

Global United Technology Services Co., Ltd.

Report No.: GTSL202106000029F01

TEST REPORT

Applicant: Yongkang Kesidi Industry & Trade Co., Ltd

Address of Applicant: NO.25 Jinshan East Road, Economic Development Zone,

Yongkang city, Zhejiang Province, China.

Manufacturer/Factory: Yongkang Kesidi Industry & Trade Co., Ltd

Address of

NO.25 Jinshan East Road, Economic Development Zone,

Manufacturer/Factory: Yongkang city, Zhejiang Province, China.

Equipment Under Test (EUT)

Product Name: Vibration Plate

Model No.: TH-0060A, TH-0070D-4

Trade Mark: N/A

FCC ID: 2AZ8B-TH-0060A

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: May 08, 2021

Date of Test: May 08, 2021~May 31, 2021

Date of report issued: Jun. 01, 2021

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 47

1 Version

Version No.	Date	Description Original		
00	Jun. 01, 2021			
		8 2 8 8		
2 2 2 2 2	2 2 2 2 2			

Prepared By:	Jumelly Date:	Jun. 01, 2021
	Tested/Project Engineer	
Check By:	Date:	Jun. 01, 2021
	Reviewer	

2 Contents

9		Page
1	VERSION	2
2	2 CONTENTS	3
_	마루(Billian Charles Char	
3	B TEST SUMMARY	4
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF EUT	5
	4.2 Test mode	
	4.3 DESCRIPTION OF SUPPORT UNITS	7
	4.4 DEVIATION FROM STANDARDS	
	4.5 ABNORMALITIES FROM STANDARD CONDITIONS	7
	4.6 TEST FACILITY	7
	4.7 TEST LOCATION	7
	4.8 ADDITIONAL INSTRUCTIONS	7
5	5 TEST INSTRUMENTS LIST	8
6	TEST RESULTS AND MEASUREMENT DATA	10
	6.1 ANTENNA REQUIREMENT	10
	6.2 CONDUCTED EMISSIONS	
	6.3 CONDUCTED PEAK OUTPUT POWER	14
	6.4 20DB EMISSION BANDWIDTH	17
	6.5 CARRIER FREQUENCIES SEPARATION	20
	6.6 HOPPING CHANNEL NUMBER	23
	6.7 DWELL TIME	25
	6.8 BAND EDGE	
	6.8.1 Conducted Emission Method	
	6.8.2 Radiated Emission Method	
	6.9 Spurious Emission	
	6.9.1 Conducted Emission Method	
	6.9.2 Radiated Emission Method	39
7	7 TEST SETUP PHOTO	47
Ω	ELIT CONSTRUCTIONAL DETAILS	17

3 Test Summary

Test Item	Section in CFR 47	Result	
Antenna Requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Peak Output Power	15.247 (b)(1)	Pass	
20dB Occupied Bandwidth	15.247 (a)(1)	Pass	
Carrier Frequencies Separation	15.247 (a)(1)	Pass	
Hopping Channel Number	15.247 (a)(1)(iii)	Pass	
Dwell Time	15.247 (a)(1)(iii)	Pass	
Radiated Emission	15.205/15.209	Pass	
Band Edge	15.247(d)	Pass	

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement uncert	tainty is for coverage factor of k	=2 and a level of confidence of 9	5%.

4 General Information

4.1 General Description of EUT

iii Gonorai Booompaon	
Product Name:	Vibration Plate
Model No.:	TH-0060A
Serial No.:	TH-0070D-4
Model Declaration:	PCB board, structure and internal of these model(s) are the same,
Hardware Version:	N/A
Software Version:	N/A
Test sample(s) ID:	GTSL202106000029-1(Engineer sample)
	GTSL202106000029-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	PCB antenna
Antenna gain:	-0.58dBi
Power supply:	AC 110-120V 50/60Hz

Operation	Frequency eac	h of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
0	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz	6	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3 Description of Support Units

None.

4.4 Deviation from Standards

None.

