

TEST REPORT

N°: 167678-752218-A (FILE#1047380)

Version : 03

Subject Electromagnetic compatibility tests according to the standards:
FCC CFR 47 Part 15, Subpart B.
ANSI C63.4 (2014)
ICES-003 Ed7.0 (2020)

Issued to
B.A.Developpement
451 Chemin de Champivost
69579 - LIMONEST
France

Apparatus under test
↳ Product ONE-C Control Board
↳ Trade mark **La Barrière Automatique**
↳ Manufacturer **TECMOTION**
↳ Model under test **ENPL010188**
↳ Serial number **None**
↳ FCC ID **2A5Y2-ENPL010188**

Conclusion See Test Program chapter

Test date June 29, 2020
Test location MOIRANS
FCC Test site FR0008 - 197516
Sample receipt date June 29, 2020
Composition of document 22 pages

Document issued on June 27, 2022

Written by :
Majid MOURZAGH
Tests operator

Approved by :
Anthony MERLIN
Technical manager

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified or rule defined by the test method, the decision of conformity doesn't take into account the uncertainty of measures. This document doesn't anticipate any certification decision.

LCIE

Laboratoire Central des Industries Electriques
Une société de Bureau Veritas

ZI Centr' alp
170 rue de Chatagnon
38430 Moirans FRANCE

Tél : +33 4 76 07 36 36
contact@lcie.fr
www.lcie.fr

L C I E

PUBLICATION HISTORY

Version	Date	Author	Modification
01	December 07, 2020	Nathalie BUGANZA	Creation of the document
02	June 10 , 2022	Majid MOURZAGH	Add FCC ID and Change applicant
03	June 27, 2022	Majid MOURZAGH	Add tests photo Setup

Each new edition of this test report replaces and cancels the previous edition. The control of the old editions of report is under responsibility of client.

L C I E

SUMMARY

1. TEST PROGRAM	4
2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)	5
3. MEASUREMENT OF CONDUCTED EMISSION	9
4. MEASUREMENT OF RADIATED EMISSION (30MHZ-1GHZ).....	14
5. UNCERTAINTIES CHART	22

L C I E

1. TEST PROGRAM

Requirements for disturbance emissions – Class B

EMISSION TEST	LIMITS			RESULTS (Comments)	
Limits for conducted disturbance 150kHz-30MHz FCC §15.107	Access: AC power			PASS	
	Frequency	Quasi-peak	Average		
	150-500kHz	66 to 56 dB μ V	56 to 46 dB μ V		
	0.5-5MHz	56 dB μ V	46 dB μ V		
	5-30MHz	60 dB μ V	50 dB μ V		
Radiated emissions 30MHz-1GHz FCC §15.109	Access: Enclosure port of ancillary equipment			PASS	
	Frequency	Quasi-peak @10m			
	30MHz-88MHz	40.0 dB μ V/m			
	88MHz-216MHz	43.5 dB μ V/m			
	216MHz-960MHz	46.0 dB μ V/m			
Radiated emissions >1GHz* (Fmax<108MHz declaration of provider) FCC §15.109	Access: Enclosure port of ancillary equipment			NA	
	Frequency	Peak @3m	Average @3m		
	1GHz	74.0 dB μ V/m	54.0 dB μ V/m		

NP: Not Performed / NA: Not Applicable / NR: Not Requested by the customer (It cannot be taken into account for the declaration of conformity)

D: Divergence, the last version is used to make it possible to test the product with the standard which describes the current state of the art and thus to answer as well as possible his environment of final use.

***§15.33:** The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

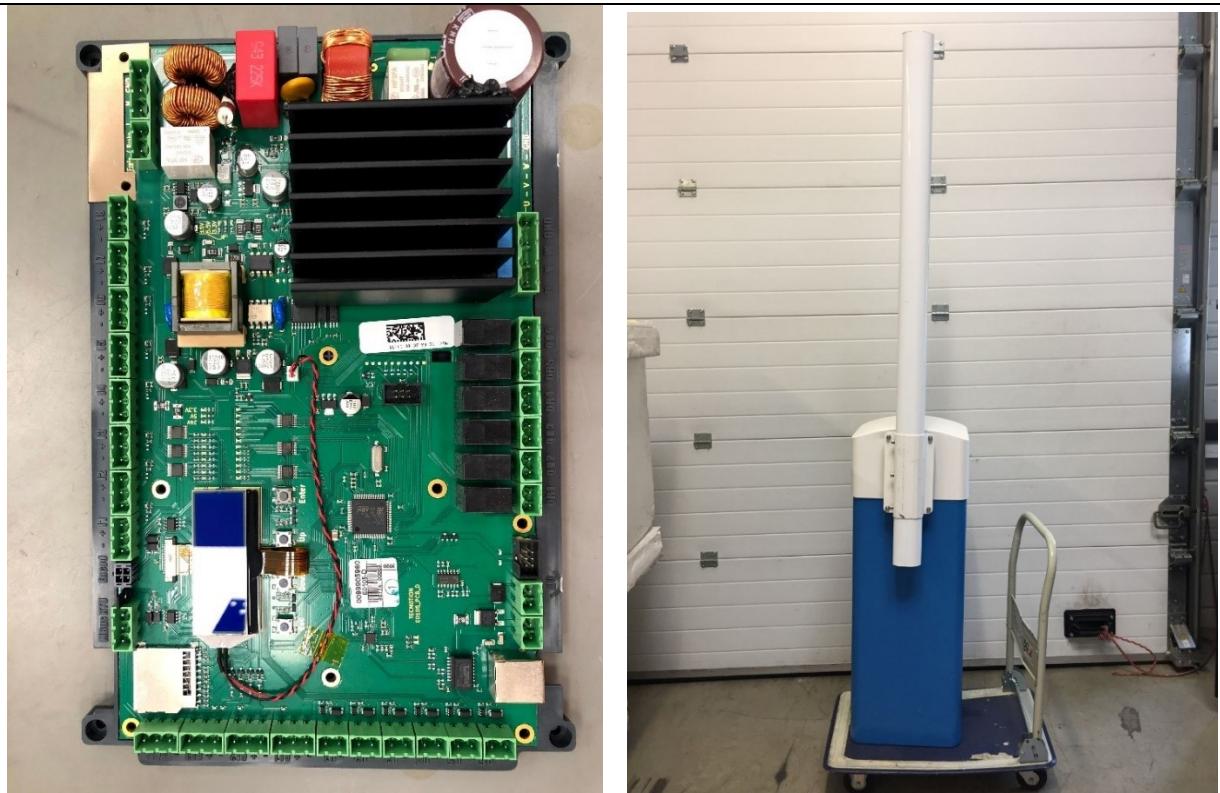
- If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.
- If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.
- If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

