

Global United Technology Services Co., Ltd.

Report No.: GTS202009000269F01

TEST REPORT

Applicant: STARLINE USA INC

Address of Applicant: 3036 ALT BLVD, GRAND ISLAND, NY 14072, USA

Manufacturer/Factory: Prevailing Corp Limited

Address of Room 1613, Huatong Building, No.2127 of East Sungang Rd.,

Luohu District, Shenzhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: 10W Wireless Charger Holder

Model No.: EL197

FCC ID: 2AXR6-EL197

Applicable standards: FCC CFR Title 47 Part 15 Subpart C

Date of sample receipt: Sep. 23, 2020

Date of Test: Sep. 24, 2020 to Sep. 29, 2020

Date of report issued: Sep. 29, 2020

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Sep. 29, 2020	Original

Prepared By:	SysantOu	Date:	Sep. 29, 2020	
	Project Engineer			
Check By:	Job insonda	Date:	Sep. 29, 2020	_
	Reviewer			

3 Contents

			Page
1	COVE	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
4			
	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	6
	5.3	DESCRIPTION OF SUPPORT UNITS	6
	5.4	TEST FACILITY	6
	5.5	TEST LOCATION	6
	5.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT:	
	7.2	CONDUCTED EMISSIONS	
	7.3	SPURIOUS EMISSION	
	7.4	20DB OCCUPY BANDWIDTH	
8	TES	T SETUP PHOTO	19
9	EUT	CONSTRUCTIONAL DETAILS	19

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Spurious Emission	15.209(a)(f)	Pass
20dB Bandwidth	15.215	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30MHz-200MHz	3.8039dB	(1)			
Radiated Emission	200MHz-1GHz	3.9679dB	(1)			
Radiated Emission	1GHz-18GHz	4.29dB	(1)			
Radiated Emission	18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted Emission 0.15MHz ~ 30MHz 3.44dB (1)						
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.			

5 General Information

5.1 General Description of EUT

-	
Product Name:	10W Wireless Charger Holder
Model No.:	EL197
Serial No.:	N/A
Hardware version:	N/A
Software version:	N/A
Test sample(s) ID:	GTS202009000269-1
Sample(s) Status	Engineer sample
Operation Frequency:	110kHz ~ 205KHz
Modulation type:	MSK
Antenna Type:	Inductive loop coil Antenna
Antenna gain:	0dBi
Power supply:	Input: DC 5V 2A, DC 9V 1.6A
	Wireless Output: 10W(Max)

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
STARLINE USA INC	10W Wireless Charger Holder	EL197	/
OXIOS	Adapter	002	1
/	Dummy load	DL01	/

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Con	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021	
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021	

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021			

Gene	General used equipment:						
Item Test Equipment Ma		Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021	
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021	

7 Test results and Measurement Data

7.1 Antenna requirement:

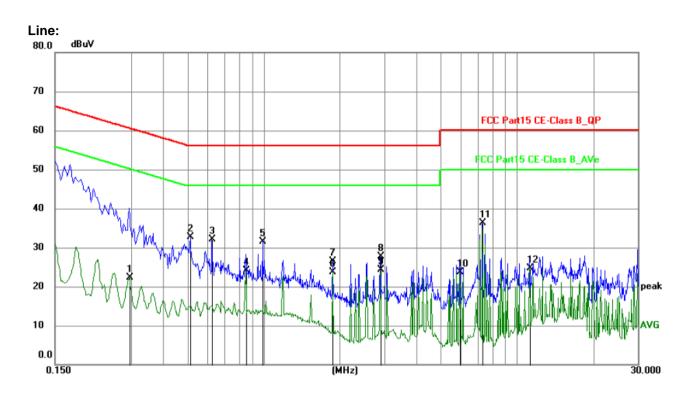
Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

