

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.225

Compiled by

(position+printed name+signature)..: File administrators Zoey Cao

Supervised by

(position+printed name+signature)..: Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Mar. 16, 2023

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name LIFYFUN LLC

Address 270 Parkview Drive, Oak Park, CA 91377, USA

Test specification:

Standard FCC Part 15.225

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Sifely S Smart Lock

Trade Mark Sifely

Manufacturer Shark Wisdom (Shenzhen) Technology Co., LTD

Model/Type reference...... Sifely S Pro

Operation Frequency...... 13.56MHz

Rating DC 6.0V From Battery and DC 5.0V From external circuit

Result..... PASS

CTATESTING

Report No.: CTA23030300402 Page 2 of 22

TEST REPORT

Sifely S Smart Lock Equipment under Test

Sifely S Pro Model /Type

N/A Listed Models

LIFYFUN LLC **Applicant**

Address 270 Parkview Drive, Oak Park, CA 91377, USA

Manufacturer Shark Wisdom (Shenzhen) Technology Co., LTD

Room 1412T4, East Building, Haihai Building, No.15, Haide 3rd Address

Address		Room 1412T4, East Building, Haihai Building, No.15, Haide 3rd Road, Haizhu Community, Yuehai Street, Nanshan District, Shenzhen, China			
CTA	TESTING				
Test	: Result:	PASS			

The test report merely corresponds to the test sample.

it is not polaboratory. It is not permitted to copy extracts of these test result without the written permission of the test CTATESTING

Page 3 of 22 Report No.: CTA23030300402

Contents

		TESTING	Contents	
	1 C	TEST STANDARDS	TING	4
	(TIP)		TES	
	2	SUMMARY		TING
	<u>~</u>	O WINIAKT		
				A 1 -
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Block Diagram of Test Setup		5
	2.5	Special Accessories		5
	2.6	Related Submittal(s) / Grant (s)		6
	2.7	Modifications		6
, 0 '		-ESTI		
1	2	TEST ENVIRONMENT		7
	<u>3</u>	TEST ENVIRONMENT		<u></u>
			CTATES	
	3.1	Address of the test laboratory	CTA.	7
	3.2	Test Facility		-ES 7
	3.3	Environmental conditions		7
	3.4	Test Description		8
	3.5	Statement of the measurement un	certainty	TATES 7 7 8 8 8 8
	3.6	Equipments Used during the Test	•	9
		, , , , , , , , , , , , , , , , , , ,		
		- ING		
	<u>4</u>	TEST CONDITIONS AND	RESULTS	<u> 10</u>
	4.1	AC Power Conducted Emission	TESTING	10
	4.2	Radiated Emission		
	4.3	20dB Bandwidth		18
	4.3 4.4	Frequency Stability		TESTING 13 18 19
	7.7	requericy Stability		19
	<u>5</u>	TEST SETUP PHOTOS OF	THE EUT	<u></u> 21
		BUOTOS OF THE FUT		
	<u>0</u> 1/10	PHOTOS OF THE EUT		22
CTAIL				
CTATE		STIN		
		CTA TESTING	CTATESTING	

Report No.: CTA23030300402 Page 4 of 22

TEST STANDARDS 1

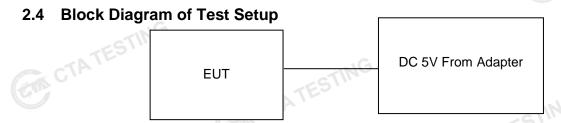
The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz. CTATESTII ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices Report No.: CTA23030300402 Page 5 of 22

SUMMARY 2

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample		Mar. 03, 2023	STING
Testing commenced on		Mar. 03, 2023	CTATES
Testing concluded on	:	Mar. 16, 2023	Car.