Special condition for intentional radiator:

- For a composite system comprised of a digital device using a clock frequency of 1 GHz as the highest frequency for the digital logic and an intentional radiator operating at 2.4 GHz, the composite is required to be investigated to the upper frequency of 24 GHz (in this case, 10 times the intentional radiator frequency is the higher frequency).
- For a composite system comprised of a digital device using a clock frequency of 2 GHz as the highest frequency for the digital logic and an intentional radiator operating at 913 MHz, the composite is required to be investigated to the upper frequency of 10 GHz (in this case, 5 times the unintentional radiator clock frequency is the higher frequency).

L C I E


2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT):

ENPL010188

Serial Number: None

Equipment Under Test

Power supply:

During all the tests, EUT is supplied by V_{nom} : 110 VAC – 60Hz

For measurement with different voltage, it will be presented in test method.

Name	Type	Rating	Reference / Sn	Comments
Supply	<input checked="" type="checkbox"/> AC <input type="checkbox"/> DC <input type="checkbox"/> Battery	110V / 60Hz	-	-

Voltage table used for conducted emission:

Type	Measurement performed:	
<input checked="" type="checkbox"/> AC	<input checked="" type="checkbox"/> 120VAC/60Hz	<input type="checkbox"/> 240VAC/50Hz
<input type="checkbox"/> DC	<input type="checkbox"/> 120VAC/60Hz (Supply auxiliary)	<input type="checkbox"/> 240VAC/50Hz (Supply auxiliary)
<input type="checkbox"/> USB (Laptop auxiliary)	<input type="checkbox"/> 120VAC/60Hz (Laptop auxiliary)	<input type="checkbox"/> 240VAC/50Hz(Laptop auxiliary)

Voltage table used for radiated emission:

Type	Measurement performed:	
<input type="checkbox"/> AC	<input checked="" type="checkbox"/> 120VAC/60Hz	<input type="checkbox"/> 240VAC/50Hz
<input type="checkbox"/> DC	<input type="checkbox"/> 120VAC/60Hz (Supply auxiliary)	<input type="checkbox"/> 240VAC/50Hz (Supply auxiliary)
<input type="checkbox"/> USB (Laptop auxiliary)	<input type="checkbox"/> 120VAC/60Hz (Laptop auxiliary)	<input type="checkbox"/> 240VAC/50Hz(Laptop auxiliary)

Inputs/outputs - Cable:

Access	Type	Length used (m)	Declared <3m	Shielded	Under test	Comments
Supply	2P+E	1	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-

Auxiliary equipment used during test:

Type	FCC Id	Reference	Sn	Comments
		-		

2.2. EUT CONFIGURATION – RUNNING MODE

Hardware information			
Highest internal frequency (PLL, Quartz, Clock, Microprocessor...):	$F_{Highest}$:	50MHz	MHz
Firmware (if applicable):	V. :	Not provided	
Software (if applicable):	V. :	Not provided	

Running Mode:

One-C control board was installed in worst application, opening and closing in loop every 3 seconds

2.3. EQUIPMENT MODIFICATIONS

None Modification:

2.4. SPECIAL ACCESSORIES

None

L C I E

2.5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

$$FS = RA + AF + CF - AG$$

Where
FS = Field Strength
RA = Receiver Amplitude
AF = Antenna Factor
CF = Cable Factor
AG = Amplifier Gain

Assume a receiver reading of 52.5dB μ V is obtained. The antenna factor of 7.4 and a cable factor of 1.1 is added. The amplifier gain of 29dB is subtracted, giving field strength of 32 dB μ V/m.

$$FS = 52.5 + 7.4 + 1.1 - 29 = 32 \text{ dB}\mu\text{V/m}$$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

$$\text{Level in } \mu\text{V/m} = \text{Common Antilogarithm } [(32 \text{ dB}\mu\text{V/m})/20] = 39.8 \mu\text{V/m.}$$

2.6. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period.