4.5 Abnormalities from Standard Conditions

None.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, Designation Number: CN5029

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

4.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

4.8 Additional Instructions

Test Software	Test software FCCAssist. provided by manufacturer
Power level setup	Default

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 Test Instruments list

Rad	iated Emission:	2 2	2 2 2	0	0 0	0 0
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber ZhongYu Electron		9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	AP &	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2020	Oct. 18 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2020	Oct. 18 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2020	Oct. 18 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Conc	lucted Emission				7 27	
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	2 E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021

RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021	
9	Spectrum Analyzer	R&S	FSV40	GTS559	June. 25 2020	June. 24 2021	

General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
©1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021	
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the is -0.58dBi, reference to the appendix II for details

6.2 Conducted Emissions

4	Test Requirement:	FCC Part15 C Section 15.207						
	Test Method:	ANSI C63.10:2013		e de	8 6			
	Test Frequency Range:	150KHz to 30MHz	9 9 9		9 9			
	Class / Severity:	Class B		_ V V				
	Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	RBW=9KHz, VBW=30KHz, Sweep time=auto					
	Limit:	Francis (MILE)	Limi	t (dBuV)	- 3			
		Frequency range (MHz)	Quasi-peak		rage			
		0.15-0.5	66 to 56*	740	0 46*			
4		0.5-5	56		6			
		5-30	60	5	0			
	Test setup:	* Decreases with the logarithm Reference Plane	i or the frequency.					
	Test procedure:	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	EMI Receiver					
		 line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
7	Test Instruments:	Refer to section 6.0 for details	- B B					
	Test mode:	Refer to section 5.2 for details	9 12 19	19 1	9 12			
	Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar			
	Test voltage:	AC 120V, 60Hz						
	Test results:	Pass		6 6	6			
_					- 27			

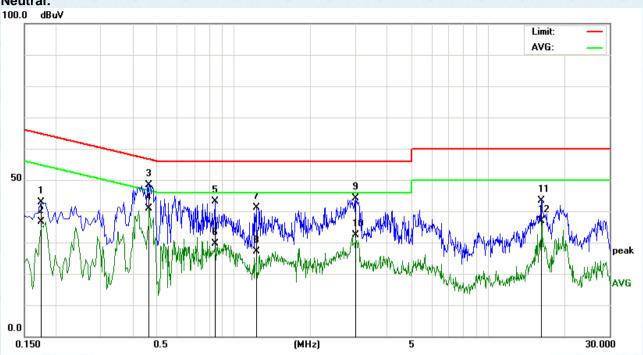
Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 11 of 47

Measurement data:

0.150

0.5


(MHz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBu∨	dBu∨	dB	Detector
1		0.1780	27.27	11.41	38.68	64.57	-25.89	QP
2		0.1780	19.76	11.41	31.17	54.57	-23.40	AVG
3		0.2900	30.03	10.50	40.53	60.52	-19.99	QP
4		0.2900	23.55	10.50	34.05	50.52	-16.47	AVG
5		0.4620	38.69	10.05	48.74	56.66	-7.92	QP
6	*	0.4620	29.54	10.05	39.59	46.66	-7.07	AVG
7		0.9180	34.44	9.94	44.38	56.00	-11.62	QP
8		0.9180	21.04	9.94	30.98	46.00	-15.02	AVG
9		3.0220	34.36	10.03	44.39	56.00	-11.61	QP
10		3.0220	18.61	10.03	28.64	46.00	-17.36	AVG
11		16.2300	33.55	10.59	44.14	60.00	-15.86	QP
12		16.2300	23.01	10.59	33.60	50.00	-16.40	AVG

30.000

Neutral:

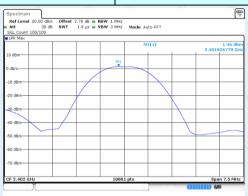
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector
1		0.1740	31.39	11.48	42.87	64.76	-21.89	QP
2		0.1740	25.11	11.48	36.59	54.76	-18.17	AVG
3		0.4660	38.25	10.05	48.30	56.58	-8.28	QP
4	*	0.4660	30.84	10.05	40.89	46.58	-5.69	AVG
5		0.8460	33.17	9.95	43.12	56.00	-12.88	QP
6		0.8460	19.66	9.95	29.61	46.00	-16.39	AVG
7		1.2260	31.15	9.95	41.10	56.00	-14.90	QP
8		1.2260	17.08	9.95	27.03	46.00	-18.97	AVG
9		3.0180	34.02	10.03	44.05	56.00	-11.95	QP
10		3.0180	22.28	10.03	32.31	46.00	-13.69	AVG
11		16.1700	32.90	10.58	43.48	60.00	-16.52	QP
12		16.1700	26.30	10.58	36.88	50.00	-13.12	AVG

Notes:

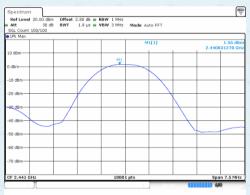
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	ANSI C63.10:2013			
Limit:	30dBm(for GFSK),20.97dBm(for EDR)			
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane			
	Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test Instruments: Test mode:				
	Refer to section 6.0 for details			
Test mode:	Refer to section 6.0 for details Refer to section 5.2 for details			


