

Test Report 22-1-0032102T001a-C01

Number of pages: 33 Date of Report: 2023-May-24

Testing company: CETECOM GmbH Applicant: Nexxiot AG

Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150

Product: Tracker device
Model: Globehopper Edge

FCC ID: 2AXRX-AC2A IC: 26682-AC2A

Testing has been carried out in accordance with:

FCC Regulations

Title 47 CFR Subchapter A

§ 15.247 Operation within the bands 2400-2483.5 MHz

ISED-Regulations

Radio Standards Specification

RSS-Gen, Issue 5

General Requirements for Compliance of Radio Apparatus

RSS-247, Issue 2

Digital Transmission Systems (DTS)

Tested Technology: BLE

Test Results:
☐ The EUT complies with the requirements in respect of selected parameters subject to

the test.

The test results relate only to devices specified in this document

The current version of Test Report TR22-1-0032102T001a-C01 replaces the test report

TR22-1-0032102T001a dated 2023-Feb-21. The replaces test report is herewith invalid.

Signatures:

Dipl.-Ing. Ninovic PerezSalih ÖztanTest Lab ManagerTest ManagerAuthorization of test reportResponsible of test report

Table of Contents

Ta	ble of	Annex	3
1	Ge	neral information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	6
2	Ad	ministrative Data	7
	2.1	Identification of the Testing Laboratory	7
	2.2	General limits for environmental conditions	7
	2.3	Test Laboratories sub-contracted	7
	2.4	Organizational Items	7
	2.5	Applicant's details	7
	2.6	Manufacturer's details	7
	2.7	Equipment under Test (EUT)	8
	2.8	Untested Variant (VAR)	8
	2.9	Auxiliary Equipment (AE)	8
	2.10	Connected cables (CAB)	8
	2.11	Software (SW)	8
	2.12	EUT set-ups	9
	2.13	EUT operation modes	9
3	Equ	uipment under test (EUT)	10
	3.1	General Data of Main EUT as Declared by Applicant	10
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	10
	3.3	Modifications on Test sample	10
4	Me	easurements	11
	4.1	Duty-Cycle	11
	4.2	Peak output power (Sweep)	12
	4.3	Power spectral density	13
	4.4	Minimum Emission Bandwidth 6 dB	14
	4.5	Occupied Channel Bandwidth 99%	15
	4.6	Emissions in non-restricted frequency bands	16
	4.7	Radiated field strength emissions below 30 MHz	18
	4.8	Radiated field strength emissions 30 MHz – 1 GHz	22
	4.9	Radiated field strength emissions above 1 GHz	24
	4.10	Radiated Band-Edge emissions	27
	4.11	Equipment lists	29
5	Res	sults from external laboratory	31

Test Report 22-1-0032102T001a-C01

6	Opinions and interpretations	31
7	List of abbreviations	31
8	Measurement Uncertainty valid for conducted/radiated measurements	32
9	Versions of test reports (change history)	33

	Table of Annex					
Annex No.	Contents	Reference Description	Total Pages			
Annex 1	Test result diagrams	TR22-1-0032102T001a_A1-C01	47			
Annex 2	Internal photographs of EUT	Will be provided by customer				
Annex 3	External photographs of EUT	TR22-1-0032102T001a_A3-C01	6			
Annex 4	Test set-up photographs	TR22-1-0032102T001a_A4-C01	5			
-	The listed attachments are separate documents.					

TR22-1-0032102T001a-C01 3/33

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

TR22-1-0032102T001a-C01 4/33

1.3 Summary of Test Results

The EUT integrates a BLE transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference Clause	Reference	Page	Remark	Result
	FCC ⊠	Clause ISED ⊠			
<u>Duty-Cycle</u>	§15.35(c)	RSS-Gen Issue 5, §8.2	11		PASSED
Minimum Emission Bandwidth 6 dB	§15.247 5.2(a)	RSS-247, §5.2(a)	14		PASSED
		RSS-Gen Issue 5,: §6.7			
Occupied Channel Bandwidth 99%	2.1049(h)	RSS-Gen Issue 5, §6.7	15		PASSED
Peak output power (Sweep)	§15.247(b)(3)	RSS-247, §5.4(d)	12		PASSED
Transmitter Peak output power radiated	§15.247(b)(4)(c)(i)	RSS-247, §5.4(d)		N/A	
Emissions in non-restricted frequency bands	§15.247(d)	RSS-247, §5.5	16		PASSED
Radiated Band-Edge emissions	§15.205(b)	RSS-Gen: Issue 5	27		PASSED
	§15.247(d)	§8.9, §8.10			
		RSS-247, §5.5			
Power spectral density	§15.247(e)	RSS-247, §5.2(b)	13		PASSED
Radiated field strength emissions below 30	§15.205(a)	RSS-Gen: Issue 5	18		PASSED
MHz	§15.209(a)	§8.9 Table 6			
Radiated field strength emissions 30 MHz – 1	§15.209	RSS-Gen: Issue 5	22		PASSED
<u>GHz</u>	§15.247(d)	§8.9 Table 5			
		RSS-247, §5.5			
Radiated field strength emissions above 1 GHz	§15.209(a)	RSS-Gen: Issue 5:	24		PASSED
	§15.247(d)	§8.9 Table 5+7			
		RSS-247, §5.5			
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5:		N/A	
		§8.8 Table 4			

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

N/A Test case does not apply to the test object.

NP The test was not performed by the CETECOM Laboratory.

Decision Rule: CETECOM GmbH follows <u>ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule)</u>.