3. MEASUREMENT OF CONDUCTED EMISSION

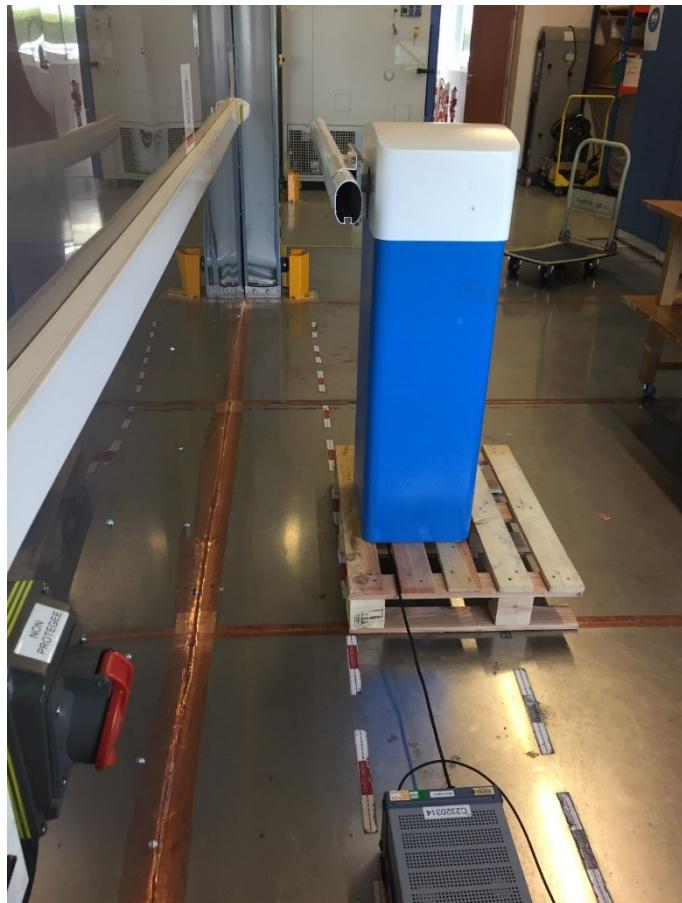
3.1. ENVIRONMENTAL CONDITIONS

Date of test : June 29, 2020
 Test performed by : Nathalie BUGANZA
 Atmospheric pressure (hPa) : 993
 Relative humidity (%) : 50
 Ambient temperature (°C) : 24

3.2. TEST SETUP

Mains terminals

The EUT and auxiliaries are set:



80cm above the ground on the non-conducting table (Table-top equipment)

10cm above the ground on isolating support (Floor standing equipment)

The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered by V_{nom} .

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.

Test setup

3.3. TEST METHOD

The product has been tested according to ANSI C63.4 and FCC Part 15 subpart B. The product has been tested with a voltage sets (see the table voltage in §2.2) and compared to the FCC Part 15 subpart B. Measurement bandwidth was 9kHz from 150kHz to 30MHz. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is $50\Omega / 50\mu\text{H}$. The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured. Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Measurements are performed on the phase (L1) and neutral (N) of power line voltage (for example). Graphs are obtained in PEAK detection. Measures are also performed in Quasi-Peak and Average for any strong signal.