	H. Control
Testing concluded on	: Mar. 16, 2023
2.2 Product Description	Control Control
Product Name:	Sifely S Smart Lock
Model/Type reference:	Sifely S Pro
Power supply:	DC 6.0V From Battery and DC 5.0V From external circuit
Adapter information (Auxiliary test supplied by test Lab)	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Testing sample ID:	CTA230303004-1# (Engineer sample) CTA230303004-2# (Normal sample)
Software version:	V1.0
Hardware version:	V1.0
13.56MHz RFID	
Operation frequency:	13.56MHz
Modulation :	ASK
No. of Channel :	CIATES
Antenna type:	LOOP Antenna
Antenna gain:	0.00 dBi
- NG	

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)	755

DC 6.0V From Battery and DC 5.0V From external circuit

Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Report No.: CTA23030300402 Page 6 of 22

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
1	Es. /	/	1	/	/
To the	/	/	ESTING	/	/
12 23 23 24 15 15 1	/	CIA	/	LING	/

2.6 Related Submittal(s) / Grant (s)

CTATE This submittal(s) (test report) is intended for the EUT filing to comply with Section 15.225 of the FCC Part 15, Subpart C Rules.

2.7 Modifications

No modifications were implemented to meet testing criteria. CTATES

Page 7 of 22 Report No.: CTA23030300402

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges: CTA TESTING Radiated Emission:

Temperature:	24 ° C
	6.1
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

AC FUWER CURIQUELEU EITHSSIUH.		
Temperature:	25 ° C	
	16	
Humidity:	46 %	
TATES		
Atmospheric pressure:	950-1050mbar	STING
Conducted testing:	A CONTRACTOR OF THE PARTY OF TH	
Temperature:	25 ° C	

Conducted testing:

Conducted testing.	A COUNTY OF THE PARTY OF THE PA
Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTA TESTING	CTATESTING

Report No.: CTA23030300402 Page 8 of 22

Test Description

FCC PART 15 .225			
FCC Part 15.207	AC Power Conducted Emission	PASS	
FCC Part 2.1049	20dB Bandwidth	PASS	
FCC Part 15.225(a) (b) (c)	In-band Emissions	PASS	
FCC Part 15.225(d)/15.207	Out-of-band Emissions	PASS	
FCC Part 15.225(e)	Frequency Stability Tolerance	PASS	

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

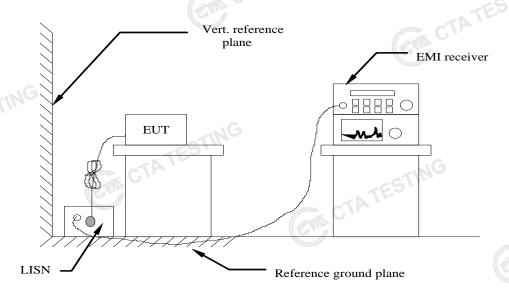
Hereafter the best measurement capability for Shenzhen CAT laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% CTATESTI confidence level using a coverage factor of k=2.

Page 9 of 22 Report No.: CTA23030300402

Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
TE	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
IN.	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
-5	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
A	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
			CTP CTP		CIN CT	ATESTING

Report No.: CTA23030300402 Page 10 of 22

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

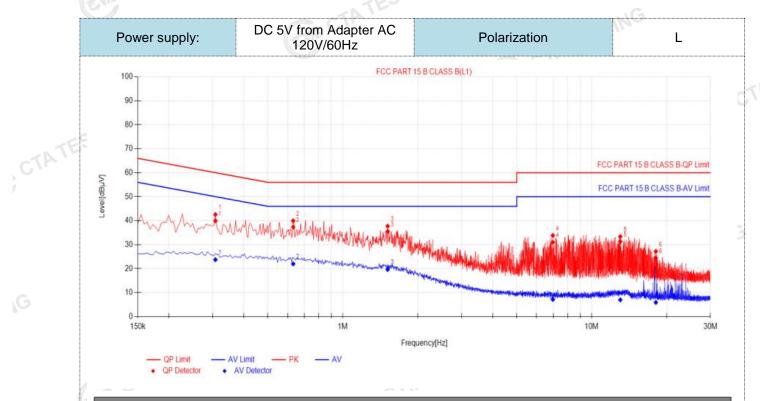
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

