

Product Name: Smart Phone	Report No: ITEZA2-202500034RF2
Product Model: Blade20 Turbo, Blade20 Max, Blade20 Play, Blade20 Pro Max, Blade20 Power, Blade20 Plus, Blade20 Energy, Blade20 Pro Energy, Blade20 Ultra Energy, Blade20 Max Energy, Blade20 Play Energy, Blade20 X	Security Classification: Open
Version: V1.0	Total Page: 32

TIRT Testing Report

Prepared By:	Checked By:	Approved By:	shoology Sea
Aaron Long	Stone Tang	Joky Wang	Technology 3e.
soven long	Stone Tang	Loon Wany	Shenzhen S

RF TEST REPORT

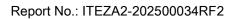
FCC ID: 2AX4YBLADE20TURBO

According to

47 CFR FCC Part 15, Subpart C(Section 15.247) ANSI C63.10:2013

Applicant:	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua
Address.	New District, Shenzhen, China
Manufacturer:	Shenzhen DOOGEE Hengtong Technology CO.,LTD
Address:	B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua
Address.	New District, Shenzhen, China
Sample No:	1000055016
Product Name:	Smart Phone
Brand Name:	DOOGEE
	Blade20 Turbo, Blade20 Max, Blade20 Play, Blade20 Pro Max, Blade20 Power,
Model No.:	Blade20 Plus, Blade20 Energy, Blade20 Pro Energy, Blade20 Ultra Energy,
	Blade20 Max Energy, Blade20 Play Energy, Blade20 X
Test No.:	Blade20 Turbo

Date of Receipt:	2025/02/18
Date of Test:	2025/02/18~2025/03/19
Issued Date:	2025/03/26
Testing Lab:	TIRT


Note: This report shall not be reproduced except in full, without the written approval of Beijing TIRT Technology Service Co.,Ltd Shenzhen.Laboratory.

This document may be altered or revised by Beijing TIRT Technology Service Co.,Ltd Shenzhen. Laboratory.Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.

TABLE OF CONTENTS

	Description	<u>Page</u>
1.	Summary of Standards And Results	6
	1.1. Description of Standards and Results	6
2.	General Information	
	2.1. Description of Device (EUT)	
	2.2. Accessories of Device (EUT)	8
	2.3. Tested Supporting System Details	8
	2.4. Block Diagram of connection between EUT and simulators	8
	2.5. Test Mode Description	8
	2.6. Test Conditions	9
	2.7. Test Facility	9
	2.8. Measurement Uncertainty	9
	2.9. Test Equipment List	10
3.	Maximum Peak Output power	11
	3.1. Limit	
	3.2. Test Procedure	11
	3.3. Test Result	11
4.	Bandwidth	12
	4.1. Limit	12
	4.2. Test Procedure	12
	4.3. Test Result	12
5.	Carrier Frequency Separation	12
	5.1. Limit	
	5.2. Test Procedure	12
	5.3. Test Result	12
6.	Number Of Hopping Channel	13
	6.1. Limit	13
	6.2. Test Procedure	13
	6.3. Test Result	13
7.	Dwell Time	14
	7.1. Test limit	14
	7.2. Test Procedure	14
	7.3. Test Result	14
8.	Radiated emissions	
	8.1. Limit	
	8.2. Block Diagram of Test setup	
	8.3. Test Procedure	
	8.4. Test Result	
9.	Band Edge Compliance	
	9.1. Block Diagram of Test Setup	
	9.2. Limit	
	9.3. Test Procedure	
	9.4. Test Result	
10.	Power Line Conducted Emissions	
. • •	10.1. Block Diagram of Test Setup	
	10.2. Limit	
	10.3. Test Procedure	_
	10.4. Test Result	

11. Antenna Requirements	31
11.1. Limit	
11.2. Result	31
12. Test setup photo	
13. Photos of EUT	

History of this test reportOriginal Report Issue Date: 2025.03.26

- No additional attachment
- o Additional attachments were issued following record