TR22-1-0032102T001a-C01 5/33

1.4 Summary of Test Methods

Test case	Test method
Duty-Cycle	ANSI C63.10:2013, §11.6(b)
Minimum Emission Bandwidth 6 dB	ANSI C63.10:2013, §6.9.2, §11.8
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9.3
Peak output power (Sweep)	ANSI C63.10:2013, §11.9
Power spectral density	ANSI C63.10:2013, §11.10
Emissions in non-restricted frequency bands	ANSI C63.10:2013, §11.11, §6.10.5
Radiated Band-Edge emissions	ANSI C63.10-2013; "Marker-Delta method", §6.10.5, §11.13
Transmitter Peak output power radiated	Result calculated with measured conducted RF-power value and
	stated/measured antenna gain for band of interest
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, §6.5
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, §6.6
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 §6.2

And reference also to Test methods in KDB558074

TR22-1-0032102T001a-C01 6/33

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name: CETECOM GmbH

Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Ninovic Perez

Accreditation scope: DAkkS Webpage: FCC ISED

IC Lab company No. / CAB ID: 3462D / DE0005

Test location: CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name: --

2.4 Organizational Items

Responsible test manager: Salih Öztan

Receipt of EUT: 18.08.2022

Date(s) of test: 2023-Jan-03 to 2023-Jan-27

Version of template: 22.0901

2.5 Applicant's details

Applicant's name: Nexxiot AG

Address: Hardstrasse 201- Prime Tower

8005 Zürich

Switzerland

Contact Person: Florencia Roshardt

Contact Person's Email: florencia.roshardt@nexxiot.com

2.6 Manufacturer's details

Manufacturer's name:	Nexxiot AG
Address:	Hardstrasse 201- Prime Tower
	8005 Zürich
	Switzerland

TR22-1-0032102T001a-C01 7/33

2.7 Equipment under Test (EUT)

EUT No.*)	Sample No.	Product	Model	Туре	SN	HW	SW
EUT 1	22-1-00321S18_C01	Tracker device	Globehopper Edge	Orange	N/A	AC.2A	edge_v13_sd-blt-ble- 2022-07-28.hex
EUT 2	22-1-00321S31_C01	Tracker device	Globehopper Edge	N/A	DUT #17	AC.2A	edge_v13_sd-blt-ble- 2022-07-28.hex

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							

^{*)} The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						
AE 1	22-1-00321S10_C01	Battery Pack	N/A	N/A	N/A	N/A
AE 2	22-1-00321S19_C01	Laptop	ThinkPad Lenovo	2137-10-j111379	N/A	N/A
AE 3	22-1-00321S20_C01	AC Adapter	ADLX90NCC3A	11S45N0249Z1ZS	N/A	N/A
				9W52V5CK		
AE 4	22-1-00321S33_C01	Serial Adapter	N/A	N/A	N/A	N/A

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.10 Connected cables (CAB)

САВ	Sample No.	Cable Type	Connectors / Details	Length
No.*)				

^{*)} CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				

^{*)} SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

TR22-1-0032102T001a-C01 8/33

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT 1 + AE 1 + *(AE 2 + AE 3)	Used for Radiated measurements *(AE 2 + AE 3) was used only for configuration
2	EUT 2 + AE 1 + *(AE 2 + AE 3) + AE 4	Used for Radiated measurements *(AE 2 + AE 3) was used only for configuration
3	EUT 1 + AE 1 + *(AE 2 + AE 3) + AE 4	Used for Conducted measurements *(AE 2 + AE 3) was used only for configuration

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
op. 1	BLE_TX-Mode	With help of special test firmware TX-mode was set-up. We refer to applicants information/papers for details about necessary commands.

^{*)} EUT operating mode no. is used to simplify the test report.

TR22-1-0032102T001a-C01 9/33

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	\square for normal use \boxtimes Special version for test execution			
Power supply	☐ AC Mains	-		
	☐ DC Mains	-		
	⊠ Battery	3.8 V		
Operational conditions	T _{nom} = +21 °C	$T_{min} = -40 ^{\circ}\text{C}$ $T_{max} = +60 ^{\circ}\text{C}$		
EUT sample type	Pre-Production			
Weight	0.500 kg			
Size [LxWxH]	22.0 cm x 8.0 cm x 5.0 cm			
Interfaces/Ports				
For further details refer Applicants Declaration & following technical documents				
For further details regarding radio parameters, please refer to Bluetooth Core Specification				

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	2.4 GHz ISM Band (2400 M	Hz - 2483.5 MI	Hz)	
Number of Channels (USA/Canada -bands)	40 (37 Hopping + 3 Advertising)			
Nominal Channel Bandwidth	1 MHz			
Type of Modulation Data Rate	⊠ GFSK 1 Mbit / s		☐ GFSK 2 Mbit / s	
Type of Modulation Data Rate	☐ GFSK 500 kbit / s		☐ GFSK 125 kbit /	S
	☐ a/n/ac mode			
Other wireless options	□ b/g/n mode			
Other wireless options	\square Bluetooth EDR (not tested within this report)			
	☐ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)			
Max. Conducted Output Power	GFSK - 3.3 dBm			
EIRP Power (Calculated EIRP)	GFSK - 3.3 dBm + 2.4 dBi = - 0.9 dBm			
Antenna Type PCB				
Antenna Gain	2.4 dBi			
FCC label attached	No			
Test firmware / software and storage				
location				
For further details refer Applicants Declaration & following technical documents				
Description of Reference Document (supp	lied by applicant)	Version		Total Pages
	·			

3.3 Modifications on Test sample

Additions/deviations or exclusions	

TR22-1-0032102T001a-C01 10/33

4 Measurements

4.1 Duty-Cycle

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

The necessary duty-cycle correction factor is determined on nominal conditions on middle channel only. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions. The Duty-Cycle was constant, means without variations.