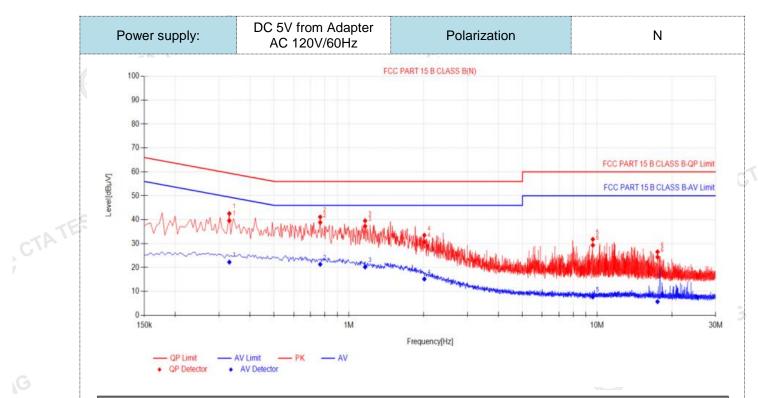

Eroguenov rongo (MHz)	Limit ((dBuV)		
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the freque	Quasi-peak Average 66 to 56* 56 to 46* 56 46 60 50			
Con CT		TATESTING		

Report No.: CTA23030300402 Page 11 of 22

TEST RESULTS

Remark:

Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.



	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	ΑV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
	1	0.3075	10.50	29.46	39.96	60.04	20.08	13.23	23.73	50.04	26.31	PASS
	2	0.6315	10.50	26.83	37.33	56.00	18.67	11.49	21.99	46.00	24.01	PASS
	3	1.5135	10.50	25.01	35.51	56.00	20.49	9.17	19.67	46.00	26.33	PASS
	4	6.981	10.50	20.49	30.99	60.00	29.01	-3.32	7.18	50.00	42.82	PASS
	5	13.029	10.50	20.85	31.35	60.00	28.65	-3.50	7.00	50.00	43.00	PASS
L	6	18.105	10.50	13.96	24.46	60.00	35.54	-4.59	5.91	50.00	44.09	PASS

CTA TESTING

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBµV) AV Value (dBµV)

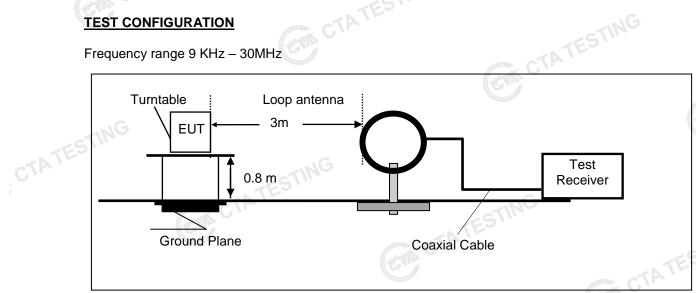
Report No.: CTA23030300402 Page 12 of 22

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.33	10.50	29.09	39.59	59.45	19.86	11.74	22.24	49.45	27.21	PASS
2	0.7665	10.50	28.37	38.87	56.00	17.13	10.82	21.32	46.00	24.68	PASS
3	1.1625	10.50	26.79	37.29	56.00	18.71	9.71	20.21	46.00	25.79	PASS
4	2.013	10.50	20.14	30.64	56.00	25.36	4.69	15.19	46.00	30.81	PASS
5	9.6045	10.50	18.82	29.32	60.00	30.68	-2.79	7.71	50.00	42.29	PASS
6	17.502	10.50	13.85	24.35	60.00	35.65	-4.79	5.71	50.00	44.29	PASS

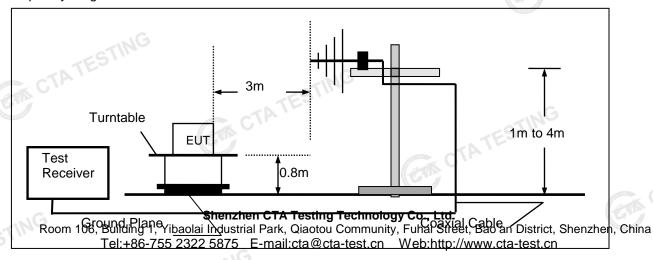
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTING

Report No.: CTA23030300402 Page 13 of 22

4.2 **Radiated Emission**


LIMIT

- The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall b not exceed 334 microvolts/meter at 30 meters.
- Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.


and gonional radia	11.0 goneral radiation of motion in 3.01=00.									
Frequency (MHz)	Distance (Meters)	Radiated (dBuV/m)	Radiated (µV/m)							
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)							
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)							
1.705-13.110	3	69.54	30							
13.110-13.410	3	80.50	106							
13410-13.553	3	90.47	334							
13.553-13.567	3	124.00	15848							
13.567-13.710	3	90.47	334							
13.710-14.010	3	80.50	106							
14.010-30.0	3	69.54	30							
30-88	3	40.0	100							
88-216	3	43.5	150							
216-960	3	46.0	200							
Above 960	3	54.0	500							

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Page 14 of 22 Report No.: CTA23030300402

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 1GHz.