3.4. TEST EQUIPMENT LIST

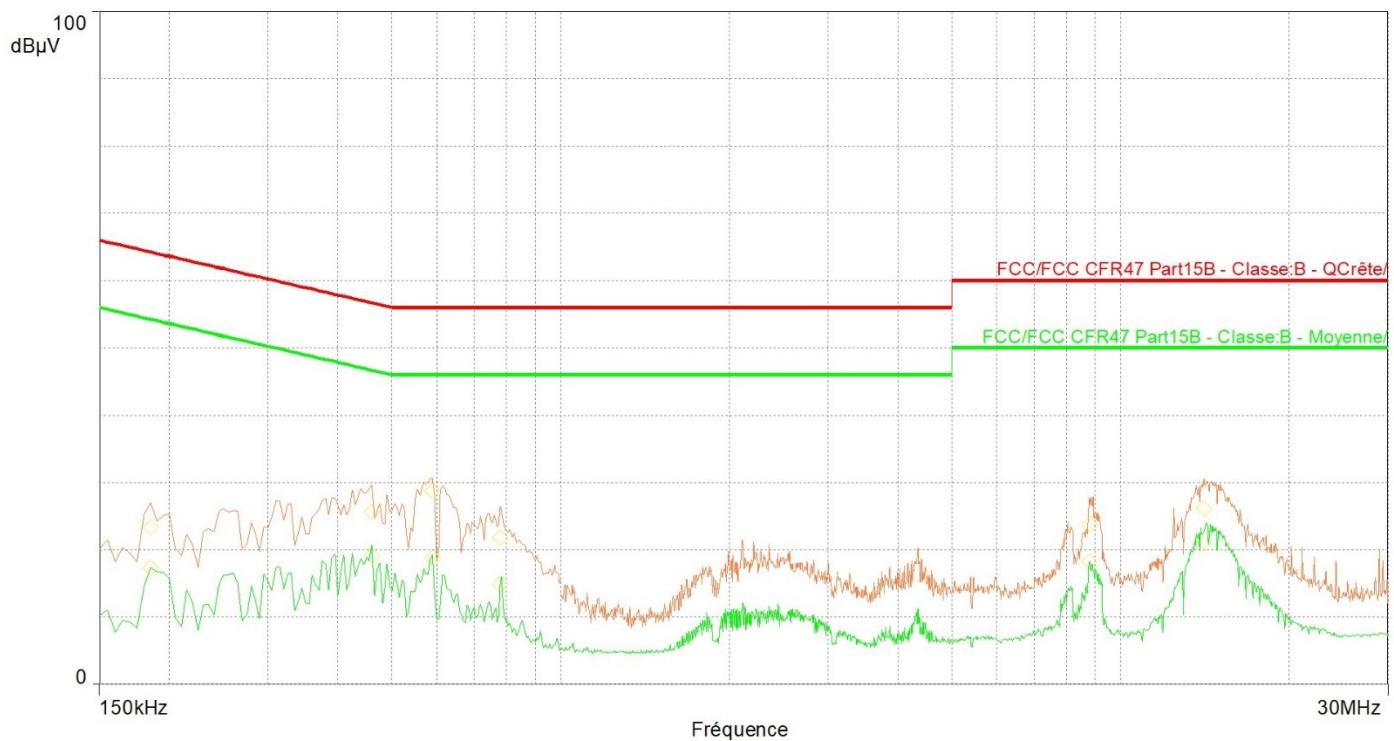
TEST EQUIPMENT USED						
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due	
BAT EMC	NEXIO	v3.19.1.18	L1000115			
Cable + self	—	—	A5329578	02/20	02/21	
EMC comb generator	LCIE SUD EST	—	A3169098			
Spectrum Analyzer 9kHz - 30MHz	ROHDE & SCHWARZ	ESHS10	A2642028	01/20	01/22	
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20	
Transient limiter	ROHDE & SCHWARZ	ESH3-Z2	A7122204	02/19	08/20	
LISN	ROHDE & SCHWARZ	ESH3-Z5	C2320314	04/19	08/20	

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None Divergence:

L C I E

3.6. TEST RESULTS

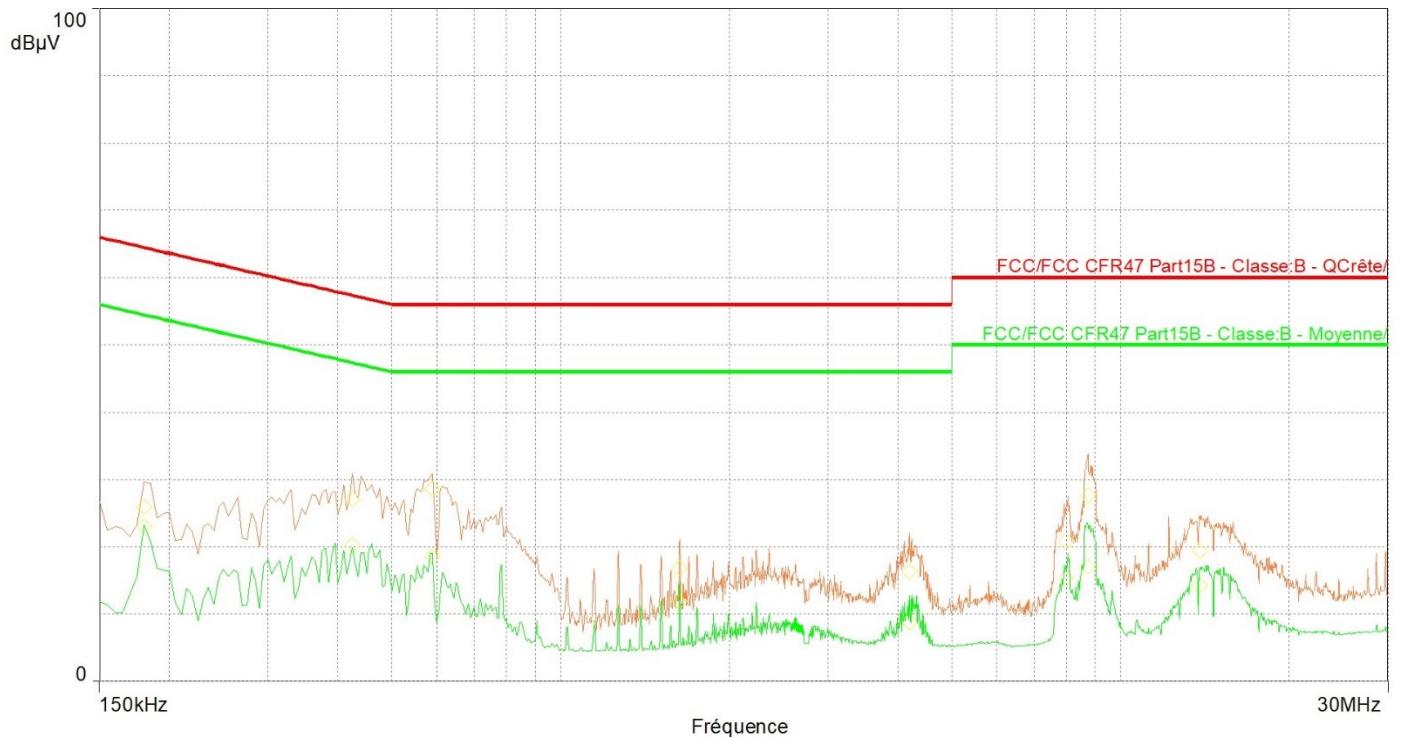

AC tests Results:

Measurements are performed on the phase (L1) and neutral (N) of the power line.