Formula to calculate Duty-Cycle:

Duty cycle calculations: $x = {^TX_{ON}}/{(TX_{ON} + TX_{OFF})}$	Duty cycle factor: DC=	Regarding power: $10*log(1/_{\chi})$ dB	
		Regarding field strength: $20*log(1/\chi)$ dB	

☑ The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar

☐ No correction necessary: Duty-Cycle > 98%

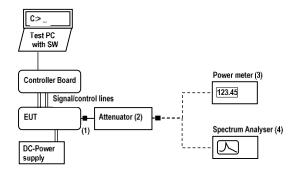
4.1.1 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.1.2 Result

Duty-Cycle [%]	Duty-Cycle correction Power [dB]	Duty-Cycle correction Field Strength [dB]
63.340	1.983	3.966
63.339	1.983	3.966
63.340	1.983	3.966

TR22-1-0032102T001a-C01 11/33



4.2 Peak output power (Sweep)

4.2.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to power meter (3) or spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

Test method	PKPM1 Peak reading power meter (broadband PK RF-power meter)
Remarks	

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate

4.2.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

4.2.3 Limit

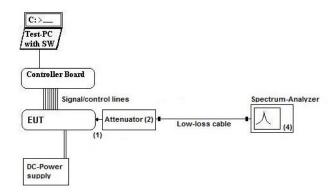
Frequency Range [MHz]	Limit [W]	Limit [dBm]	Detector	RBW / VBW [MHz]
2400 - 2483.5	1	30	MaxPeak	3 / 10

4.2.4 Result

Mode	Channel	Frequency [MHz]	Max Peak Power [dBm]	Result
BT-LE [GFSK]	0	2402	-3.4	PASS
BT-LE [GFSK]	19	2440	-3.3	PASS
BT-LE [GFSK]	39	2480	-4.7	PASS

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

TR22-1-0032102T001a-C01 12 / 33



4.3 Power spectral density

4.3.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

Test method	PKPSD-Method
Remarks	1

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

4.3.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)	
---	--

4.3.3 Limit

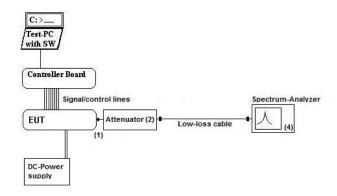
Limit [dBm] @ 3 kHz	Detector [MaxHold]	RBW / VBW [kHz]	
≤ 8	Peak	3 / 10	

4.3.4 Result

Mode	Channel	Frequency [MHz]	PSD [dBm]	Result	
BT-LE [GFSK]	2402.000000	2401.887500	-13.354	PASS	
BT-LE [GFSK]	2440.000000	2439.887500	-13.380	PASS	
BT-LE [GFSK]	2480.000000	2479.887500	-14.646	PASS	

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

TR22-1-0032102T001a-C01 13 / 33



4.4 Minimum Emission Bandwidth 6 dB

4.4.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

4.4.2 Measurement Location

-		
	Test site	120910 - Radio Laboratory 1 (TS 8997)

4.4.3 Limit

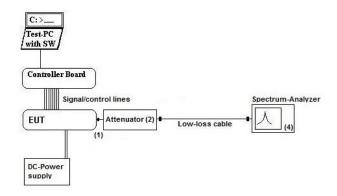
Limit [kHz]	Detector [MaxHold]	RBW / VBW [kHz]	
≥ 500	MaxPeak	100 / 300	

4.4.4 Result

Mode	Channel	Frequency [MHz]	6 dB bandwidth [MHz]	Result
BT-LE [GFSK]	0	2402	0.732674	PASS
BT-LE [GFSK]	19	2440	0.752476	PASS
BT-LE [GFSK]	39	2480	0.732674	PASS

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

TR22-1-0032102T001a-C01 14/33



4.5 Occupied Channel Bandwidth 99%

4.5.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

4.5.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.5.3 Limit

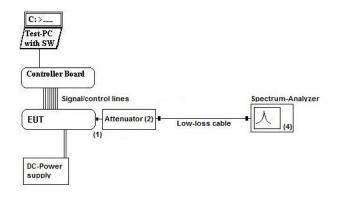
When the occupied bandwidth limit is not stated in the applicable reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

4.5.4 Result

Mode	Channel	Frequency [MHz]	99% Occupied bandwidth [MHz]	Result
BT-LE [GFSK]	0	2402	1.045000	Passed
BT-LE [GFSK]	19	2440	1.050000	Passed
BT-LE [GFSK]	39	2480	1.050000	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

TR22-1-0032102T001a-C01 15/33



4.6 Emissions in non-restricted frequency bands

4.6.1 Description of the general conducted test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

The measurements were performed with the RBW set to 100 kHz & maximum carrier level was indicated with MAX-Hold positive peak detector using markers. Then a frequency line was set 20 or 30 dB below this measured maximum carrier level.

Then using RBW 100 kHz & spectrum analyzer span from 150 kHz to 25 GHz in three steps spurious emissions were measured with MAX-Hold positive peak detector.

The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked e.g. data rates which EUT can operate.

4.6.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

TR22-1-0032102T001a-C01 16/33

4.6.3 Limit

Frequency Range [MHz]	Limit [dBc]	
0.15 – 25000	-20 / -30	

4.6.4 **Result**

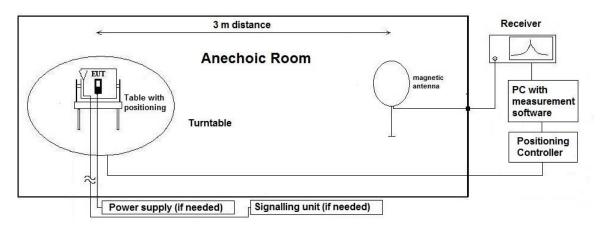
Maximum Level Peak [dBc]

Mode	Channel	Frequency [MHz]	Result
BT-LE [GFSK]	0	2402	PASS
BT-LE [GFSK]	19	2440	PASS
BT-LE [GFSK]	39	2480	PASS