The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	TES!
ransd=AF +CL-AG	TATESTING
NATION LIMIT	CTA.

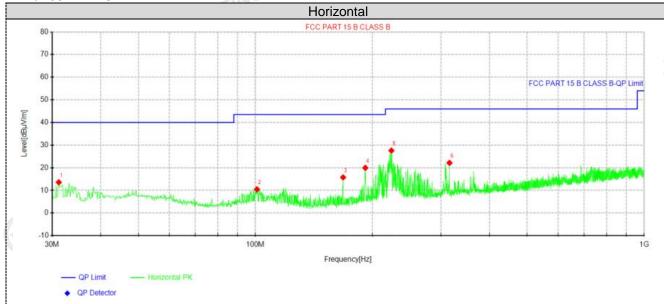
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		
CTA T	CIM CT	ATESTING	STING		

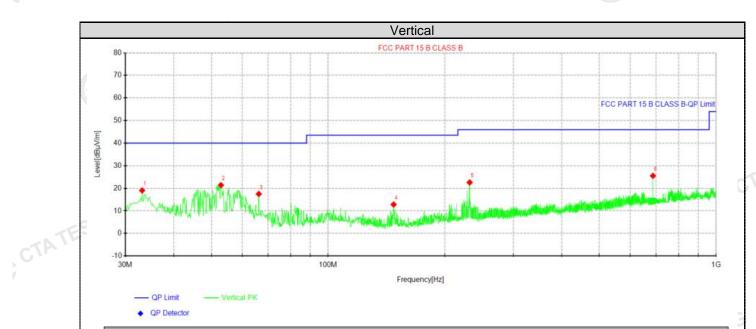

Page 15 of 22 Report No.: CTA23030300402

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. We measured Radiated Emission at ASK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- We tested the Adapter Powering Mode and POE Port Powering Mode and recorded the worst case at the Adapter Powering Mode.

For 30MHz-1GHz


Suspe	ected Data	List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	31.2125	32.12	13.58	-18.54	40.00	26.42	100	264	Horizontal	
2	100.931	28.87	10.46	-18.41	43.50	33.04	100	170	Horizontal	
3	168.103	36.90	15.75	-21.15	43.50	27.75	100	41	Horizontal	
4	191.747	39.77	19.96	-19.81	43.50	23.54	100	58	Horizontal	
5	223.757	46.26	27.58	-18.68	46.00	18.42	100	186	Horizontal	
6	315.665	39.19	22.16	-17.03	46.00	23.84	100	281	Horizontal	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
 3). Margin(dB) = Limit (dBμV/m) Level (dRμV/m)

CTATESTING

Report No.: CTA23030300402 Page 16 of 22

Suspe	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	33.1525	37.22	19.04	-18.18	40.00	20.96	100	348	Vertical
2	52.9162	38.07	21.38	-16.69	40.00	18.62	100	360	Vertical
3	66.2538	37.35	17.47	-19.88	40.00	22.53	100	259	Vertical
4	147.491	34.58	12.81	-21.77	43.50	30.69	100	60	Vertical
5	231.638	41.03	22.59	-18.44	46.00	23.41	100	164	Vertical
6	687.538	37.26	25.52	-11.74	46.00	20.48	100	130	Vertical

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA23030300402 Page 17 of 22

In-band Emissions

	Frequency(MHz):		13.56		Po	olarity:	HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	51.25	PK	80.5	29.25	51.74	5.21	-0.49	4.72
2	13.55	73.36	PK	90.47	17.11	73.85	5.26	-0.49	4.77
3	13.56	94.8	PK	124	29.2	95.29	5.26	-0.49	4.77
4	13.57	73.07	PK	90.47	17.4	73.56	5.26	-0.49	4.77
5	13.75	51.48	PK	80.5	29.02	51.97	5.29	-0.49	4.80

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB) 2.
- Margin value = Limit value- Emission level.
- The other emission levels were very low against the limit.

