

TEST REPORT

FCC Part 22 Subpart H / Part 24 Subpart E

Report F	Reference	No:	CTL2009191031-WF
----------	-----------	-----	------------------

Compiled by:

(position+printed name+signature)

Tested by:

(position+printed name+signature)

Approved by:

(position+printed name+signature)

Happy Guo (File administrators)

Nice Nong (Test Engineer)

> Ivan Xie (Manager)

Happy Gu

Nice Nong

Ivan Die

Product Name: GPRS wireless single light controller

Model/Type reference: WE-MA-10

List Model(s)..... N/A

Trade Mark.....: SINOCO

FCC ID...... 2AZNC-WEMA10

Applicant's name Shenzhen Sinoco Lighting Technologies Co., Ltd

Address of applicant G building, Shasi High-Tech Industrial park, Shajing Town, Baoan

District, Shenzhen, Guangdong, China.518104

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification.....:

Standard: FCC CFR Title 47 Part 2, Part 22H and Part 24E

EIA/TIA 603-D: 2010 KDB 971168 D01

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of receipt of test item: Jan. 29, 2021

Date of sampling...... Jan. 29, 2021

Date of Test Date Jan. 29, 2021–Mar. 18, 2021

Data of Issue.....: Mar. 23, 2021

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No.: CTL2009191031-WF

TEST REPORT

Test Report No. :	CTL2009191031-WF	Mar. 23, 2021	
rest Report No	C1L2009191031-VVF	Date of issue	

Equipment under Test : GPRS wireless single light controller

Sample No. CTL200919103-1-S001

Model /Type : WE-MA-10

Listed Models : N/A

Applicant : Shenzhen Sinoco Lighting Technologies Co., Ltd

G building, Shasi High-Tech Industrial park, Shajing

Address Town, Baoan District, Shenzhen, Guangdong,

China.518104

Manufacturer : Shenzhen Sinoco Lighting Technologies Co., Ltd

G building, Shasi High-Tech Industrial park, Shajing

Address Town, Baoan District, Shenzhen, Guangdong,

China.518104

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

Report No.: CTL2009191031-WF

	meanied includ					
Revisions	Description	Issued Data	Report No.	Remark		
Version 1.0	Initial Test Report Release	2021-03-23	CTL2009191031-WF	Tracy Qi		
	·	76				
				- 40.		
		6.1		40.1		
	v 10 100					
	4 11 11		-			
	10 - 10			N. A. W.		
				•		

Contents

Page 4 of 33

1	S	SUMMARY	5
	1.1		
	1.2		
	1.3		
	1.4	4 STATEMENT OF THE MEASUREMENT UNCERTAINTY	θ
2	C	GENERAL INFORMATION	
	2.1	1 Environmental conditions	
	2.2	2 GENERAL DESCRIPTION OF EUT	
	2.3		
	2.4		
	2.5	5 RELATED SUBMITTAL(S) / GRANT (S)	8
	2.6	6 Modifications	8
3	T	TEST CONDITIONS AND RESULTS	g
	3.1	1 Output Power	g
	3.2		
	3.3	BAND EDGE COMPLIANCE	18
	3.4	4 Spurious Emission	20
	3.5	Frequency Stability under Temperature & Voltage Variations	26
4	7	TEST SETUP PHOTOS OF THE EUT	28
5	E	PHOTOS OF THE EUT	20
•		1 110 100 01 111L L01	

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24: PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01:v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.10-2013 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2 Test Description

Test Item	Section in CFR 47	Result	
RF Output Power	Part 2.1046 Part 22.913 (a)(2) Part 24.232 (c)	Pass	
Peak-to-Average Ratio	Part 24.232 (d)	Pass	
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917 Part 24.238	Pass	
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 22.917 (a) Part 24.238 (a)	Pass	
Field Strength of Spurious Radiation	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Pass	
Out of band emission, Band Edge	Part 22.917 (a) Part 24.238 (a)	Pass	
Frequency stability	Part 2.1055 Part 22.355 Part 24.235	Pass	

V1.0 Page 6 of 33 Report No.: CTL2009191031-WF

1.3 Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test Range		Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C	
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2 General Description of EUT

Product Name:	GPRS wireless single light controller		
Floudet Name.	GFN3 wireless single light controller		
Model/Type reference:	WE-MA-10		
Power supply:	AC 110V Power supply		
2G			
Operation Band:	GSM850, DCS1800, GSM900, PCS1900		
Supported Type:	GPRS		
D Ol	GSM850:Power Class 4		
Power Class:	PCS1900:Power Class 1		
Modulation Type:	GMSK for GPRS		
GSM Release Version	R99		
GPRS Multislot Class	12		
Antenna type:	Monopole antenna		
Antenna gain:	-1.5dBi		

Note: For more details, refer to the user's manual of the EUT.