Measurement Data

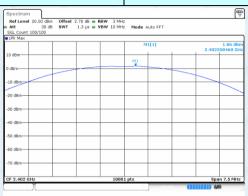
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	1.46	9 9	2 0	
GFSK	Middle	1.56		Pass	
	Highest	1.33			
π/4-DQPSK	Lowest	1.86	1.86		
	Middle	1.96	30.00	Pass	
	Highest	1.63	9 19 19 1	Pass	

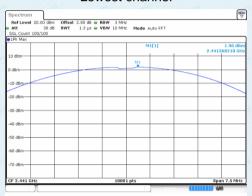


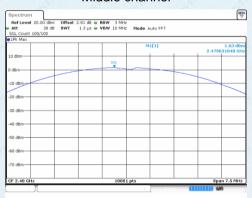
Test plot as follows:

Test mode: GFSK mode

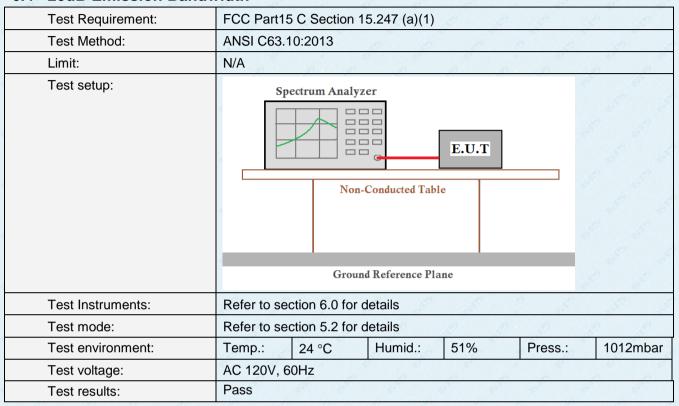
Lowest channel


Middle channel


Highest channel

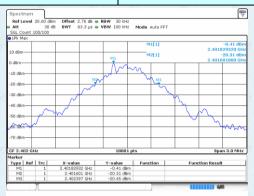

Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel

Highest channel

6.4 20dB Emission Bandwidth

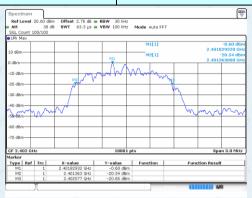

Measurement Data

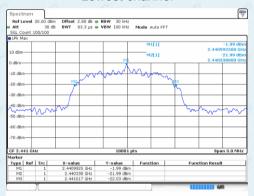
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.796	8 - 8 - 8
GFSK	Middle	0.835	Pass
8 8 3	Highest	0.872	8 8 6
0 2 2 3	Lowest	1.214	g g
π /4-DQPSK	Middle	1.278	Pass
49 49 19 19 19 19 19 19 19 19 19 19 19 19 19	Highest	1.211	

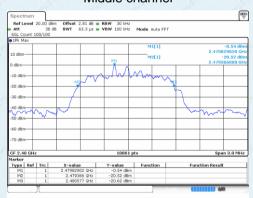
Test plot as follows:

Test mode: GFSK mode

Lowest channel


Middle channel


Highest channel


Test mode: π /4-DQPSK

Lowest channel

Middle channel

Highest channel

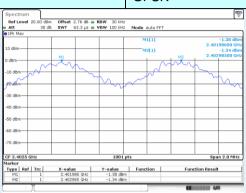
6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part	15 C Section 1	5.247 (a)(1)	8 8			
Test Method:	ANSI C63	.10:2013	de de	2	9 9		
Receiver setup:	RBW=100	RBW=100KHz, VBW=300KHz, detector=Peak					
Limit:	π/4-DQPS	GFSK: 20dB bandwidth π /4-DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)					
Test setup:	S	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to s	ection 6.0 for	details		9 10	- 10 × 1	
Test mode:	Refer to s	ection 5.2 for	details	₩	6	6 6	
Test environment:	Temp.:	24 °C	Humid.:	51%	Press.:	1012mbar	
Test voltage:	AC 120V,	60Hz	£	S. C.			
Test results:	Pass	2 2	10	2 2	0	9 9	

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
6 6	Lowest	999	581.33	Pass
GFSK	Middle	972	581.33	Pass
	Highest	1000	581.33	Pass
π/4-DQPSK	Lowest	1074	852.00	Pass
	Middle	1221	852.00	Pass
	Highest	1300	852.00	Pass