Attachment No.	Issue Date	Description

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Test Item	Standards Paragraph	Result
Maximum Peak Output Power	FCC Part 15: 15.247(b)(1) ANSI C63.10 :2013	Р
Bandwidth	FCC Part 15: 15.215 ANSI C63.10 :2013	Р
Carrier Frequency Separation	FCC Part 15: 15.247(a)(1) ANSI C63.10 :2013	Р
Number Of Hopping Channel	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.10 :2013	Р
Dwell Time	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.10 :2013	Р
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d) ANSI C63.10 :2013	Р
Band Edge Compliance	FCC Part 15: 15.247(d) ANSI C63.10 :2013	Р
Power Line Conducted Emissions	FCC Part 15: 15.207 ANSI C63.10 :2013	Р
Antenna requirement	FCC Part 15: 15.203	Р

Note: 1. P is an abbreviation for Pass.

- 2. F is an abbreviation for Fail.
- 3. N/A is an abbreviation for Not Applicable.
- 4. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT Name : Smart Phone

Model No. : Blade20 Turbo, Blade20 Max, Blade20 Play, Blade20 Pro Max, Blade20

Power, Blade20 Plus, Blade20 Energy, Blade20 Pro Energy, Blade20 Ultra

Energy, Blade20 Max Energy, Blade20 Play Energy, Blade20 X

DIFF. : There is no difference except the name of the model. All tests are made with the

Blade20 Turbo model.

Power supply : DC 3.87V from battery or DC11V AC Power Adapter

Radio Technology : Bluetooth V5.2 EDR

Operation : 2402-2480MHz

Channel No. : 79 Channels

Channel spacing : 1MHz

Modulation type : GFSK, $\pi/4$ DQPSK, 8DPSK

Antenna Type : PIFA antenna, Maximum Gain is 1.78dBi.
Antenna information is provided by applicant.

Software version : DOOGEE-Blade20 Turbo-EEA-Android15.0-20250221

Hardware version : M1703-MUB-V2

Intend use : Residential, commercial and light industrial environment

environment

2.2. Accessories of Device (EUT)

Accessories : AC Power Adapter

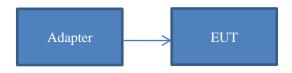
Manufacturer : Shenzhen DOOGEE Hengtong Technology CO.,LTD

Model : TP303C-US

Input: AC100-240V~ 50/60Hz 0.7A Max

Output: USB-C: 5.0V-3.0A 15.0W; 9.0V-3.0A 27.0W; 12.0V-2.5A 30.0W;

Ratings : 15.0V=2.0A 30.0W; 20.0V=1.5A 30.0W


PPS: 5.0-11.0V-3.0A 33.0W

Power: 33.0W

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDoC
1.					

2.4. Block Diagram of connection between EUT and simulators

2.5. Test Mode Description

Tested mode, channel information				
Mode	Channel	Frequency (MHz)		
	Low :CH1	2402		
GFSK	Middle: CH40	2441		
	High: CH79	2480		
	Low :CH1	2402		
π/4 DQPSK	Middle: CH40	2441		
	High: CH79	2480		
	Low :CH1	2402		
8DPSK	Middle: CH40	2441		
	High: CH79	2480		

2.6. Test Conditions

Items	Required	Actual
Temperature range:	15-35 ℃	24℃
Humidity range:	25-75%	56%
Pressure range:	86-106kPa	980kPa

2.7. Test Facility

Company:	Beijing TIRT Technology Service Co.,Ltd Shenzhen
Address:	104 Building C, Xinmingsheng Industrial Park No.132, Zhangge Old Village East Zone, Zhangge Community, Fucheng Street, Longhua District, Shenzhen, Guangdong, P. R. China
CNAS Registration Number:	CNAS L14158
A2LA Registration Number:	6049.01
FCC Accredited Lab.Designation Number:	CN1366
FCC Test Firm Registration Number:	820690
Telephone:	+86-0755-27087573