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

Test Frequency:

1001110411011031					
	GSM 850	PCS1900			
Channel Frequency (MHz)		Channel	Frequency (MHz)		
128 824.20		512	1850.20		
190	836.60	661	1880.00		
251	848.80	810	1909.80		

Test Modes:

The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
Mode 1	GPRS, GMSK modulation

2.4 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2020/05/25	2021/05/24
Bilog Antenna	Sunol Sciences Corp.	JB1	A061714	2020/05/25	2021/05/24
EMI Test Receiver	R&S	ESCI	103710	2020/05/25	2021/05/24
Spectrum Analyzer	Agilent	N9020	US46220290	2020/05/25	2021/05/24
Controller	EM Electronics	Controller EM 1000	N/A	2020/05/25	2021/05/24
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2020/05/25	2021/05/24
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062014	2020/05/25	2021/05/24
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2020/05/25	2021/05/24
Amplifier	Agilent	8349B	3008A02306	2020/05/25	2021/05/24
Amplifier	Agilent	8447D	2944A10176	2020/05/25	2021/05/24
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2020/05/25	2021/05/24
Radio Communication Tester	R&S	CMU200	115419	2020/05/25	2021/05/24
High-Pass Filter	K&L	9SH10-2700/X1 2750-O/O	N/A	2020/05/25	2021/05/24
High-Pass Filter	K&L	41H10-1375/U1 2750-O/O	N/A	2020/05/25	2021/05/24
RF Cable	HUBER+SUHN ER	RG214	N/A	2020/05/25	2021/05/24
Climate Chamber	ESPEC	EL-10KA	A20120523	2020/05/25	2021/05/24
SIGNAL GENERATOR	Agilent	E4421B	US40051744	2020/05/25	2021/05/24
Directional Coupler	Agilent	87300B	3116A03638	2020/05/25	2021/05/24

2.5 Related Submittal(s) / Grant (s)

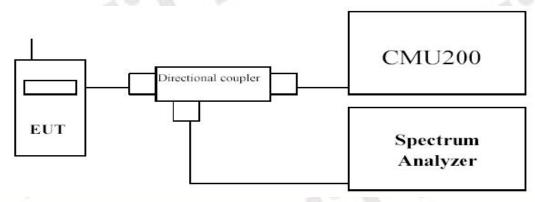
This submittal(s) (test report) is intended for FCC ID: 2AZNC-WEMA10 filing to comply with of the FCC Part 22 and Part 24 Rules.

2.6 Modifications

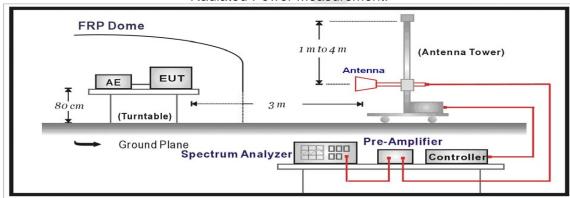
No modifications were implemented to meet testing criteria.

3 TEST CONDITIONS AND RESULTS

3.1 Output Power


LIMIT

GSM850: 7W PCS1900: 2W


The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

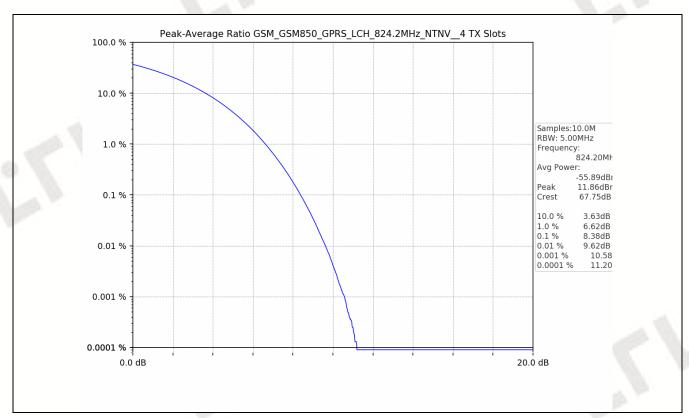
Radiated Power Measurement:

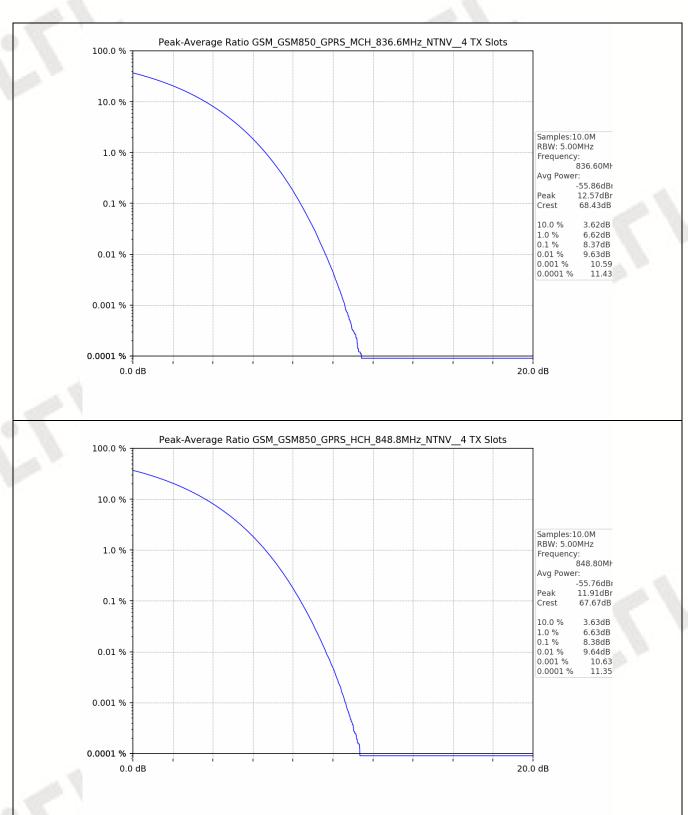
- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter

- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

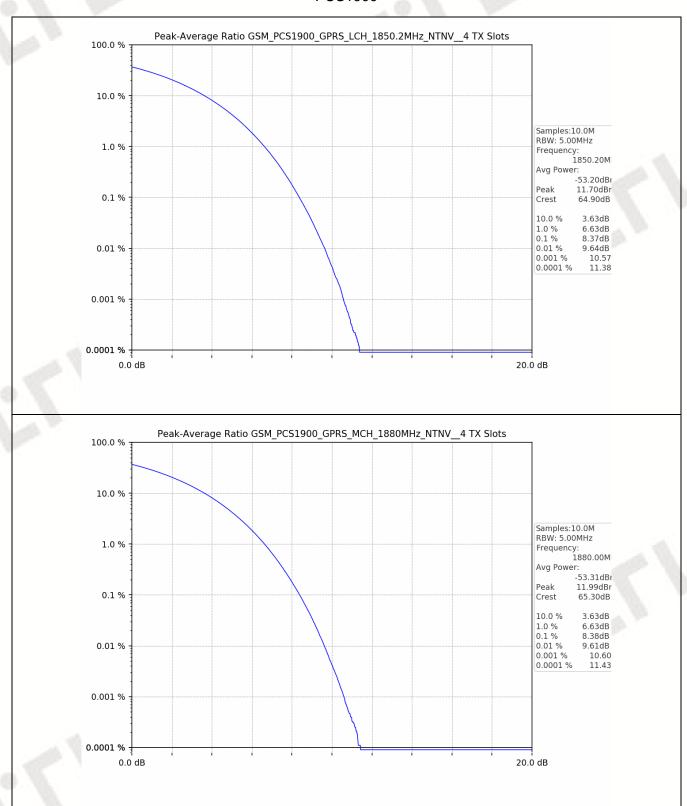
TEST RESULTS

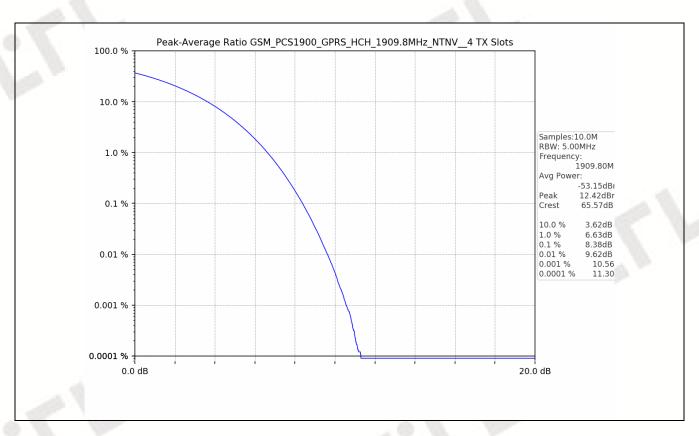
Conducted Measurement:


EUT Mode	Channel	Frequency (MHz)	Avg.Burst Power (dBm)	Limit (dBm)	Result
GPRS850	128	824.20	31.13	-	
(GMSK,1Slot)	190	836.60	31.06	38.45	Pass
(Giviort, rolot)	251	848.80	29.36		
GPRS1900	512	1850.20	28.56		
(GMSK,1Slot)	661	1880.00	28.32	33.01	Pass
(Giviorx, rolot)	810	1909.80	28.36		


Peak-to-Average Ratio (PAR)

Test Band: GSM850										
Test Mode		Test result (dB)		Limit (dB)	Verdict					
Test Mode	LCH	MCH	HCH	Littill (db)	verdict					
GPRS	8.38	8.37	8.38	13	PASS					
		Test Band:	PCS1900							
Toot Mode		Test result (dB)	Limit (dD)	\						
Test Mode	LCH	MCH	HCH	Limit (dB)	Verdict					
GPRS	8.37	8.38	8.38	13	PASS					


Note: 1.Peak-to-Average Ratio= maximum PK burst power-maximum Avg. burst power.