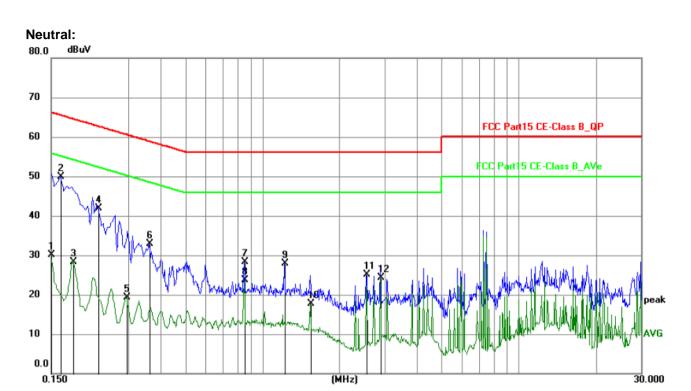
EUT Antenna:

The antenna is Inductive loop coil Antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details.



7.2 Conducted Emissions

 	<u></u>				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Frequency range (MHz) Cuasi-peak Average				
	Quasi-peak Average				
		46			
	5-30 60 50				
	* Decreases with the logarithm of the frequency.				
Test setup:	LISN LISN				
	AUX Equipment E.U.T EMI Receiver Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				
	1				



Measurement data:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2940	10.86	11.49	22.35	50.41	-28.06	AVG	Р	
2	0.5144	22.07	10.54	32.61	56.00	-23.39	QP	Р	
3	0.6270	21.50	10.51	32.01	56.00	-23.99	QP	Р	
4	0.8519	13.62	10.47	24.09	46.00	-21.91	AVG	Р	
5	0.9915	21.16	10.44	31.60	56.00	-24.40	QP	Р	
6	1.8734	13.40	10.22	23.62	46.00	-22.38	AVG	Р	
7	1.8735	16.24	10.22	26.46	56.00	-29.54	QP	Р	
8	2.8950	17.64	9.97	27.61	46.00	-18.39	AVG	Р	
9	2.8950	14.24	9.97	24.21	46.00	-21.79	AVG	Р	
10	5.9595	15.17	8.61	23.78	50.00	-26.22	AVG	Р	
11	7.3230	27.70	8.56	36.26	60.00	-23.74	QP	Р	
12	11.2380	16.15	8.63	24.78	50.00	-25.22	AVG	Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1500	17.13	13.01	30.14	56.00	-25.86	AVG	Р	
2	0.1635	37.24	12.71	49.95	65.28	-15.33	QP	Р	
3	0.1825	16.09	12.30	28.39	54.37	-25.98	AVG	Р	
4	0.2280	30.18	11.79	41.97	62.52	-20.55	QP	Р	
5	0.2940	7.90	11.49	19.39	50.41	-31.02	AVG	Р	
6	0.3615	21.66	11.18	32.84	58.69	-25.85	QP	Р	
7	0.8520	17.80	10.47	28.27	56.00	-27.73	QP	Р	
8	0.8520	13.14	10.47	23.61	46.00	-22.39	AVG	Р	
9	1.2210	17.44	10.38	27.82	56.00	-28.18	QP	Р	
10	1.5360	7.46	10.31	17.77	46.00	-28.23	AVG	Р	
11	2.5530	14.99	10.05	25.04	56.00	-30.96	QP	Р	
12	2.8950	14.28	9.97	24.25	46.00	-21.75	AVG	Р	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Mesurement Level = Reading level + Correct Factor