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Uncerta	inty
Parameter	Uncertainty
Occupied Channel Bandwidth	±142.12 KHz
RF power conducted	±0.74 dB
RF power radiated	±3.25dB
Spurious emissions, conducted	±1.78dB
Spurious emissions, radiated (9KHz~30MHz)	±2.56dB
Spurious emissions, radiated (30MHz~1GHz)	±4.6dB
Spurious emissions, radiated (Above 1GHz)	±4.9dB
Conduction Emissions(150kHz~30MHz)	±3.1 dB
Humidity	±4.6%
Temperature	±0.7°C
Time	±1.25

2.9. Test Equipment List

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Receiver	Rohde&Schwarz	ESIB 40	YH-TIRT-SAC- 966-20220911	2025/01/05	2026/01/04
Integral Antenna	Schwarzbeck	VULB 9163	01314	2023/12/11	2025/12/10
Integral Antenna	Rohde&Schwarz	HF907	RSM2991424	2023/12/11	2025/12/10
Preamplifier	Emtrace	RP01A	'02017	2025/01/05	2026/01/04
Preamplifier	Schwarzbeck	BBV9744	00143	2025/01/05	2026/01/04
Loop Antenna	ZHINAN	ZN30900A	12024	2025/01/05	2026/01/04
Horn Antenna	Schwarzbeck	BBHA9170	00956	2025/01/05	2026/01/04
RF Cable	/	LMR400UF-NMN M-7.0M	/	2025/01/05	2026/01/04
RF Cable	/	SFT2050PUR-N MNM-7.0M	/	2025/01/05	2026/01/04
EMI Receiver	Rohde&Schwarz	ESR7	1316.3003K07- 102611-mk	2024/11/02	2025/11/01
LISN	Rohde&Schwarz	ENV216	3560.655.12-1 02915-Bp	2024/11/02	2025/11/01
RF Cable	\	SFT2050PUR-N MNM-2.0M	\	2025/01/05	2026/01/04
Spectrum analyzer	ROHDE&SCHW ARZ	FSU26	200732	2025/01/05	2026/01/04
Spectrum analyzer	ROHDE&SCHW ARZ	FSV40-N	101722	2025/01/05	2026/01/04
Filter	HEWLETT PACKARD	JS0806-F	19K8060209	2025/01/05	2026/01/04

3. MAXIMUM PEAK OUTPUT POWER

3.1.Limit

Please refer section15.247.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts

3.2. Test Procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting				
Span Frequency	≥ 3×RBW				
RBW	3 MHz				
VBW	10MHz				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				

3.3. Test Result

Pass

4. BANDWIDTH

4.1. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.2. Test Procedure

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3. Test Result

Pass

Please refer to the BT attachments

5. CARRIER FREQUENCY SEPARATION

5.1.Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.2. Test Procedure

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The carrier frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW.

5.3. Test Result

Pass

6. NUMBER OF HOPPING CHANNEL

6.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

6.2. Test Procedure

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The number of hopping channel was measured by spectrum analyzer with 300kHz RBW and 300KHz VBW.

6.3. Test Result

Pass

7.1. Test limit

Please refer section15.247

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 sec- onds multiplied by the number of hopping channel employed.

7.2. Test Procedure

- 7.2.1. Place the EUT on the table and set it in transmitting mode.
- 7.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 7.2.3. Set center frequency of spectrum analyzer = operating frequency.
- 7.2.4. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span = 0Hz, Sweep = auto.
- 7.2.5. Repeat above procedures until all frequency measured were complete.

7.3. Test Result

Pass

8. RADIATED EMISSIONS

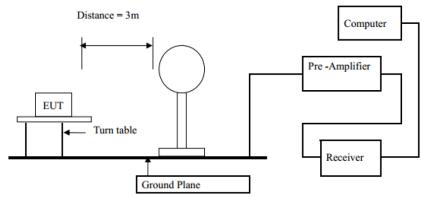
Report No.: ITEZA2-202500034RF2

8.1.Limit

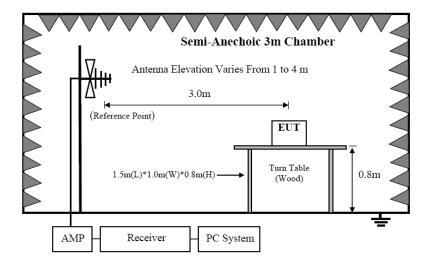
All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