GSM850

PCS1900

Radiated Measurement:

Note: 1. The field strength of radiation emission was measured in the following position: EUT stand-up position (Zaxis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of Z axis was reported.

Note: 2. We test the H direction and V direction and V direction is worse.

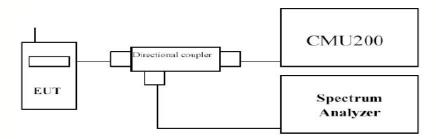
GPRS 850

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
128	-11.17	2.42	8.45	2.15	36.82	29.75	38.45	8.70	V
190	-10.60	2.46	8.45	2.15	36.82	30.36	38.45	8.09	V
251	-10.92	2.53	8.36	2.15	36.82	29.25	38.45	9.20	V

GPRS 1900

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
512	-14.01	3.41	10.24	33.6	26.36	33.01	6.65	V
661	-12.40	3.49	10.24	33.6	27.42	33.01	5.59	V
810	-13.84	3.55	10.23	33.6	26.62	33.01	6.39	V

Remark:

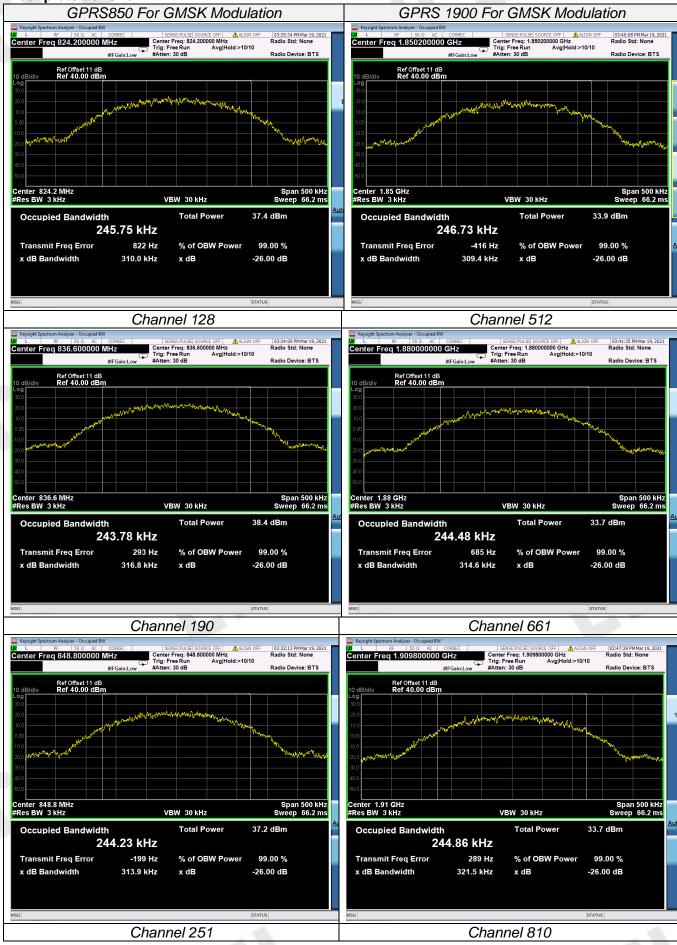

- 1. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$
- 2. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.

3.2 Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

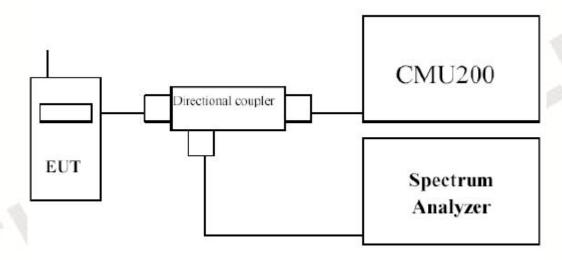

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW ≥3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
0000	128	824.20	245.75	310.00
GPRS 850 (GMSK)	190	836.60	243.78	316.00
(GWGR)	251	848.80	244.23	313.90
0000 4000	512	1850.20	246.73	309.40
GPRS 1900 (GMSK)	661	1880.00	244.48	314.60
(Siviore)	810	1909.80	244.86	321.50