Results: (PEAK detection)

Graph identifier	Line	Comments
Emc# 1	Phase	120VAC/60Hz
Emc# 2	Neutral	120VAC/60Hz

CONDUCTED EMISSIONS		
Graph name:	Emc#1	Test configuration:
Limit:	FCC CFR47 Part15B	110V 60Hz - Line
Class:	B	
Frequency range: [150kHz - 30MHz]		
Voltage / Frequency:		RBW : 10kHz
Line:	Phase	VBW : 30kHz


L C I E

Spurious emissions

Frequency (MHz)	Mes.QPeak (dB μ V)	LimQP (dB μ V)	Mes.QPeak-LimQP (dB)	Mes.Avg (dB μ V)	LimAvg (dB μ V)	Mes.Avg-LimAvg (dB)	Line	Correction (dB)
0.185	23.4	64.3	-40.9	17.3	54.3	-36.9	Phase 1	10.1
0.460	25.6	56.7	-31.1	19.2	46.7	-27.5	Phase 1	10.1
0.590	28.8	56.0	-27.2	18.8	46.0	-27.2	Phase 1	10.1
0.780	21.8	56.0	-34.2	14.8	46.0	-31.2	Phase 1	10.1
8.788	23.8	60.0	-36.2	18.3	50.0	-31.7	Phase 1	10.9
14.100	26.2	60.0	-33.8	21.0	50.0	-29.0	Phase 1	11.5

CONDUCTED EMISSIONS

Graph name:	Emc#2	Test configuration:
Limit:	FCC CFR47 Part15B	
Class:	B	120V 60Hz - Neutral
Frequency range: [150kHz - 30MHz]		
Voltage / Frequency:		RBW : 10kHz
Line:	Neutral	VBW : 30kHz

L C I E

Spurious emissions

Frequency (MHz)	Mes.QPeak (dB μ V)	LimQP (dB μ V)	Mes.QPeak-LimQP (dB)	Mes.Avg (dB μ V)	LimAvg (dB μ V)	Mes.Avg-LimAvg (dB)	Line	Correction (dB)
0.180	25.9	64.5	-38.6	23.0	54.5	-31.5	Neutral	10.1
0.425	27.0	57.4	-30.3	20.3	47.4	-27.1	Neutral	10.1
0.590	28.6	56.0	-27.4	18.6	46.0	-27.4	Neutral	10.1
1.628	16.8	56.0	-39.2	11.8	46.0	-34.2	Neutral	10.2
4.192	16.4	56.0	-39.6	8.8	46.0	-37.2	Neutral	10.5
7.996	20.9	60.0	-39.1	15.4	50.0	-34.6	Neutral	10.9
8.748	27.5	60.0	-32.5	17.0	50.0	-33.0	Neutral	10.9
13.828	19.4	60.0	-40.6	14.2	50.0	-35.8	Neutral	11.5

3.7. CONCLUSION

The sample of the equipment **ENPL010188**, Sn: **None**, tested in the configuration presented in this test report **satisfies** to requirements of class B limits of the standard FCC Part15B and ICES-003, for conducted emissions.

4. MEASUREMENT OF RADIATED EMISSION (30MHz-1GHz)

4.1. ENVIRONMENTAL CONDITIONS

Date of test : June 29, 2020
Test performed by : Nathalie BUGANZA
Atmospheric pressure (hPa) : 993
Relative humidity (%) : 50
Ambient temperature (°C) : 24

4.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi-anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

- 80cm above the ground on the non-conducting table (Table-top equipment)
- 10cm above the ground on isolating support (Floor standing equipment)