7.3 Spurious Emission

7.5	.3 Spurious Emission										
	Test Requirement:	FCC Part15 C Section 15.209									
	Test Method:	ANSI C63.10:201	3								
	Test Frequency Range:	9kHz to 1GHz									
	Test site:	Measurement Dis	stance: 3m								
	Receiver setup:	Frequency	Detector		RBW	VBW	Remark				
		9kHz- 30MHz	Quasi-peak		10kHz	30kHz	Quasi-peak Value				
		30MHz-1GHz	Quasi-pea	k '	120kHz	300kHz	Quasi-peak Value				
		Above 1GHz	Peak AV		1MHz 1MHz	3MHz 10Hz	Peak Value Average Value				
		Remark: For the		ands			kHz and above 1000				
		MHz. Radiated e									
		measurements e				ctor.					
	Limit:	Limits for freque	ency below	30M			1				
	(Spurious Emissions)	Frequency	Limit (uV/		Dista	ance(m)	Remark				
		0.009-0.490	2400/F(kl			300	Quasi-peak Value				
		0.490-1.705 1.705-30	24000/F(k 30	(HZ)		30	Quasi-peak Value Quasi-peak Value				
		Limits for freque		301/		30	Quasi-peak value				
		Frequen			nit (dBuV/	/m @3m)	Remark				
		30MHz-88			40.0		Quasi-peak Value				
		88MHz-216MHz			43.5		Quasi-peak Value				
		216MHz-960MHz			46.0	0	Quasi-peak Value				
		960MHz-1GHz			54.0		Quasi-peak Value				
		Above 10	GHz		54.0		Average Value				
		Remark: The em	ission limits	shov	74.0		Peak Value				
		measurements e									
			9-90 kHz, 1	10-49	90 kHz ar	nd above 10	000 MHz. Radiated				
		employing an ave									
	Test Procedure:		•			•	0.8 meters above the				
		-					360 degrees to				
		determine the	•		0		aco roccivina				
		2. The EUT was			-		le-height antenna				
		tower.	i wao moan		m mo top	or a variab	io noigni antonna				
		3. The antenna h	eight is vari	ed fro	om one m	neter to four	r meters above the				
		ground to dete	rmine the m	axim	num value	of the field	d strength. Both				
				arizat	tions of th	e antenna a	are set to make the				
		measurement		ion :	tha EUT y	voc orrona	ad to its worst soos				
		•				_	ed to its worst case neter to 4 meters and				
					_		grees to find the				
		maximum read			· ·	·	_				
			-			k Detect Fu	unction and Specified				
		Bandwidth witl					40.10.1				
							10dB lower than the				
		iiiiiii speciliea,	men testing	Lou	id be stop	peu anu in	e peak values of the				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No.: GTS202009000269F01 EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test setup: Below 30MHz < 3m > Test Antenna EUT-Tum Table 1m< 80cm Turn Table Receiver-30MHz ~ 1000MHz < 3m > Test Antenna < 1m ... 4m >+ EUT Tum Table < 80cm Turn Table Receiver-Preamplifier. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: **Pass**

Measurement data:

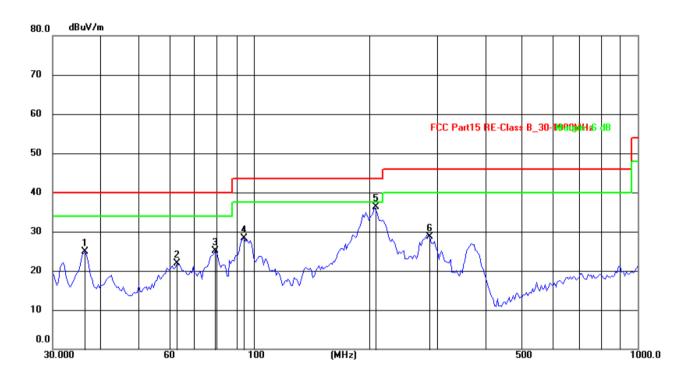
Note: Limit dBuV/m @3m = Limit dBuV/m @300m+ 80 Limit dBuV/m @3m = Limit dBuV/m @30m + 40

9 kHz~30 MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(kHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
25.9800	37.59	20.15	57.74	139.34	-81.6	PK
25.9800	34.56	20.15	54.71	119.34	-64.63	AV
58.5100	51.02	20.33	71.35	132.29	-60.94	PK
58.5100	46.22	20.33	66.55	112.29	-45.74	AV
123.4000	66.28	20.55	86.83	125.63	-38.80	PK
123.4000	61.27	20.55	81.82	105.63	-23.81	AV
689.7400	42.21	20.64	62.85	70.85	-8.00	QP
925.6800	35.28	21.26	56.54	67.88	-11.34	QP
1153.4600	25.36	22.32	47.68	65.86	-18.18	QP