Test plots as follow:



3.3 Band Edge compliance

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

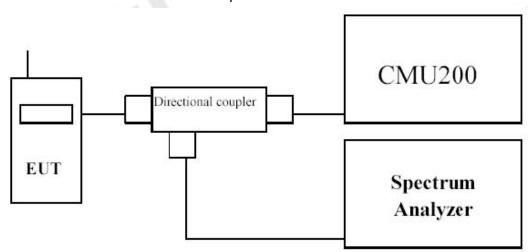
TEST PROCEDURE

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

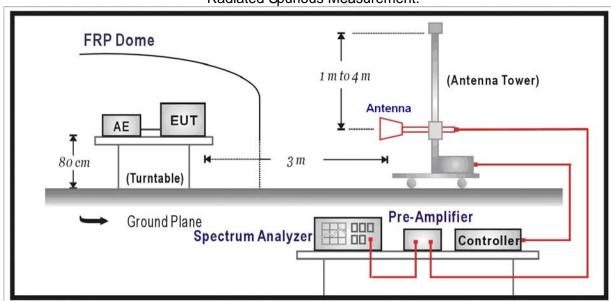
TEST RESULTS

		- 10			4 10
		GPR	S850		
Channel	Fraguenov	Max Measure	ement Results	Limit	7 N 0.
Number	Frequency (MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
128	824.20	823.980	-13.301	-13.00	Pass
251	848.80	849.023	-13.441	-13.00	Pass
Keysight Spectrum Analyzer - Swept SA L RF 50 Ω AC COC Marker 1 823.980000000 MH P P IF		Pwr TRACE 12 3 4 5 6 Peak Search	Keysight Spectrum Analyzer - Swept SA W L RF 50 Ω AC CORREC Marker 1 849.023000000 MHz PNO: Wide IFGain:Low	SENSE-PULSE SOURCE OFF ALIGN OFF Avg Type: Log-Pwr	04:05:44 PMMar 19, 2021 TRACE 1234 56 TYPE MANNAMED TO PRINTED TO
Ref Offset 11 dB		Mkr1 823.980 MHz -13.301 dBm	Ref Offset 11 dB 10 dB/diy Ref 30.00 dBm	Mk	r1 849.023 MHz -13.441 dBm
20.0		Next Pk Right	200		Next Pk Right
0.00		Next Pk Left	0.00		Next Pk Left
-10.0		Marker Delta	-10.0 1		Marker Delta
-30.0		Mkr→CF	-30.0 ** * * * * * * * * *		Mkr→CF
-500 -	A Property	Mkr→Ref Lvi	SOO THE WAY THE PARTY OF THE PA		Mkr⊸RefLvI
Start 823,0000 MHz	Little Association of the Company of	More 1 of 2	Start 849.0000 MHz	111111111111111111111111111111111111111	More Stop 850.0000 MHz
#Res BW 3.0 kHz		p 102.6 ms (1001 pts)		BW 30 kHz Sweep	102.6 ms (1001 pts)

Report No.: CTL2009191031-WF


3.4 Spurious Emission

LIMIT


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

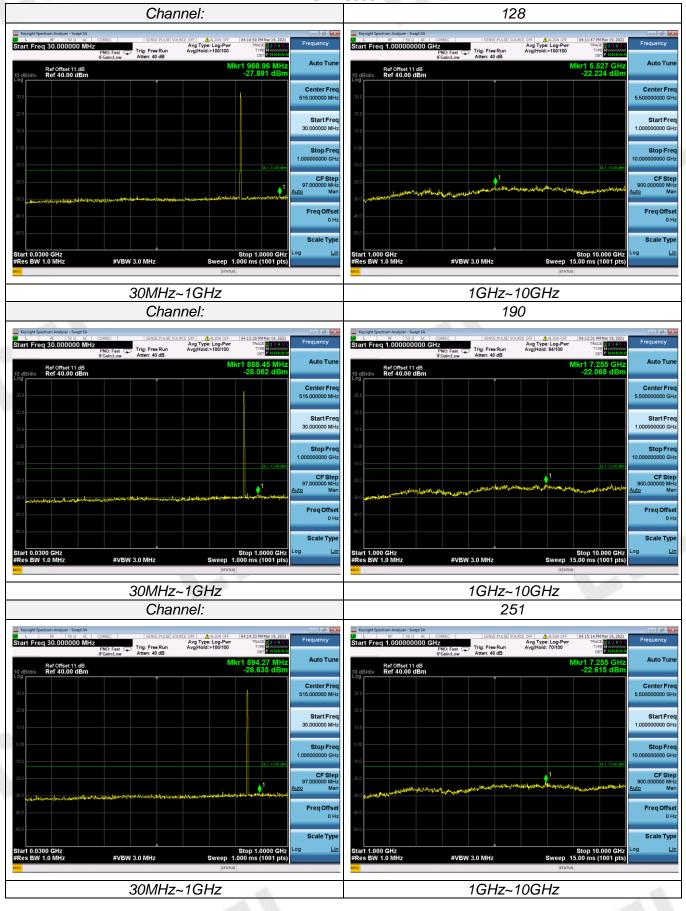
The EUT was setup according to EIA/TIA 603C