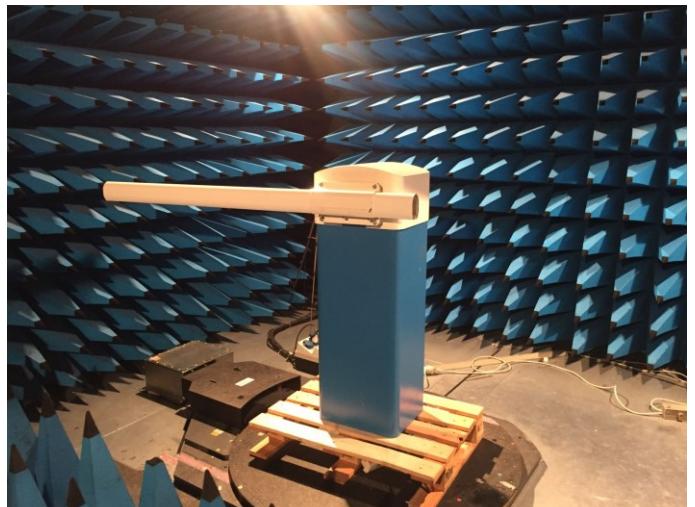
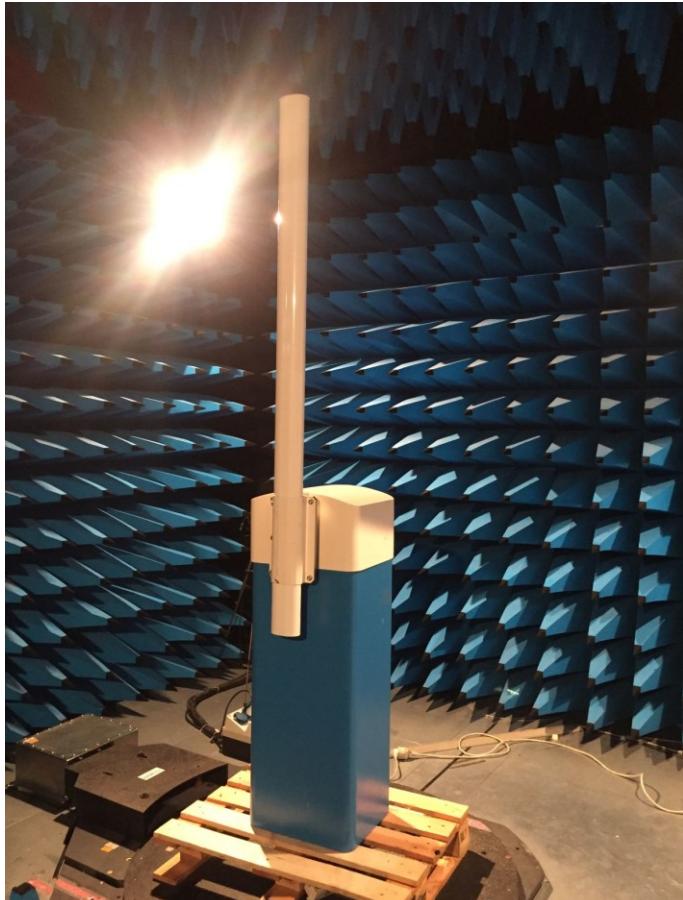
The EUT is powered by V_{nom} .

Test setup on OATS

L C I E

TEST REPORT

Version : 03




N° 167678-752218-A (File#1047380)

Page 15/22

L C I E

Test setup on OATS

Pre-characterisation Test setup in anechoic chamber

4.3. TEST METHOD

The product has been tested according to ANSI C63.4, FCC part 15 subpart B.

Pre-characterisation measurement: (30MHz –**Erreur ! Source du renvoi introuvable.**GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization during the test for maximized the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

The pre-characterization graphs are obtained in PEAK detection.

Characterization on 10 meters open site from 30MHz to 1GHz:

Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart B limits. Measurement bandwidth was 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, during the test for maximized the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. Frequency list has been created with anechoic chamber pre-scan results.

4.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED					
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Amplifier 10kHz - 18GHz	LCIE SUD EST	–	A7085028	10/19	10/20
Antenna Bi-Log XWing	TESEQ	CBL6144	C2040146	03/17	08/20
BAT EMC	NEXIO	v3.19.1.18	L1000115		
Cable 5m	SUCOFLEX	18GHz	A5329918	09/19	09/20
CALCUL_FACTEURS	LCIE SUD EST	V4	L2000035		
Emission Cable	MICRO-COAX	18GHz	A5329655	07/19	07/20
Emission Cable	MICRO-COAX	18GHz	A5329654	07/19	07/20
Radiated emission comb generator	BARDET	–	A3169050		
Semi-Anechoic chamber #2 (BF)	SIEPEL	–	D3044015_BF	06/19	06/22
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A4060049	04/20	04/22
Thermo-hygrometer (C2)	LACROSS Techn.	WS-2357	B4206015	10/18	10/20
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	08/18	08/20
Turntable chamber (Cage#2)	ETS Lingren	Model 2165	F2000404		
Turntable controller (Cage#2)	ETS Lingren	Model 2066	F2000393		
Antenna Biconic	EMCO	3104C	C2040175	03/20	03/22
Antenna Mat (OATS)	ETS Lingren	2071-2	F2000392		
Cable (OATS)	–	1GHz	A5329623	05/20	05/21
OATS	–	–	F2000409	04/20	04/21

Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	12/17	08/20
Turntable (OATS)	ETS Lingren	Model 2187	F2000403		
Turntable / Mast controller (OATS)	ETS Lingren	Model 2066	F2000372		