15.205 Restricted frequency band

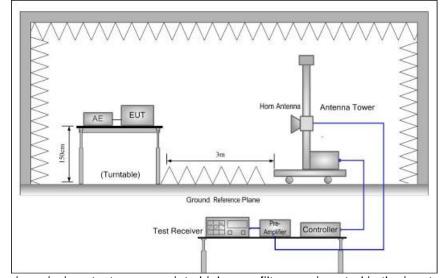
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)


15.209 Limit

FREQUE	NCY	DISTANCE	FIELD STRENG	GTHS LIMIT
MHz		Meters	μV/m	dB(μV)/m
0.009-0.4	90	300	2400/F(KHz)	/
0.490-1.7	05	30	24000/F(KHz)	/
1.705-30		30	30	29.5
30	88	3	100	40.0
88	216	3	150	43.5
216	960	3	200	46.0
960	1000	3	500	54.0
Above	1000	3	74.0 dB(μV)/m 54.0 dB(μV)/m	



8.2. Block Diagram of Test setup


8.2.1 In 3m Anechoic Chamber Test Setup Diagram for below 30MHz

8.2.1 In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

8.2.2 In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.3. Test Procedure

(1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.

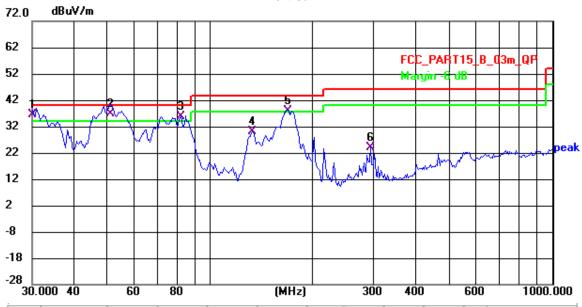
Report No.: ITEZA2-202500034RF2

- (2) Setup EUT and simulator as shown in section 1.4 and 6.1
- (3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated
- (5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013on Radiated Emission test.
- (6) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure.

8.4. Test Result

We have scanned the 10th harmonic from 9KHz to the EUT's highest frequency. Detailed information please see the following page.

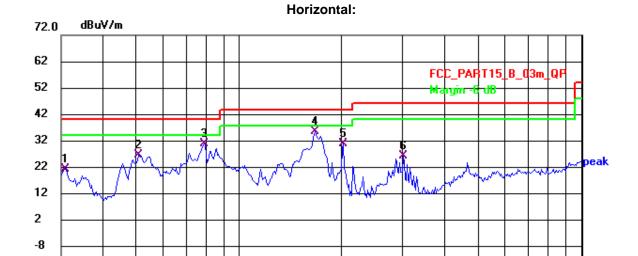
From 9KHz to 30MHz: Conclusion: PASS


Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

From 30MHz to 1000MHz: Conclusion: PASS

All modes had been tested, only show the worst mode GFSK

Vertical:



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 !	30.104	59.98	-23.39	36.59	40.00	-3.41	QP	200	354	Р	
2 *	50.852	59.04	-22.09	36.95	40.00	-3.05	QP	100	117	Р	
3 !	81.948	61.58	-25.86	35.72	40.00	-4.28	QP	200	0	Р	
4	132.149	51.87	-21.98	29.89	43.50	-13.61	QP	100	234	Р	
5 !	167.814	58.94	-20.93	38.01	43.50	-5.49	QP	100	12	Р	
6	294.426	46.42	-22.37	24.05	46.00	-21.95	QP	100	6	Р	