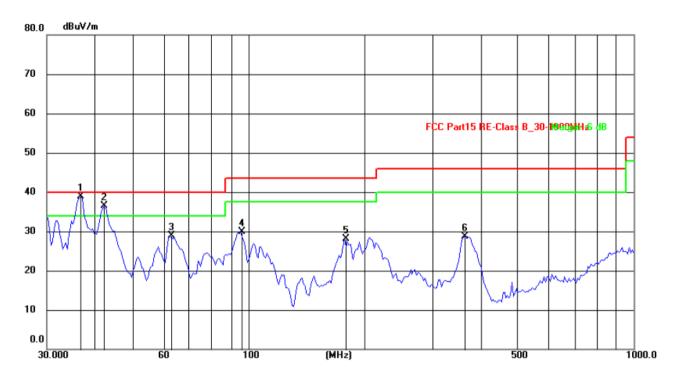
Note:

Pre-scan in the all of mode, the worst case in of was recorded.


Factor = antenna factor + cable loss – pre-amplifier.

Margin = Emission Level- Limit.

30MHz~1GHz

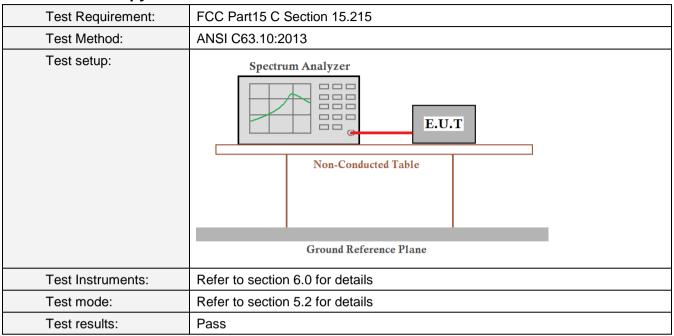

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	36.3814	39.69	-14.80	24.89	40.00	-15.11	QP	122	325		
2	63.2023	37.00	-15.08	21.92	40.00	-18.08	QP	214	187		
3	79.3816	44.38	-19.32	25.06	40.00	-14.94	QP	106	201		
4	93.7685	48.36	-20.06	28.30	43.50	-15.20	QP	128	174		
5	206.3976	55.89	-19.54	36.35	43.50	-7.15	QP	197	58		
6	287.9904	45.92	-17.28	28.64	46.00	-17.36	QP	157	88		

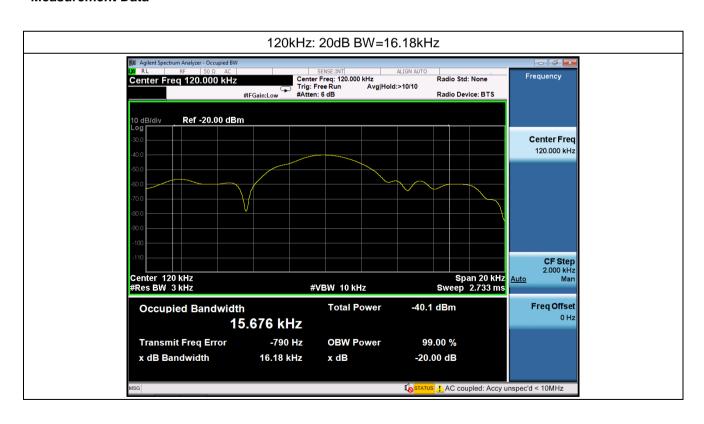
Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	36.7017	56.17	-17.35	38.82	40.00	-1.18	QP	168	77		
2	42.2281	53.55	-16.96	36.59	40.00	-3.41	QP	125	107		
3	62.6507	47.53	-18.59	28.94	40.00	-11.06	QP	217	35		
4	95.4270	51.22	-21.34	29.88	43.50	-13.62	QP	119	195		
5	177.8207	48.74	-20.66	28.08	43.50	-15.42	QP	134	266		
6	364.8987	46.94	-18.20	28.74	46.00	-17.26	QP	118	210		

Note:


Pre-scan in the all of mode, the worst case in of was recorded.

Factor = Antenna Factor + Cable Loss - Pre-amplifier.


Margin = Emission Level- Limit.

7.4 20dB Occupy Bandwidth

Measurement Data

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----