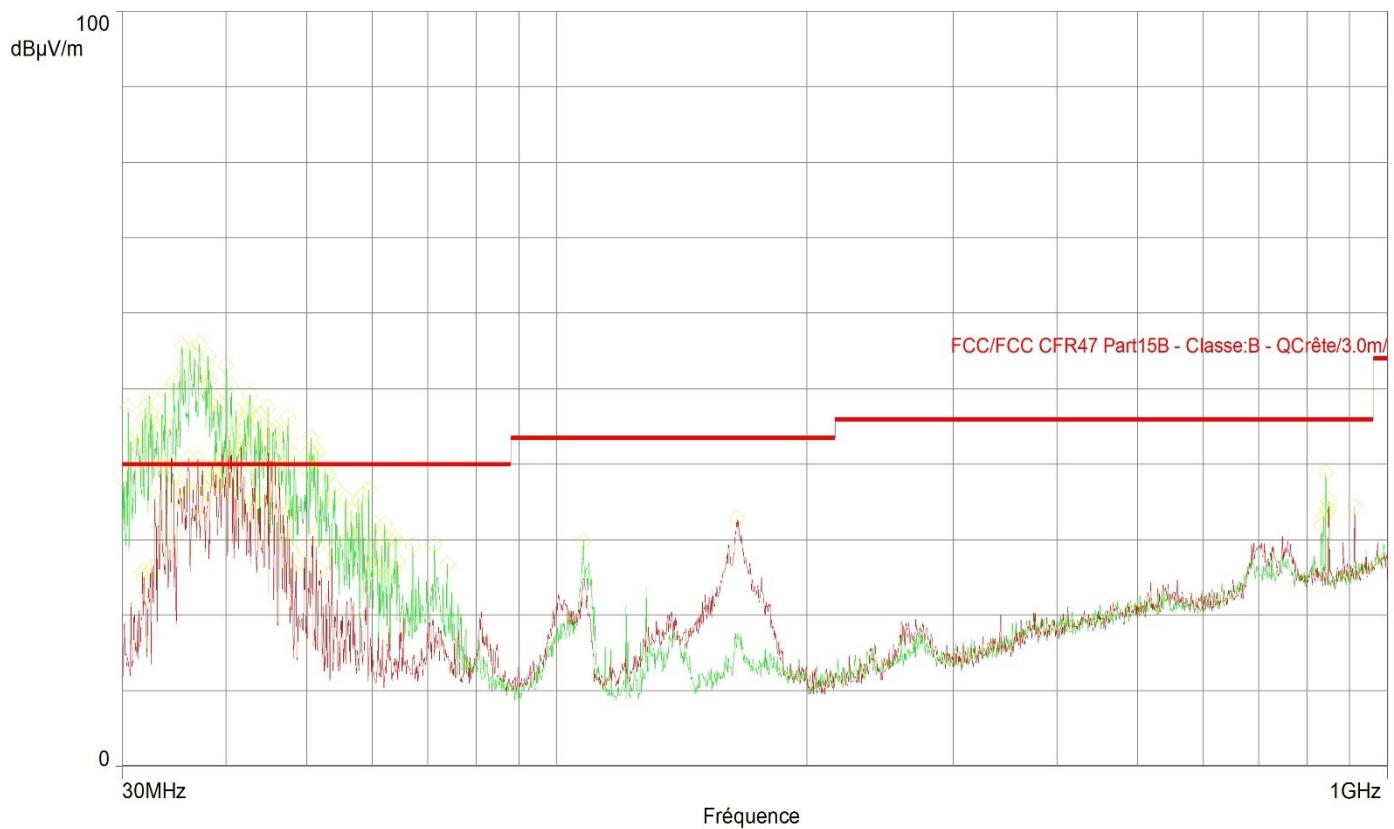
4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None Divergence:

4.6. TEST RESULTS

Pre-characterisation measurement (30MHz-1GHz): pre-scan measurement at 3m (PEAK detection, graph examples)

See graphs:


Graph identifier	Polarization	EUT position	Comments
Emr# 1	Vertical	Axis XY	See below
Emr# 2	Horizontal	Axis XY	See below

L C I E

RADIATED EMISSIONS

Graph name:	Test configuration:		
Limit:	FCC CFR47 Part15B		
Class:	30MHz - 1GHz		
Frequency range: [30MHz - 1GHz]			
Antenna polarization:		RBW :	100kHz
Azimuth:	0° - 360°	VBW :	300kHz

L C I E

Spurious emissions

Frequency (MHz)	Peak (dB μ V/m)	LimQP (dB μ V/m)	Peak-LimQP (dB)	Polarization	Correction (dB)
33.876	40.4	40.0	0.4	Horizontal	-17.7
34.386	40.9	40.0	0.9	Horizontal	-17.5
36.086	40.8	40.0	0.8	Horizontal	-16.9
39.503	41.5	40.0	1.5	Horizontal	-16.1
40.659	42.3	40.0	2.3	Horizontal	-15.9
41.220	41.0	40.0	1.0	Horizontal	-15.8
41.713	42.6	40.0	2.6	Horizontal	-15.8
44.909	44.7	40.0	4.7	Horizontal	-15.5
45.300	40.5	40.0	0.5	Horizontal	-15.5
30.493	47.5	40.0	7.5	Vertical	-19.8
32.329	49.1	40.0	9.1	Vertical	-18.6
33.740	49.5	40.0	9.5	Vertical	-17.8
35.406	55.7	40.0	15.7	Vertical	-17.0
36.154	55.1	40.0	15.1	Vertical	-16.9
36.664	54.2	40.0	14.2	Vertical	-16.7
37.140	55.9	40.0	15.9	Vertical	-16.6
38.075	54.4	40.0	14.4	Vertical	-16.4
38.330	51.2	40.0	11.2	Vertical	-16.4
40.030	53.1	40.0	13.1	Vertical	-16.0
42.750	49.2	40.0	9.2	Vertical	-15.7
44.943	47.6	40.0	7.6	Vertical	-15.5
50.638	43.5	40.0	3.5	Vertical	-15.1
51.539	41.6	40.0	1.6	Vertical	-15.0
59.393	36.6	40.0	-3.4	Vertical	-14.5
62.113	32.1	40.0	-7.9	Vertical	-14.5

QUALIFICATION (30MHz-1GHz): 10 meters measurement on the Open Area Test Site.

