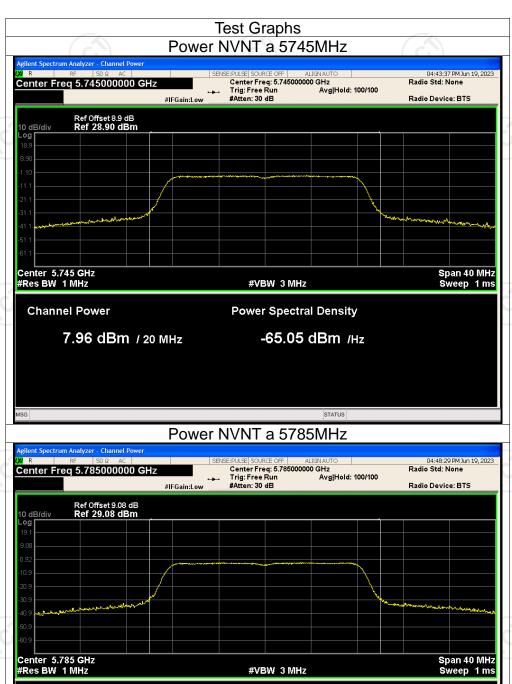


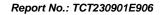




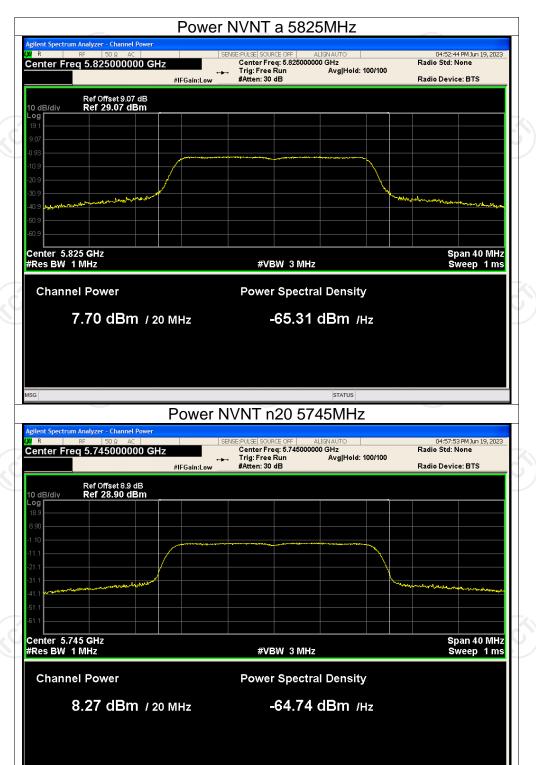







Channel Power

8.13 dBm / 20 MHz



Power Spectral Density

-64.88 dBm /Hz