Remark1: every RF-Port tested separatelly in case on MIMO device

Remark2: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

TR22-1-0032102T001a-C01 17/33


4.7 Radiated field strength emissions below 30 MHz

4.7.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

TR22-1-0032102T001a-C01 18 / 33

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ AF = Antenna factor

C_L = Cable loss

 $M = L_T - E_C$ $D_F = Distance correction factor (if used)$

E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.7.2 Sample calculation

Raw-Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.7.3 Measurement Location

Test site 120901 - SAC- Radiate	ed Emission <1GHz
---------------------------------	-------------------

TR22-1-0032102T001a-C01 19 / 33

4.7.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
nange	[1112/11112]	[]	[m]	[m]	(dmeas <	bigger dnear-	accord.
			Lini	[111]			
	-				Dnear-field)	field)	Formula
	9	33333.33	5305.17		fullfilled	not fullfilled	-80.00
	10	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33		fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55		fullfilled	not fullfilled	-80.00
	40	7500.00	1193.66		fullfilled	not fullfilled	-80.00
	50	6000.00	954.93		fullfilled	not fullfilled	-80.00
	60	5000.00	795.78		fullfilled	not fullfilled	-80.00
	70	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
	80	3750.00	596.83		fullfilled	not fullfilled	-80.00
	90	3333.33	530.52		fullfilled	not fullfilled	-80.00
kHz	100	3000.00	477.47		fullfilled	not fullfilled	-80.00
	125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200	1500.00	238.73		fullfilled	fullfilled	-78.02
	300	1000.00	159.16		fullfilled	fullfilled	-74.49
	400	750.00	119.37		fullfilled	fullfilled	-72.00
	490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49		fullfilled	not fullfilled	-40.00
	600	500.00	79.58		fullfilled	not fullfilled	-40.00
	700	428.57	68.21		fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87		fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled	fullfilled	-30.06
	6.00	50.00	7.96		fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31	1	fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.04
	10.60	28.30	4.50		fullfilled	fullfilled	-23.53
MHz	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
IVITIZ	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52		fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65	1	not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39	1	not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27	1	not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08	1	not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91	1	not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77	1	not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65	1	not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59	1	not fullfilled	fullfilled	-20.00

TR22-1-0032102T001a-C01 20 / 33

4.7.5 Limit

	Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [μV/m]	Limit [dBμV/m] *	Distance [m]	Detector	RBW [kHz]			
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2			
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2			
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2			
0.15 - 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9			
0.49 – 1.705	24000 / f [kHz]	87.6 – 20Log(f) (kHz)	30	Quasi peak	9			
1.705 - 30	30	29.5	30	Quasi peak	9			

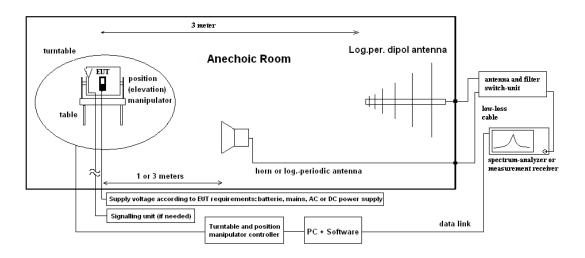
^{*}Remark: In Canada same limits apply, just unit reference is different

4.7.6 **Result**

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 0.009 – 30 MHz	Result
<u>2.01a</u>	Low	BLE ch0 pwr 4dBm	@24.630MHz, 21.089	Passed
<u>2.01b</u>	Low	BLE ch0 pwr 4dBm	@25.958MHz, 19.975	Passed
<u>2.02a</u>	Mid	BLE ch19 pwr 4dBm	@28.874MHz, 20.906	Passed
2.02b	Mid	BLE ch19 pwr 4dBm	@26.710MHz, 18.996	Passed
<u>2.03a</u>	High	BLE ch39 pwr 4dBm	@23.774MHz, 20.294	Passed
<u>2.03b</u>	High	BLE ch39 pwr 4dBm	@27.570MHz, 20.879	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

TR22-1-0032102T001a-C01 21/33



4.8 Radiated field strength emissions 30 MHz - 1 GHz

4.8.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

TR22-1-0032102T001a-C01 22 / 33

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \quad \mbox{(1)} \label{eq:ec}$ $AF = \mbox{Antenna factor}$ $C_L = \mbox{Cable loss}$

 $M = L_T - E_C$ (2) $D_F = Distance correction factor (if used)$

E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.8.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35	58.05	

Remark: This calculation is based on an example value at 800.4 MHz

4.8.3 Measurement Location

Test site 120901 - SAC- Radiated Emission <1GHz	
---	--

4.8.4 Limit

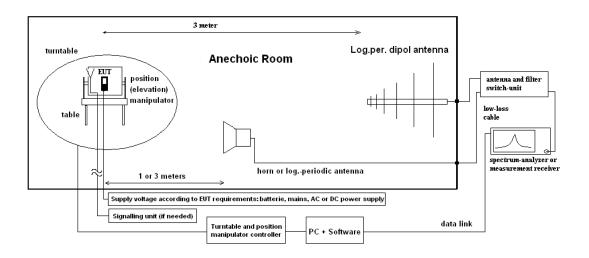
Radiated emissions limits, (3 meters)						
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]		
30 - 88	100	40.0	Quasi peak	100 / 300		
88 - 216	150	43.5	Quasi peak	100 / 300		
216 - 960	200	46.0	Quasi peak	100 / 300		
960 - 1000	500	54.0	Quasi peak	100 / 300		

4.8.5 **Result**

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 30 – 1000 MHz	Result
3.01a	Low	GFSK 1Mbit ch0	@915.720MHz, 40.220	Passed
3.01b	Low	GFSK 1Mbit ch0	@930.080MHz, 39.738	Passed
<u>3.02</u>	Mid	GFSK 1Mbit ch19	@929.960MHz, 40.138	Passed
3.03	High	GFSK 1Mbit ch39	@993.640MHz, 39.634	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