Frequency list has been created with semi-anechoic chamber pre-scan results.

Measurements are performed using a QUASI-PEAK detection.

Test Frequency (MHz)	Meter Reading dB(μ V)	Detector (Pk/QP/Av)	Polarity (V/H)	Azimuth (Degrees)	Antenna Height (cm)	Gain/Loss Factor (dB)	Transducer Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
30.5	18.2	QP	V	0	100	-	12.0	30.2	40.0	-9.8
35.4	23.2	QP	V	0	100	-	12.0	35.2	40.0	-4.8
37.625	25.8	QP	V	0	100	-	12.2	38.0	40.0	-2.0
40.557	23.9	QP	V	0	100	-	12.5	36.4	40.0	-3.6
42.75	22.9	QP	V	0	100	-	12.6	35.5	40.0	-4.5
50.557	22.7	QP	V	0	100	-	12.4	35.1	40.0	-4.9
56.519	22.5	QP	V	0	100	-	11.7	34.2	40.0	-5.8
162.123	14.6	QP	H	0	400	-	15.5	30.1	43.5	-13.4

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e)

(M@3m = M@10m+10.5dB)

L C I E

4.7. CONCLUSION

The sample of the equipment **ENPL010188**, Sn: **None**, tested in the configuration presented in this test report **satisfies** to requirements of class B limits of the standard FCC Part15B and ICES-003, for radiated emissions.

5. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) $\pm x$	Incertitude limite du CISPR / CISPR uncertainty limit $\pm y$
Mesure des perturbations conduites en tension sur le réseau d'énergie (monophasé /triphasé) 10kHz-150kHz <i>Measurement of conducted disturbances in voltage on the power port (single & three phases)10kHz-150kHz</i>	3.27dB	3.8dB
Mesure des perturbations conduites en tension sur le réseau d'énergie (monophasé /triphasé) 150kHz-30MHz <i>Measurement of conducted disturbances in voltage on the power port (single & three phases)150kHz-30MHz</i>	3.29dB	3.4dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication <i>Measurement of conducted disturbances in voltage on the telecommunication port.</i>	3.26dB	5dB
Mesure des perturbations discontinues conduites en tension <i>Measurement of discontinuous conducted disturbances in voltage</i>	3.33dB	3.4dB
Mesure des perturbations conduites en courant <i>Measurement of conducted disturbances in current</i>	2.67dB	2.9dB
Mesure du champ électrique rayonné en cage de Faraday semi-anéchoïque de 30MHz à 1GHz <i>Measurement of radiated electric field in half-anechoic Faraday room</i> <i>From 30MHz to 1GHz</i>	5.06dB	5.3dB
Mesure du champ électrique rayonné en cage de Faraday semi-anéchoïque de 1GHz à 6GHz <i>Measurement of radiated electric field in half-anechoic Faraday room</i> <i>From 1GHz to 6GHz</i>	5.18dB	5.2dB
Mesure du champ électrique rayonné en cage de Faraday semi-anéchoïque de 6GHz à 18GHz <i>Measurement of radiated electric field in half-anechoic Faraday room</i> <i>From 6GHz to 18GHz</i>	5.21dB	5.5dB
Mesure du champ électrique rayonné sur le site en espace libre de Moirans 30MHz – 1GHz. <i>Measurement of radiated electric field on the Moirans open area test site</i> <i>30MHz – 1GHz.</i>	5.2dB	6.3dB
Mesure du champ électrique rayonné IN SITU de 30 à 1000 MHz <i>IN SITU measurement of radiated electric field from 30 to 1000MHz</i>	A l'étude / Under consideration	5.2dB
Mesure de la puissance perturbatrice <i>Measurement of disturbance power</i>	3.32dB	4.5dB
Mesure des harmoniques de courant <i>Measurement of current harmonics</i>	11.11%	/
Mesure du flicker <i>Flicker measurement</i>	9.26%	/

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par le CISPR, la conformité de l'échantillon est établie directement par les niveaux limites applicables. Ce tableau regroupe l'ensemble des incertitudes maximales pour les essais réalisables dans le laboratoire, qu'ils aient été ou non réalisés dans le cadre du présent rapport / *The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values. This table includes all uncertainty maximum feasible for testing in the laboratory, whether or not made in this report*

Note - L'incertitude de mesure instrumentale est déterminée selon la CISPR 16-4-2. / *The instrumentation measurement uncertainty is determined according to CISPR16-4-2*