Note: According to section 7.4

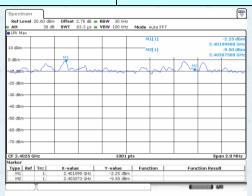

Mode	20dB bandwidth (kHz)	Limit (kHz)	
Wiode	(worse case)	(Carrier Frequencies Separation)	
GFSK	872	581.33	
π/4-DQPSK	1278	852.00	

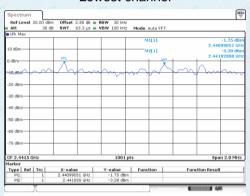
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

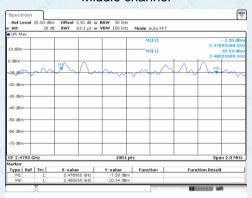
Test plot as follows:

Modulation mode: GFSK

Lowest channel


Middle channel


Highest channel


Test mode: π/4-DQPSK

Lowest channel

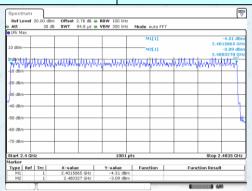
Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak				
Limit:	15 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar				
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

Measurement Data:


Mode	Hopping channel numbers	Limit	Result	
GFSK	79	≥15CH	Pass	
π/4-DQPSK	79	≥15CH	Pass	

Test plot as follows:

Test mode: **GFSK** 7 Type | Ref | Trc

π/4-DQPSK Test mode:

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar
Test voltage:	AC 120V, 60Hz
Test results:	Pass

Measurement Data

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	0.377	400	Pass
2441MHz	DH3	1.633	400	Pass
2441MHz	DH5	2.881	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.3817(ms)*(1600/ (2*79))*31.6 DH3 time slot=1.635(ms)*(1600/ (4*79))*31.6 DH5 time slot=2.883(ms)*(1600/ (6*79))*31.6

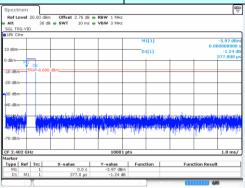
π/4-DQPSK mode:

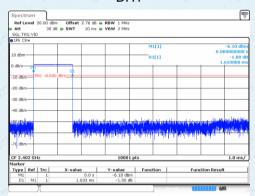
Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	0.382	400	Pass
2441MHz	3DH3	1.638	400	Pass
2441MHz	3DH5	2.881	400	Pass

Remarks:

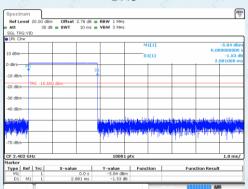
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow


DH1 time slot=0.390(ms)*(1600/ (2*79))*31.6 DH3 time slot=1.64(ms)*(1600/ (4*79))*31.6 DH5 time slot=2.892(ms)*(1600/ (6*79))*31.6

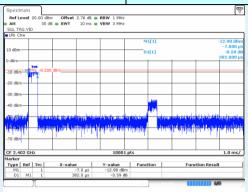

Test plot as follows:

GFSK mode:

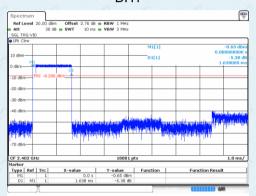

Test channel: 2402MHz

DH1

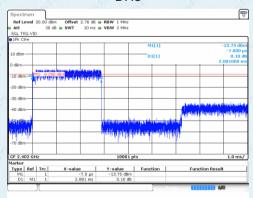
DH3



DH5



π/4-DQPSK mode:


Test channel: 2441MHz

DH1

DH3

DH₅

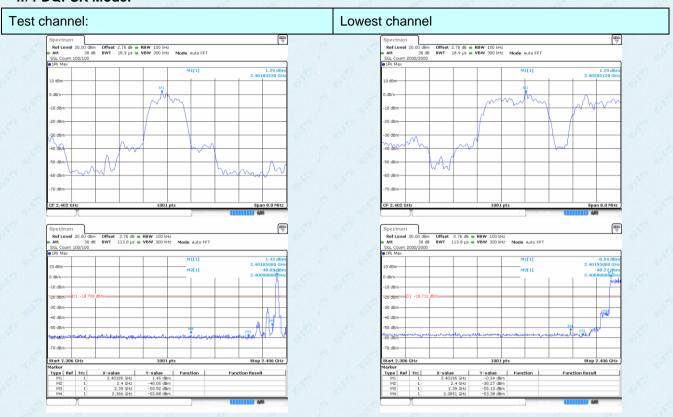
6.8 Band Edge

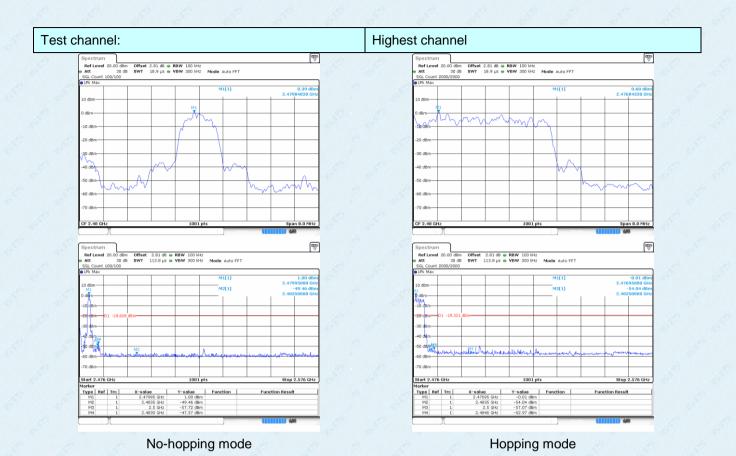
6.8.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test environment:	Temp.: 24 °C Humid.: 51% Press.: 1012mbar
Test voltage:	AC 120V, 60Hz
Test results:	Pass

Test plot as follows:

GFSK Mode:




π/4-DQPSK Mode:

No-hopping mode

Hopping mode

6.8.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:20	013	/9	9 9	39			
Test Frequency Range:	All of the restriction 2500MHz) data		e tested, only	the worst	band's	(2310MHz to		
Test site:	Measurement D	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	R	emark		
·	Above 1GHz	Peak	1MHz	3MHz		ak Value		
	200	Peak	1MHz	10Hz		age Value		
Limit:	Freque	ency	Limit (dBuV/			emark		
	Above 1	GHz	54.0 74.0			age Value ak Value		
	Tum Table	<3m> UIT+	Test Antenna- < lm 4m >- iver- Preamplifie					
	determine the 2. The EUT was antenna, whistower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum res 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would be margin would	e position of the set 3 meters chewas mount height is varietermine the module vertical polant. Expected emission antenna was table was turn ading. Every system with Maximum on level of the dot, then testing the reported. Out the set of the control of the contro	ed from one maximum value rizations of the ion, the EUT valued to height ed from 0 decays set to Pear Hold Mode. EUT in peak could be stortherwise the edone by one used on the poles.	vas rotated liation. The interference of a variable eartenna and was arrangents from 1 mgrees to 360 k Detect Full mode was and the missions the sing peak, of the interference of the content of the con	360 deg nce-rece le-heigh r meters I strengt are set to ed to its neter to degree unction a 10dB lov e peak v nat did na quasi-pe	above the h. Both o make the worst case 4 meters es to find the and Specified wer than the values of the ot have 10dE eak or		
Test Instruments:	determine the 2. The EUT was antenna, whistower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum res 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would be margin would	e position of the set 3 meters ch was mount height is varietermine the mod vertical polant. Spected emiss antenna was table was turnading. Every system with Maximum lon level of the ch, then testing the reported. On the cholon as specifical was specifically and the set of the cholon as specifically and the set of the cholon as specifically and the set of the cholon as specifically and the set of the set of the cholon as specifically and the set of the set	ne highest races away from the away from the ed on the tope of from one maximum valued in the ed one to heigh of the ed from 0 decorates as set to Pear Hold Mode. EUT in pear could be stope one by one used and then reserved.	vas rotated liation. The interference of a variable eartenna and was arrangents from 1 mgrees to 360 k Detect Full mode was and the missions the sing peak, of the interference of the content of the con	360 deg nce-rece le-heigh r meters I strengt are set to ed to its neter to degree unction a 10dB lov e peak v nat did na quasi-pe	siving tantenna above the h. Both o make the worst case 4 meters es to find the and Specified wer than the values of the ot have 10dE eak or		