Conducted Spurious Measurement:

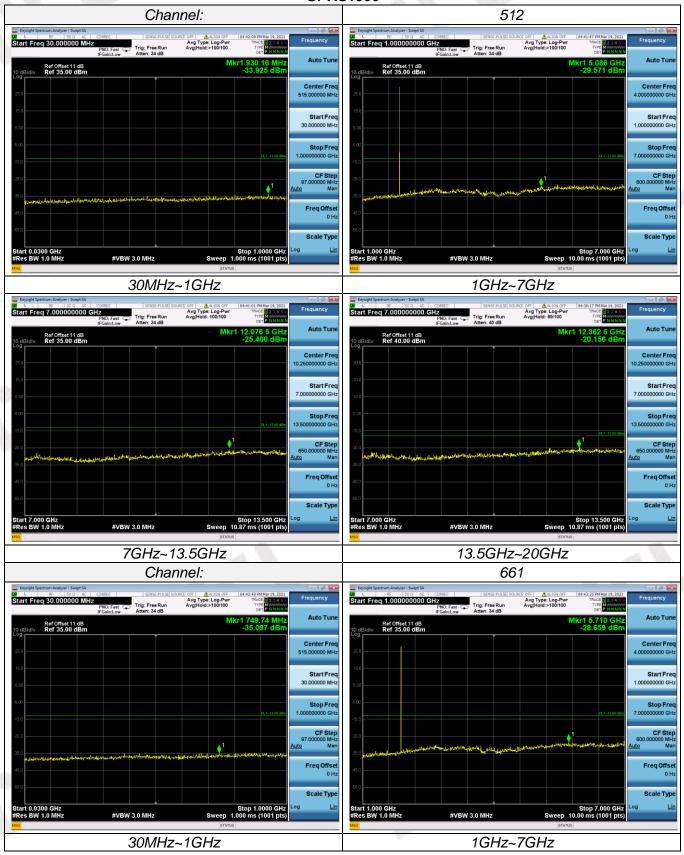
- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- EUT Communicate with CMU200 then selects a channel for testing.

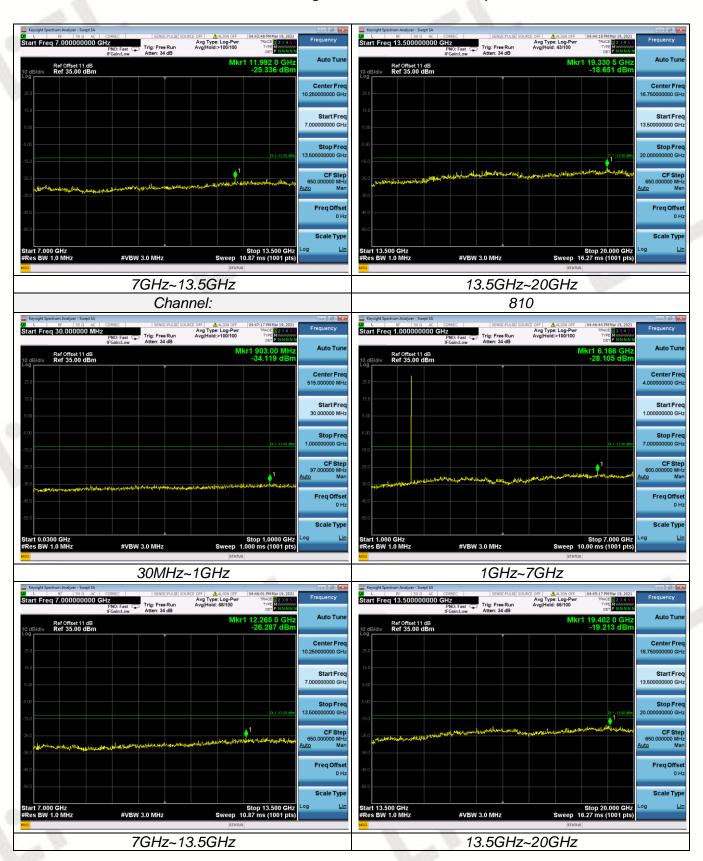
V1.0 Page 21 of 33 Report No.: CTL2009191031-WF

- d) Add a correction factor to the display of spectrum, and then test.
- e) The resolution bandwidth of the spectrum analyzer was set at 1MHz for Part 22 and 1MHz for Part 24, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.