TR22-1-0032102T001a-C01 23 / 33



4.9 Radiated field strength emissions above 1 GHz

4.9.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

TR22-1-0032102T001a-C01 24 / 33

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A$ (1) $E_C = Electrical field - corrected value$

E_R = Receiver reading

 $M = L_T - E_C$ (2) M = Margin

 L_T = Limit

 A_F = Antenna factor

 C_L = Cable loss

 D_F = Distance correction factor (if used)

G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.9.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss + Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
29.37	41.20	1	24.28	16.92	46.3	CableLoss and PreAmp data in one data correction file

Remark: This calculation is based on an example value at 10 GHz

4.9.3 Measurement Location

Test site 1 – 15 GHz	120904 - FAC1 - Radiated Emission
Test site 15 – 26.5 GHz	120907 - FAC2

4.9.4 Limit

Radiated emissions limits, (3 meters)						
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]		
Above 1000	500	54	Average	1000 / 3000		
Above 1000	5000	74	Peak	1000 / 3000		

4.9.5 Result

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 1 – 15 GHz	Result
4.01	Low	BLE GFSK 1Mbps 2402MHz	@14.985GHz, 66.552	Passed
4.02	Mid	BLE GFSK 1Mbps 2440MHz	@14.498GHz, 63.964	Passed
4.03	High	BLE GFSK 1Mbps 2480MHz	@14.488GHz, 63.990	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

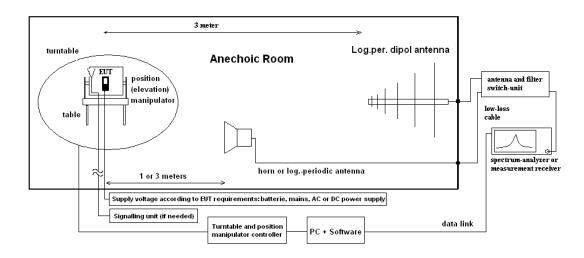
TR22-1-0032102T001a-C01 25 / 33

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 15 – 18 GHz	Result
<u>4.04a</u>	Low	BT LE, 1MBit, Ch0 (2402MHz), 4dBm PWR	@17.654GHz, 55.773	Passed
4.04b	Low	BT LE, 1MBit, Ch0 (2402MHz), 4dBm PWR	@17.653GHz, 55.321	Passed
<u>4.05a</u>	Mid	BT LE, 1MBit, Ch19 (2440MHz), 4dBm PWR	@17.617GHz, 55.849	Passed
4.05b	Mid	BT LE, 1MBit, Ch17 (2440MHz), 4dBm PWR	@16.965GHz, 56.257	Passed
4.06a	High	BT LE, 1MBit, Ch39 (2480MHz), 4dBm PWR	@17.337GHz, 55.986	Passed
4.06b	High	BT LE, 1MBit, Ch39 (2480MHz), 4dBm PWR	@17.324GHz, 56.354	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 18 – 26.5 GHz	Result
<u>4.07a</u>	Low	BT LE, 1MBit, Ch0 (2402MHz), 4dBm PWR	@23.698GHz, 51.258	Passed
4.07b	Low	BT LE, 1MBit, Ch0 (2402MHz), 4dBm PWR	@23.886GHz, 50.940	Passed
4.08a	Mid	BT LE, 1MBit, Ch19 (2440MHz), 4dBm PWR	@20.759GHz, 50.268	Passed
4.08b	Mid	BT LE, 1MBit, Ch19 (2440MHz), 4dBm PWR	No peaks found	Passed
4.09a	High	BT LE, 1MBit, Ch39 (2480MHz), 4dBm PWR	@25.220GHz, 59.617	Passed
4.09b	High	BT LE, 1MBit, Ch39 (2480MHz), 4dBm PWR	@24.871GHz, 51.382	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01


TR22-1-0032102T001a-C01 26/33

4.10 Radiated Band-Edge emissions

4.10.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

For uncritical results where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For critical results a Marker-Delta marker method was used for showing compliance to restricted bands. The method consists of three independent steps:

- 1. Step: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. Step: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. .Step: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

4.10.2 Measurement Location

Test site 120904 - FAC1 - Radiated Emission

TR22-1-0032102T001a-C01 27 / 33

4.10.3 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Avg Limit [dBc]	Avg Limit [dBμV/m]	Pk Limit [dBμV/m]	Detector	RBW / VBW [kHz]
Below 2390	-	ı	54	74	Average / Peak	100 / 300
Above 2483.5	=	ı	54	74	Average / Peak	1000 / 3000
2390 - 2400	-20	ı	=	=	Peak	100 / 300
2390 - 2400	=	-30	=	=	Average	100 / 300

4.10.4 Result

Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Average [dBc]	Result
9.01	0	RSE BLE TX CHlow	44.839	47.311	Passed

Remark: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

Restricted bands near-by

Diagram	Channel	Mode	Peak [dBμV/m]	Average [dBμV/m]	Result
9.02	39	RSE BLE TX CHhigh	59.8	47.388	Passed

Remark1: Average value corrected with Duty Cycle - Factor

Remark2: for more information and graphical plot see annex A1 TR22-1-0032102T001a_A1-C01