Test Instruments: Test mode:	determine the 2. The EUT was antenna, whistower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum re 5. The test-rece Bandwidth w 6. If the emissic limit specified EUT would be margin would average met	e position of the set 3 meters ch was mount height is varietermine the mid vertical polant. Spected emiss antenna was table was turnading. Eiver system with Maximum lon level of the d, then testing the reported. On the dot as specification of the dot of	ne highest races away from the away from the ed on the tope of from one maximum value inizations of the from 0 decorates as set to Pear Hold Mode. EUT in peak could be stope therwise the ed one by one used and then reserved.	vas rotated liation. The interference of a variable eartenna and was arrangents from 1 mgrees to 360 k Detect Full mode was and the missions the sing peak, of the interference of the content of the con	360 deg nce-rece le-heigh r meters I strengt are set to ed to its neter to degree unction a 10dB lov e peak v nat did na quasi-pe	siving tantenna above the h. Both o make the worst case 4 meters es to find the and Specified wer than the values of the ot have 10de eak or		
	determine the 2. The EUT was antenna, whis tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum re 5. The test-rece Bandwidth w 6. If the emissic limit specified EUT would b margin would average met Refer to section	e position of the set 3 meters ch was mount height is varietermine the mod vertical polant. Spected emiss antenna was table was turnading. Every system with Maximum on level of the did, then testing the reported. On the did be re-tested to do as specification of the did of	ne highest races away from the away from the ed on the tope of from one maximum value inizations of the from 0 decorates as set to Pear Hold Mode. EUT in peak could be stope therwise the ed one by one used and then reserved.	vas rotated liation. he interference of a variable enter to four enter from 1 n grees to 360 k Detect Full mode was a poped and the missions the sing peak, comported in a final from the four entert in a final from the four entert in a final from the fin	360 deg nce-rece le-heigh r meters I strengt are set to ed to its neter to degree unction a 10dB lov e peak v nat did na quasi-pe	siving tantenna above the h. Both o make the worst case 4 meters es to find the and Specified wer than the values of the ot have 10de eak or		
Test mode:	determine the 2. The EUT was antenna, whis tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum res 5. The test-rece Bandwidth w 6. If the emissic limit specified EUT would b margin would average met Refer to section	e position of the set 3 meters ch was mount height is varietermine the mid vertical polant. Spected emission antenna was table was turnading. Ever system with Maximum on level of the dight of the foliation of the dight of the foliation of the dight of the dight of the dight of the foliation of the dight of the foliation of the dight of the dight of the dight of the foliation of the dight of the dight of the dight of the foliation of the dight of the foliation	ne highest races away from the away from the ed on the tope of from one maximum value rizations of the ion, the EUT tuned to height of from 0 decays set to Pea Hold Mode. EUT in peak could be stope one by one used and then reserved.	vas rotated liation. he interference of a variable enter to four enter from 1 n grees to 360 k Detect Full mode was a poped and the missions the sing peak, comported in a final from the four entert in a final from the four entert in a final from the fin	360 degrees a data sh	grees to siving t antenna above the h. Both o make the worst case 4 meters es to find the and Specified wer than the values of the ot have 10dE eak or neet.		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