Out-of-band Emissions

	4. The	other emiss	sion levels	were very lo	w agains	t the limit.				
Out-	of-band Emi Frequency(13.56		Р	olarity:	HORIZONTAL		
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)	
1	27.12	39.91	PK	69.54	29.63	32.41	7.25	0.25	7.50	
2	40.68	30.38	PK	40	9.62	21.75	8.12	0.51	8.63	
3	54.24	28.72	PK	40	11.28	19.64	8.36	0.72	9.08	
4	67.80	24.82	PK	40	15.18	15.29	8.57	0.96	9.53	

	Frequency(MHz):			13.56			Polarity:		VERTICAL	
	No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
	1	27.12	38.36	PK	69.54	31.18	30.86	7.25	0.25	7.5
	2	40.68	28.13	PK	40	11.87	19.50	8.12	0.51	8.63
C	3	54.24	27.03	PK	40	12.97	17.95	8.36	0.72	9.08
1	4	67.80	25	PK	G 40	15	15.47	8.57	0.96	9.53
	REM	IARKS:		GTIN						
		4 Em.	المنتما ممام	JD\ //20 \	Daw Value	(AD\ A C		a a t a # / al D /ma \		

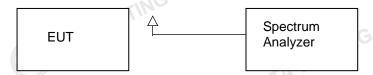
REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
- Margin value = Limit value- Emission level.
- The other emission levels were very low against the limit.

Report No.: CTA23030300402 Page 18 of 22

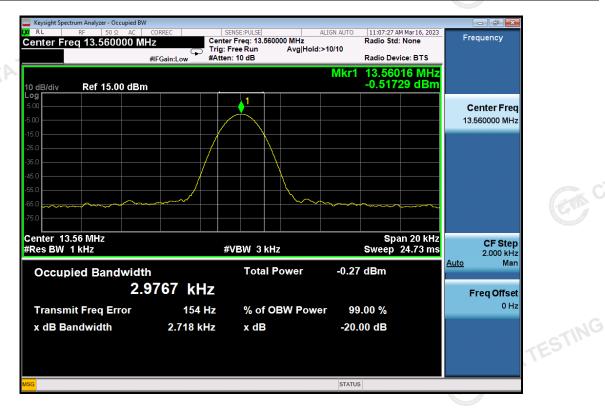
4.3 20dB Bandwidth

Limit


No limit for 20dB bandwidth.

Test Procedure

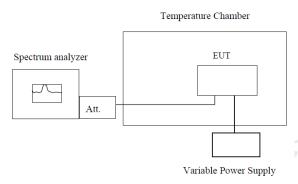
The 20dB bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Test Results		CIA			
Modulation	Frequency(MHz)	20dB bandwidth (KHz)	Result		
ASK	13.56MHz	2.718	Pass		


Report No.: CTA23030300402 Page 19 of 22

Frequency Stability

LIMIT

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for
- 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.
 - 7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) or endpoint, record the CTATESTI maximum frequency change.

TEST RESULTS


Page 20 of 22 Report No.: CTA23030300402

	Reference Frequency: 13.56MHz								
	Voltage (V)	Temperature (℃)	Frequency (MHz)	Frequency Deviation(Hz)	Deviation (%)				
	To sunt the	+20(Ref)	13.560082	82	0.00060472%				
		-20	13.560124	124	0.00091445%				
		-10	13.560118	118	0.00087020%				
		0	13.560107	107	0.00078908%				
	5.01/	10	13.560113	113	0.00083333%				
	5.0V	20	13.560147	147	0.00108406%				
CTATE	STING	25	13.560165	165	0.00121680%				
		30 G	13.560129	129	0.00095132%				
, G .		40	13.560174	174	0.00128317%				
	(2.11)	50	13.560105	105	0.00077433%				
	5.0V	20	13.560149	149	0.00109881%				
	5.0V	20	13.560143	143	0.00105456%				
				(A)	0.00105456%				

Page 21 of 22 Report No.: CTA23030300402

Test Setup Photos of the EUT

Report No.: CTA23030300402 Page 22 of 22

Photos of the EUT

Reference to the test report No. CTA23030300401 OT L