TR22-1-0032102T001a-C01 28/33

4.11 Equipment lists

DORS 1507 - 1507 - 1507 - 1507 1507 - 1507 1507 - 1507 1507 1507 - 1507 1507	ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
Section Company Comp			- Managattare.	Servis		cal: 2015-Jul-21	cal: 10Y	cal: 2025-Jul-21
March Marc	20442	Sami Anachoic Chamber	FTS-Lindgren Gmbh / Taufkirchen	1_	cnn			
March Marc	20442	Semi Arcendic Chamber	ETS Emagrem embrity Taurikiterien		Cilli			
	20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn			
Montage		Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	cal: 2022-Jun-15	cal: 36M	cal: 2025-Jun-15
	20620	Test Receiver ESU26		100362	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
	20885	Power Supply EA3632A		75305850	cnn			
Description Control	25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH /	879824/13	cal			
March Reprint (1967) MACD Retrown Center 1007 3009 Center (1967) Cen		•	_	,				
2006 Note		120904 - FAC1 - Radiated Emissions			chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
Mode Print Work 1992/1980/148 Very married interference Grade 13	20020	Horn Antenna 3115 (Subst 1)	EMCO Elektronik GmbH	9107-3699	calchk			cal: 2024-Aug-17
	20066	Notch Filter WRCT 1900/2200-5/40-10EEK	Wainwright Instruments GmbH	5	chk	cnk: 2013-Apr-20	chk: 12M	
20222 Not-2 Piter WKG 1379/7388	20121	Notah Filtor WDCD 1970 F /1990 FFF	Wainweight Instruments Cook!	45	alala	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20224 High Peac Filter SIAC 2007/1279-1-26KK Trimbin 20062 Cols Col	20121	Note: Filter WACE 1075,3/1000,3EE	wallwright institutients difful	13	Clik	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
2016 Page Page Riller (2004) 2306 2306 2306 2306 2306 2306 2306 2306	20122	Notch Filter WRCB 1747/1748	Wainwright Instruments GmbH	12	chk	chk: 2022-lun-30	chk: 12M	chk: 2023-lun-30
	20254	High Pass Filter 5HC 2600/12750-1.5KK	Trilithic	23042	chk			
1,000,000 Teach Free WIGH 2016,000,1555 Warrength Instruments Grotef 18	20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-	Miteg Inc.	379418	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
Color Page		100M4G-35-10P	·····cq ·····			chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
Color	20290	Notch Filter WRCA 901,9/903,1SS	Wainwright Instruments GmbH	3RR	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20032 Prof. Inform Reterminal Biology 12 (Seles 1) Schwescheck Mess-Elektronk Ortif (Schleman 155 Gap Chik 1200-Apr-15 Chik 1200-Apr-16 Chik 1200-Apr	20291	High Pass Filter WHJ 2200-4EE	Wainwright Instruments GmbH	14	chk			
Chi: 2003.4 Per-Angiller 100Mers - 260Mer 54 001 Chi: 2004 Chi: 2004	20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG / Schönau	155	сри	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20414 Digital Multimeter Plaie 112 Pluis Destertanes Gmitter Gister Plaie 1202144 Digital Multimeter Plaie 112 Pluis Destertanes Gmitter Gister Plaie 1202144 Digital Multimeter Plaie 112 Pluis Destertanes Micros Pluis Destertanes Micros Pluis Destertanes Micros Pluis Destertanes Digital Multimeter Plaie 112 Rocké & Schwarz Mesageratebas Gmitter Digital Multimeter Plaie 112 California Californi						chk: 2020-Apr-15	chk: 12M	
2049 UltrabraceBlanch MRT 1985 0.07317 00.55/60 1055K Walnewight Instruments GmbH 5	20338		Miteq inc.	838697	cnk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
20449		Ü						
Code	20439	Ultrabroadband-Antenna HL562	Ronde & Schwarz Messgeratebau GmbH	100248	calchk	cal: 2017-Mar-10		cal: 2023-Mar-10
2049 Notch Filter WRC R8 40/894 0-5400 850K Warnwright Instruments GmBH 1	20448	Notch Filter WRCT 1850.0/2170.0-5/40-10SSK	Wainwright Instruments GmbH	5	chk	ahlu 2022 lun 20	obl. 1314	able 2022 Ivin 20
20480	20449	Notch Filter WRCT 824.0/894.0-5/40-8SSK	Wainwright Instruments GmbH	1	chk	CNK: 2022-Jun-30	CNK: 12IVI	CNK: 2023-JUN-30
OSS1800-25-10P Robin & Schwarz Messgeristebau GmbH / South South	20494	Dro Amplifor 2 EGHz 19GHz AME ED	Mitos Inc	1244554	chk	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
Memmingen	20484		wited inc.	1244334	Clik	chk: 2022-Jun-30	chk: 12M	chk: 2023-Jun-30
2052 Notch Riter WRCA 800/980-02/40-6EEK (DSM Salon Sa	20489	Test Receiver ESU40	_	100030	cal	cal: 2022-Jul-20	cal: 12M	cal: 2023-Jul-20