Test channel: Lowest channel

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	30.00.0.0.7,70
2400.000	58.62	-5.70	52.92	74.00	-21.08	peak
2400.000	43.72	-5.70	38.02	54.00	-15.98	AVG

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2400.000	61.66	-5.70	55.96	74.00	-18.04	peak
2400.000	45.94	-5.70	40.24	54.00	-13.76	AVG

Test channel:	Highest channel
---------------	-----------------

Vertical:

ſ	200	28 /28	7.0			200	120
	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	2483.500	50.75	-4.98	45.77	74.00	-28.23	peak
100	2483.500	39.70	-4.98	34.72	54.00	-19.28	AVG

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	8 8
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.500	52.20	-4.98	47.22	74.00	-26.78	peak
2483.500	51.89	-4.98	46.91	54.00	-7.09	AVG

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the GFSK, π /4-DQPSK, π /4-DQPSK modulation, and found the GFSK modulation which it is worse case.

6.9 Spurious Emission

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Ground Reference Plane Refer to section 6.0 for details					
Test Instruments: Test mode:						
	Refer to section 6.0 for details					
Test mode:	Refer to section 6.0 for details Refer to section 5.2 for details					

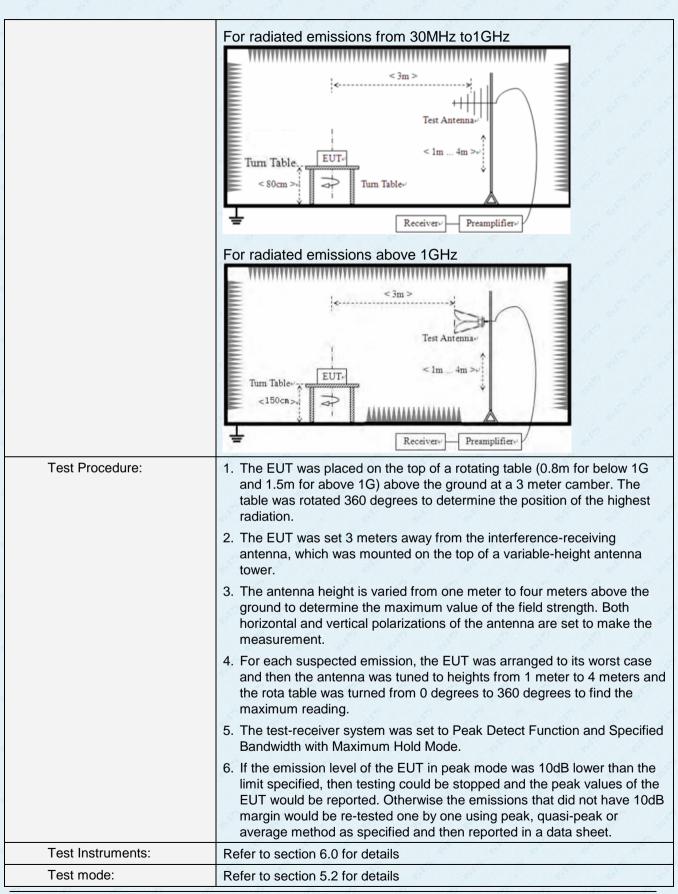
GFSK mode: Test channel: Lowest channel Offset 2.76 d8 ⊕ RBW 100 kHz SWT 18.9 μs ⊕ VBW 300 kHz Mode Auto FFT Offset 2.76 dB • RBW 100 kHz SWT 265 ms • VBW 300 kHz Mode Auto Sweep Function 30MHz~25GHz Middle channel Test channel: Offset 2.80 d8 • RBW 100 kHz SWT 18.9 μs • VBW 300 kHz Mode Auto FFT Offset 2.80 dB • RBW 100 kHz 8WT 265 ms • VBW 300 kHz Mode Auto Sv 30MHz~25GHz Test channel: Highest channel Ref Level 20.00 dBm Offset 2.81 dB ⊕ RBW 100 kHz Att 35 dB SWT 18.9 µs ⊕ VBW 300 kHz Mode Auto FFT Offset 2.81 dB • RBW 100 kHz SWT 265 ms • VBW 300 kHz Type | Ref | Trc

30MHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 37 of 47

π/4-DQPSK mode: Test channel: Lowest channel ∇ Type | Ref | Trc | 30MHz~25GHz Middle channel Test channel: ____ Offset 2.80 dB • RBW 100 kHz SWT 265 ms • VBW 300 kHz Type Ref Trc 30MHz~25GHz Test channel: Highest channel Offset 2.81 dB ■ RBW 100 kHz SWT 18.9 µs ■ VBW 300 kHz Type | Ref | Tro

30MHz~25GHz


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.9.2 Radiated Emission Method

0.3.2 Radiated Lillission W	letilou	17.00				- NOV	No. of the last of
Test Requirement:	FCC Part15 C Section	on 15.	.209	E.	6 6		
Test Method:	ANSI C63.10:2013	28	50	J.	7	8	9
Test Frequency Range:	9kHz to 25GHz	9	20	20	Ø · 3		20 20
Test site:	Measurement Distar	nce: 3	m	, g	9		
Receiver setup:	Frequency	D	etector	RBW	/ VB\	N	Value
	9KHz-150KHz	Qua	asi-peak	200H	z 600l	Ηz	Quasi-peak
	150KHz-30MHz	Qua	asi-peak	9KHz	30KI	Ηz	Quasi-peak
	30MHz-1GHz	Qua	asi-peak	120KH	1z 300K	Hz	Quasi-peak
	Above 1GHz		Peak	1MH:	z 3MF	Ηz	Peak
	Above 1G112	9	Peak	1MH	z 10H	lz	Average
Limit:	Frequency	46	Limit (u\	//m)	Value	0	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	QP		300m
	0.490MHz-1.705M	lHz	24000/F(KHz)	QP	.5	30m
	1.705MHz-30MH	lz	30	20	QP	6	30m
	30MHz-88MHz	,	100		QP QP		
	88MHz-216MHz	<u>z</u>	150				
	216MHz-960MH	z	200		QP		3m
	960MHz-1GHz		500		QP		Jili
	Above 1GHz	50	500		Average		
	Above Toriz		5000		Peak		
Test setup:	For radiated emiss	sions	from 9kH	z to 30l	MHz		
	************	******	***************************************	***********	**********	11	
	Tum Table EUT		< 3m > Test A m Table	ntenna Im			