Radiated Spurious Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q) The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.


TEST RESULTS


Conducted Measurement:

GPRS850

GPRS1900

Radiated Measurement:

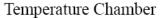
GPRS850

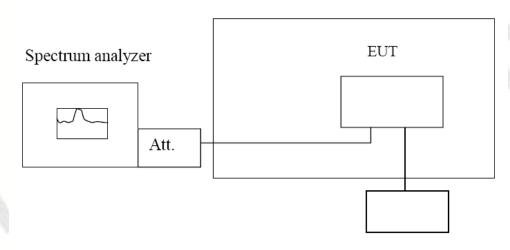
0.17.0000									
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1648.40	-36.58	4.49	3.00	12.45	-28.62	-13.00	15.62	Н
128	2472.60	-37.02	5.26	3.00	13.66	-28.62	-13.00	15.62	Н
120	1648.40	-36.65	4.49	3.00	12.45	-28.69	-13.00	15.69	V
	2472.60	-39.11	5.26	3.00	13.66	-30.71	-13.00	17.71	V
	1673.20	-31.76	3.14	3.00	9.61	-25.29	-13.00	12.29	Н
190	2509.80	-35.72	3.59	3.00	10.77	-28.54	-13.00	15.54	H N
190	1673.20	-31.83	3.14	3.00	9.61	-25.36	-13.00	12.36	V
	2509.80	-34.42	3.59	3.00	10.77	-27.24	-13.00	14.24	V
	1697.60	-35.25	3.26	3.00	9.77	-28.74	-13.00	15.74	H
251	2546.40	-33.53	3.69	3.00	10.89	-26.33	-13.00	13.33	Н
231	1697.60	-33.98	3.26	3.00	9.77	-27.47	-13.00	14.47	V
	2546.40	-36.61	3.69	3.00	12.45	-28.62	-13.00	16.41	V

GPRS1900

0.1.0.000									
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3700.40	-33.19	4.25	3.00	12.45	-25.10	-13.00	12.10	Н
510	5550.60	-39.12	4.97	3.00	13.66	-30.57	-13.00	17.57	Н
512	3700.40	-31.62	4.25	3.00	12.45	-23.53	-13.00	10.53	V
	5550.60	-36.87	4.97	3.00	13.66	-28.32	-13.00	15.32	V
	3760.00	-31.34	4.38	3.00	9.61	-23.38	-13.00	10.38	Н
661	5640.00	-36.75	5.01	3.00	10.77	-28.18	-13.00	15.18	Н
001	3760.00	-32.95	4.38	3.00	9.61	-24.99	-13.00	11.99	V
	5640.00	-38.72	5.01	3.00	10.77	-30.15	-13.00	17.15	V
	3819.60	-33.39	4.49	3.00	9.77	-25.43	-13.00	12.43	H
910	5729.40	-40.00	5.26	3.00	10.89	-31.60	-13.00	18.60	Н
810	3819.60	-33.26	4.49	3.00	9.77	-25.30	-13.00	12.30	V
	5729.40	-38.76	5.26	3.00	10.89	-30.36	-13.00	17.36	V

Remark:


- EIRP=P_{Mea}(dBm)-P_{cl}(dB) +G_a(dBi)
 We were not recorded other points as values lower than limits.
- 3. Margin = Limit EIRP


3.5 Frequency Stability under Temperature & Voltage Variations

LIMIT

Cellular Band: ±2.5ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

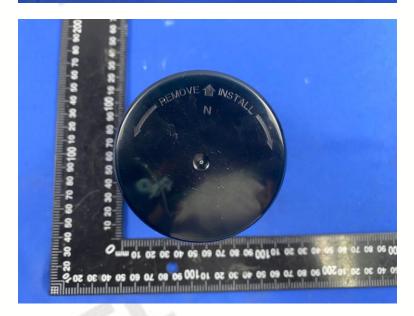
Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

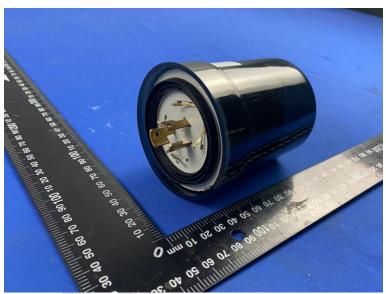
Defens		NAOCO NA:-L-II			_				
Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz									
Voltage (V)	Temperature	Freque	ncy error	Limit (ppm)	Result				
voltage (v)	(℃)	Hz	ppm	Limit (ppin)	Nesuit				
	-30	16	0.019						
	-20	-41	-0.050						
	-10	-49	-0.059						
	0	43	0.052						
110	10	31	0.038						
	20	5	0.006	±2.50	Pass				
	30	5	0.006		1				
	40	-38	-0.046						
	50	-5	-0.006						
121	25	24	0.029						
End point 99	25	23	0.028	<u> </u>					