20558 Topy Per Antenna HEQ25 Rohde & Schwarz Messgerätebau GmbH 1000060 Calchk Calt 2021-Aug-18 Calt 2021-Aug-18 Calt 2024-Aug-18 Calt 2024-Aug-19 Calt 2024-Aug-10 Calt 24M Calt 2024-Aug-10 Calt 2024-A	20512	Notch Filter WRCA 800/960-02/40-6EEK (GSM	_	24	chk			
Chi: 22M	20549		Rohde & Schwarz Messgerätehau GmhH	1000060	calchk			
Device Supply £35324 Aglient Technologies Deutschland GmBH R73305854 Cpu Cpi				100000			chk: 12M	
20511 Power Supply \$1832A	20558	Fully Anechoic Chamber 1	ETS-Lindgren Gmbh / Taufkirchen	-	cnn			
Memmingen								
20590 Spectrum Analyzer FSU Rohde & Schwarz Messgerätebau GmbH 10002/026 Call Cal	20670	Radio Communication Tester CMU200	_	106833	cal	cal: 2022-May-10	cal: 24M	cal: 2024-May-10
Chic		-	Rohde & Schwarz Messgerätebau GmbH					
Chk: 2021-Jun-11 Chk: 12M	20720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	cnn			
120907 - FAC2 - Radiated Emissions	20868	High Pass Filter AFH-07000	AtlanTecRF	16071300004	chk	abilio 2024, tora 44	-hl- 4214	-bl- 2022 b 44
2005 AC - LISN 50 Ohm/50µH ESH2-Z5 Rohde & Schwarz Messgerätebau GmbH / Memmingen Schizoption Schizoptio		120907 - FAC2 - Radiated Emissions			chk	chk: 2021-Jun-11	chk: 12M	chk: 2022-Jun-11
Memmingen Memm	20005	AC - USN 50 Ohm /50uH FSH2 75	Rohde & Schwarz Messgerätebau GmbU /	861741/005	cal			
20412 Fully Anechoic Chamber 2 ETS-Lindgren Gmbh / Taufkirchen without cal:		·	Memmingen			,		
Chk:- Chk:								
20730 FS-Z110 Rohde & Schwarz Messgerätebau GmbH 101468 cal cal: 2020-Jun-19 cal: 36M cal: 2023-Jun-19 20731 FS-Z75 Rohde & Schwarz Messgerätebau GmbH / Nemmingen Rohde & Schwarz Messgerätebau GmbH / Nemmingen cal: 2022-May-18 cal: 2022-May-18 cal: 2022-May-18 cal: 2022-May-18 cal: 2023-Jun-08 cal: 2022-May-18 cal: 2023-Jun-08 cal:		·				chk: -	chk: -	chk: -
20731 FS-Z75 Rohde & Schwarz Messgerätebau GmbH / Memmingen 101022 cal cal: 2022-May-18 cal: 36M cal: 2025-May-18 cal: 36M cal: 2023-Jun-08 cal:			·					
20732 Signal- and Spectrum Analyzer FSW67 Rohde & Schwarz Messgerätebau GmbH / Memmingen 104023 Cal Cal: 2022-Jun-08 Cal: 12M Cal: 2023-Jun-08 Cal: 2023-Jun-08 Memmingen Cal: 2023-Jun-08 Cal: 2023-J			Rohde & Schwarz Messgerätebau GmbH /					
Memmingen Memm	20732	Signal- and Spectrum Analyzer FSW67	_	104023	ral	cal: 2022-lun-08	cal: 12M	cal: 2023-lun-08
20734 Harmonic Mixer FS-2325 RPG-Radiometer Physics GmbH 101005 cal cal: 2021-May-27 cal: 36M cal: 2024-May-27 20765 Pickett-Potter Horn Antenna FH-PP 40-60 RPG-Radiometer Physics GmbH / Meckenheim 010001 cal cal: 2020-Sep-15 cal: 36M cal: 2023-Sep-15 cal: 36M cal: 2023-Sep-04 cal: 36M cal: 2023			Memmingen					
20765 Pickett-Potter Horn Antenna FH-PP 40-60 RPG-Radiometer Physics GmbH / Meckenheim 010001 cal cal: 2020-Sep-15 cal: 36M cal: 2023-Sep-15 20767 Pickett-Potter Horn Antenna FH-PP 140-220 RPG-Radiometer Physics GmbH / Meckenheim 010011 cnn cal: - cal: - cal: - cal: - cal: - chk: -								
Chk: Chk: Chk: Chk: Chk: Chk: Chk: Chk:	20765	Pickett-Potter Horn Antenna FH-PP 40-60	RPG-Radiometer Physics GmbH / Meckenheim	010001	cal	cal: 2020-Sep-15	cal: 36M	cal: 2023-Sep-15
20811 Horn Antenna ASY-SGH-124-SMA	20767	Pickett-Potter Horn Antenna FH-PP 140-220	RPG-Radiometer Physics GmbH / Meckenheim	010011	cnn			
Chk:- Chk:						cal: 2021-Oct-20	cal: 36M	cal: 2024-Oct-20
20813 Pickett-Potter Horn Antenna FH-PP 075 RPG-Radiometer Physics GmbH / Meckenheim 10006 cal cal: 2020-Sep-09 cal: 36M cal: 2023-Sep-09 20814 Pickett-Potter Horn Antenna FH-PP 140 RPG-Radiometer Physics GmbH 10008 cnn cal: cal: cal: cal: cal: chk: cal: 20815 Pickett-Potter Horn Antenna FH-PP 110 RPG-Radiometer Physics GmbH 10014 cal cal: 2020-Sep-04 cal: 36M cal: 2023-Sep-04 20816 SGH Antenna SGH-26-WR10 Anteral S.L. 1144 cnn cal:	20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH	10024	cnn			
Chk:- Chk:						cal: 2020-Sep-09	cal: 36M	cal: 2023-Sep-09
20815 Pickett-Potter Horn Antenna FH-PP 110 RPG-Radiometer Physics GmbH 10014 cal cal: 2020-Sep-04 cal: 36M cal: 2023-Sep-04 20816 SGH Antenna SGH-26-WR10 Anteral S.L. 1144 cnn cal: cal: cal: cal: cal: cal: cal: cal:	20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH	10008	cnn			
						cal: 2020-Sep-04	cal: 36M	cal: 2023-Sep-04
	20816	SGH Antenna SGH-26-WR10	Anteral S.L.	1144	cnn		cal: - chk: -	