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz	8 8			8 8
Test results:	Pass	10 10	B	9 9	8 1	9 99

Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

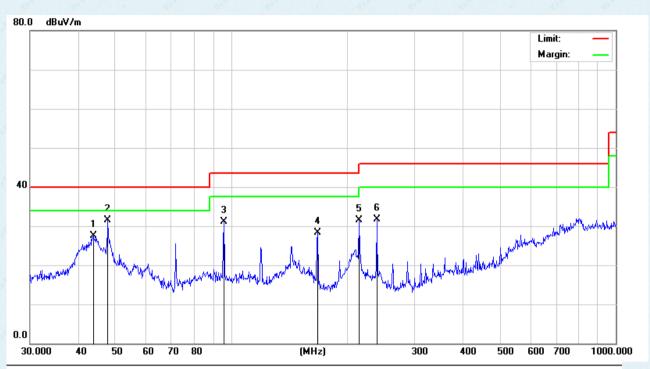
■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Pre-scan all test modes, found worst case at GFSK 2480MHz, and so only show the test result of GFSK 2480MHz

Horizontal:



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		45.6948	24.67	-2.37	22.30	40.00	-17.70	QP
2		104.5361	24.57	-7.28	17.29	43.50	-26.21	QP
3		167.8243	36.56	-7.49	29.07	43.50	-14.43	QP
4		239.1473	29.44	-6.60	22.84	46.00	-23.16	QP
5		566.6223	25.97	4.33	30.30	46.00	-15.70	QP
6	*	684.7454	25.72	6.63	32.35	46.00	-13.65	QP

Final Level = Receiver Read level + Correct Factor

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1		43.8119	31.86	-4.45	27.41	40.00	-12.59	QP
2	*	47.8260	36.96	-5.39	31.57	40.00	-8.43	QP
3		95.7622	40.70	-9.55	31.15	43.50	-12.35	QP
4		167.8243	37.42	-9.11	28.31	43.50	-15.19	QP
5		215.2678	36.72	-5.26	31.46	43.50	-12.04	QP
6		239.1473	38.35	-6.60	31.75	46.00	-14.25	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1GHz

Test channel: Lowest channel

Н

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	9
8	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	4804.000	48.14	5.06	53.20	74.00	-20.80	PEAK
9	4804.000	38.44	5.06	43.50	54.00	-10.50	AVG
W L	7206.000	42.31	7.03	49.34	74.00	-24.66	PEAK
9	7206.000	33.40	7.03	40.43	54.00	-13.57	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	o o
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804.000	47.54	5.06	52.60	74.00	-21.40	PEAK
4804.000	38.61	5.06	43.67	54.00	-10.33	AVG
7206.000	43.15	7.03	50.18	74.00	-23.82	PEAK
7206.000	32.68	7.03	39.71	54.00	-14.29	AVG

Test channel: Middle channel

Н

60	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	20 20
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
9	4882.000	48.21	5.14	53.35	74.00	-20.65	PEAK
	4882.000	38.72	5.14	43.86	54.00	-10.14	AVG
6	7323.000	41.37	7.52	48.89	74.00	-25.11	PEAK
AS SS	7323.000	32.42	7.52	39.94	54.00	-14.06	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882.000	47.26	5.14	52.40	74.00	-21.60	PEAK
4882.000	38.36	5.14	43.50	54.00	-10.50	AVG
7323.000	41.59	7.52	49.11	74.00	-24.89	PEAK
7323.000	31.91	7.52	39.43	54.00	-14.57	AVG

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

st channel:	Highest channel
-------------	-----------------

Н

48	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
69	4960.000	48.99	5.22	54.21	74.00	-19.79	PEAK
	4960.000	38.22	5.22	43.44	54.00	-10.56	AVG
6	7440.000	42.03	8.06	50.09	74.00	-23.91	PEAK
	7440.000	31.78	8.06	39.84	54.00	-14.16	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	9 6
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.000	47.92	5.22	53.14	74.00	-20.86	PEAK
4960.000	37.72	5.22	42.94	54.00	-11.06	AVG
7440.000	41.97	8.06	50.03	74.00	-23.97	PEAK
7440.000	32.07	8.06	40.13	54.00	-13.87	AVG

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

7 Test Setup Photo

Reference to the appendix I for details.

8 EUT Constructional Details

Reference to the appendix II for details.

-----End-----

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960