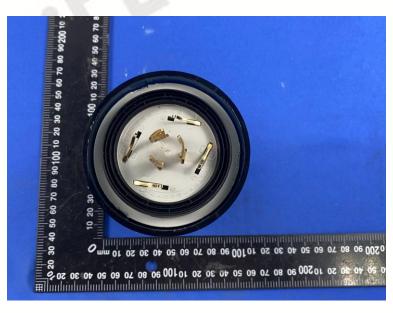
Refere	Reference Frequency: PCS1900 Middle channel=661 channel=1880MHz									
Voltage (V)	Temperature	Freque	ncy error	Limit (nnm)	Result					
voltage (v)	(℃)	Hz	ppm	Limit (ppm)	Result					
	-30	2	0.001							
	-20	41	0.022							
	-10	-43	-0.023							
	0	-36	-0.019							
110	10	-33	-0.018							
	20	20	0.011	±2.50	Pass					
	30	-17	-0.009							
	40	23	0.012							
	50	41	0.022	194						
121	25	10	0.005							
End point 99	25	-32	-0.017							

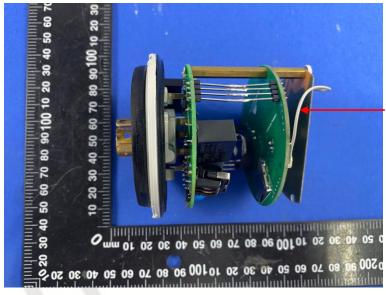
4 Test Setup Photos of the EUT

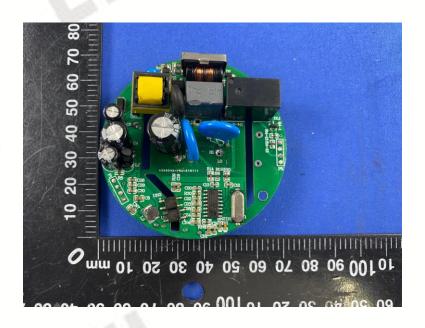


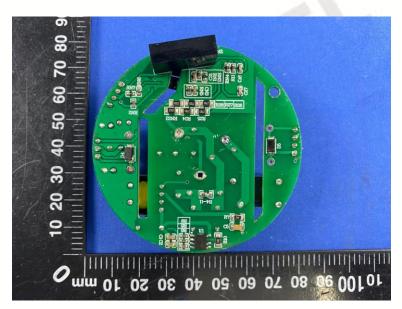
5 Photos of the EUT

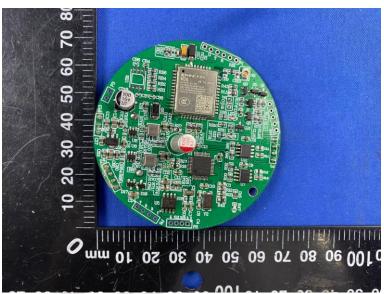

External Photos of EUT

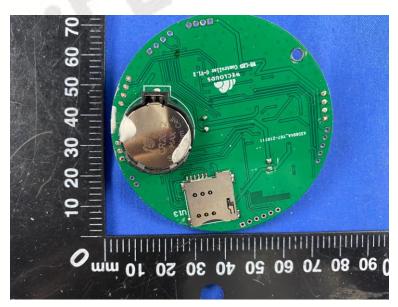


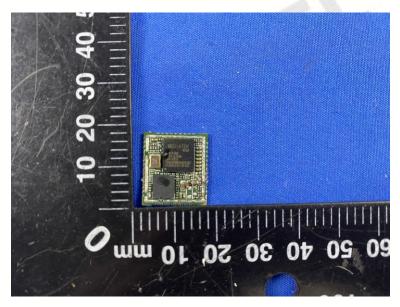


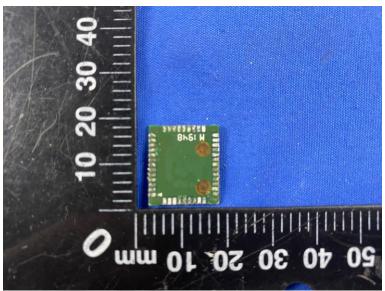

V1.0 Page 31 of 33 Report No.: CTL2009191031-WF


Internal Photos of EUT






Antenna



******************* End of Report ***************