TR22-1-0032102T001a-C01 29/33

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
20817	Waveguide Rectangular Horn Antenna SAR- 2309-22-S2	ERAVAN	13254-01	cal	cal: 2020-Jul-29	cal: 36M	cal: 2023-Jul-29
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc.	0001	chk		chk: 36M	
20877	JS42-08001800-16-8P Verstärker	Miteq Inc.	2079991 / 2079992	chk	chk: 2020-Feb-27	chk: 36M	chk: 2020-May-27
20907	Waveguide WR-15 attenuator STA-30-15-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20908	Waveguide WR 10 attenuator STA-30-10-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20909	Waveguide Horn Antenna PE9881-24	Pasternack Enterprises, Inc.	37/2016	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20910	Frequency Multiplier 936VF-10/385	MI-Wave, Millimeter Wave Products Inc.	142	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20911	Frequency Multiplier 938WF-10/387	MI-Wave, Millimeter Wave Products Inc.	141	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20912	Low noise Amplifier Module 0.5-4GHz	RF-Lambda Europe GmbH	19041200083	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20913	Phase Amplitude Stable Cable Assembly DC- 40GHz	RF-Lambda Europe GmbH	AC19040001	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
25457	DRG Horn Antenna SAS-574	A.H. Systems, Inc. / Chatsworth	383	cal	cal: 2022-Mar-28	cal: 36M	cal: 2025-Mar-28
	120910 - Radio Laboratory 1 (TS 8997)			chk	chk: 2022-Mar-16	chk: 12M	chk: 2023-Mar-16
20559	Vector Signal Generator SMU200A	Rohde & Schwarz Messgerätebau GmbH / Memmingen	103736	cal	cal: 2021-May-20	cal: 24M	cal: 2023-May-20
20691	Open Switch and control Platform OSP120	Rohde & Schwarz Messgerätebau GmbH	101056	cal	cal: 2020-May-13	cal: 36M	cal: 2023-May-13
20805	Open Switch and control Platform OSP B157WX 40GHz 8Port Switch	Rohde & Schwarz Messgerätebau GmbH	101264	cal	cal: 2020-May-13	cal: 36M	cal: 2023-May-13
20866	Signal Analyzer FSV3030	Rohde & Schwarz Messgerätebau GmbH / Memmingen	101247	cal	cal: 2022-Jun-20	cal: 12M	cal: 2023-Jun-20
20871	NRP-Z81	Rohde & Schwarz Messgerätebau GmbH / Memmingen	104631	cal	cal: 2022-May-16	cal: 12M	cal: 2023-May-16
20872	NRX Power Meter	Rohde & Schwarz Messgerätebau GmbH / Memmingen	101831	cal	cal: 2022-May-17	cal: 24M	cal: 2024-May-17
20904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH / Reiskirchen- Lindenstruth	58226223240010	cal	cal: 2022-Nov-29	cal: 24M	cal: 2024-Nov-29

Tools used in 'P1M1'

4.11.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

TR22-1-0032102T001a-C01 30/33

5 Results	5 Results from external laboratory					
None	-					
6 Opinion	s and interpreta	tions				
None	-					
7 List of a	bbreviations					
None	_					

TR22-1-0032102T001a-C01 31/33

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Measurement type	Frequency of measur Start [MHz]		Calculated Uncertainty based on confidence level of 95.54%	Remarks
Magnetic field strength	0.009	30	4.86	Magnetic loop antenna, Pre-amp on
	30	100	4.57	without Pre-Amp
	30	100	4.91	with PreAmp
	100	1000	4.02	without Pre-Amp
	100	1000	4.26	with PreAmp
	1000	18000	4.36	without Pre-Amp
	1000	18000	5.23	with PreAmp
RF-Output power (eirp)	18000	33000	4.92	Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna)
Unwanted emissions (eirp)	33000	50000	4.17	Set-up for Q-Band (WR-22), non-wave guide antenna
[dB]	40000	60000	4.69	Set-up U-Band (WR-19), non-waveguide antenna
	50000	75000	4.06	External Mixer set-up V-Band (WR-15)
	75000	110000	4.17	External Mixer set-up W-Band (WR-6)
	90000	140000	5.49	External Mixer set-up F-Band (WR-8)
	140000	225000	6.22	External Mixer set-up G-Band (WR-5)
	225000	325000	7.04	External Mixer set-up (WR-3)
	325000	500000	8.84	External Mixer set-up (WR-2.2)
	1000	10000	2.05	Turing and up with priors was a consistent and automa and automa 7011, as a value of
	1000 18000	18000 33000	2.85 4.66	Typical set-up with microwave generator and antenna, value for 7GHz calculated Typical set-up with microwave generator and antenna
Radiated Blocking	33000	50000	3.48	WR-22 set-up
[dB]	50000	75000	3.73	WR-15 set-up
	75000	110000	4.26	WR-6 set-up
	73000	110000	4.20	WN-0 Set-up
Frequency Error	40000	77000	276.19	calculated for 77 GHz (FMCW) carrier
[kHz]	6000	7000	33.92	calculated for 6.5GHz UWB Ch.5
[=]	0000	7000	30.02	Dailodiated for 0.001 /2 097 D 011.0
	30	6000	1.11	Power measurement with Fast-sampling-detector
	30	6000	1.20	Power measurement with Spectrum-Analyzer
	30	6000	1.20	Power Measurement with opening many transport Power Spectrum-Density measurement
	30	7500	1.20	Conducted Spurious emissions:
TC 0007	0.009	30	2.56	5. Conducted Spurious emissions:
TS 8997	2.4	2.48	1.95 ppm	6a. Bandwidth / 2-Marker Method for 2.4GHz ISM
conducted Parameters	5.18	5.825	7.180 ppm	6b. Bandwidth / 2-Marker Method for 5GHz WLAN
	5.18	5.825	1.099 ppm	7 Frequency (Marker method) for 5GHz WLAN
	30	6000	0.11561µs	8 Medium-Utilization factor / Timing
	30	6000	1.85	9 Blocking-Level of companion device
	30	6000	1.62	9 Blocking Generator level
Conducted emissions	0.009	30	3.57	

TR22-1-0032102T001a-C01 32 / 33

9 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2023-Feb-21
C01	Correct Max. Conducted Output Power value added (3.2)	2023-May-24
COI	Correct FCC ID and IC ID added	2023-IVIAY-24

End Of Test Report

TR22-1-0032102T001a-C01 33/33