-18

Report No.: ITEZA2-202500034RF2

-28 30.	000 40		60	8	0		(MHz)		30	D 40	0	600	0	11	 000.000)
No.	Frequenc (MHz)	,	Readin (dBuV	-	actor B/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	=	Remar	k	
1	30.855		44.52	-2	3.31	21.21	40.00	-18.79	QP	100	314	Р				
2	50.461		48.59	-2	2.06	26.53	40.00	-13.47	QP	100	333	Р	Т			٦
3	78.564		56.20	-2	5.61	30.59	40.00	-9.41	QP	200	321	Р				
4 *	166.638	В	56.14	-2	0.91	35.23	43.50	-8.27	QP	200	282	Р				
5	201.454	4	55.32	-2	4.74	30.58	43.50	-12.92	QP	100	294	Р				
6	300.699	9	48.19	-2	2.17	26.02	46.00	-19.98	QP	100	96	Р				

Remark: All modes have been tested, and only worst data of GFSK mode, Channel 2480MHz was listed in this report.

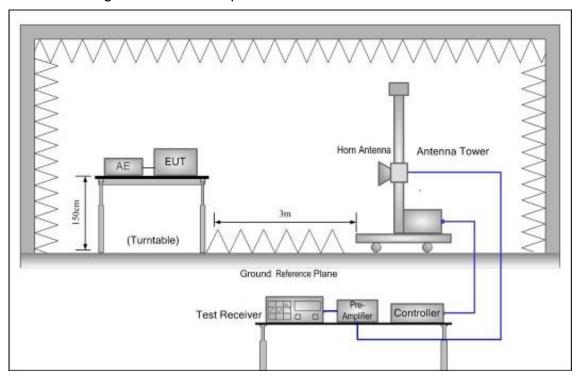
From 1G-25GHz

All modes had been tested, only show the worst mode GFSK

	Test Mode	: GFSK TX La		OI OIK				
No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark
1	4804	V	88.79	-27.21	61.58	74	-12.42	Peak
2	4804	V	69.77	-27.21	42.56	54	-11.44	Avg
3	7206	-						-
4	9608							-
5	4804	Н	91.21	-27.21	64.00	74	-10.00	Peak
6	4804	Н	69.29	-27.21	42.08	54	-11.92	Avg
7	7206	-	1	-		1		1
8	9608		1			1		
٦	est Mode :	GFSK TX Mid						
1	4882	V	90.82	-27.84	62.98	74	-11.02	Peak
2	4882	V	70.23	-27.84	42.39	54	-11.61	Avg
3	7323							
4	9764	-	-			-		1
5	4882	Н	91.28	-27.84	63.44	74	-10.56	Peak
6	4882	Н	71.56	-27.84	43.72	54	-10.28	Avg
7	7323							
8	9764							
٦	est Mode :	GFSK TX High						
1	4960	V	90.64	-28.49	62.15	74	-11.85	Peak
2	4960	V	69.62	-28.49	41.13	54	-12.87	Avg
3	7440							
4	9920							
5	4960	Н	91.53	-28.49	63.04	74	-10.96	Peak
6	4960	Н	69.38	-28.49	40.89	54	-13.11	Avg
7	7440							
8 Nata	9920							

Note

Report No.: ITEZA2-202500034RF2


^{1,} Result = Read level + Antenna factor + cable loss-Amp factor

^{2,} All the other emissions not reported were too low to read and deemed to comply with FCC limit.

9. BAND EDGE COMPLIANCE

9.1. Block Diagram of Test Setup

9.2. Limit

All the lower and upper band-edges emissions appearing within restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.3. Test Procedure

All restriction band and non- restriction band have been tested , only worse case is reported.

9.4. Test Result

PASS. (See below detailed test data)

	To	est Results			PASS		
	Fred	uency Range		2:	310MHz~2410	MHz	
	٦	Test Mode		GFSK TX 2402MHz			
Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark
2390	Н	74.73	-21.47	53.26	74.00	-20.74	Peak
2390	Н		-21.47		54.00		Avg
2400	Н	79.43	-26.12	53.31	74.00	-20.69	Peak
2400	Н		-26.12		54.00		Avg
		1			1	l	
2390	V	75.10	-21.47	53.63	74.00	-20.37	Peak
2390	V		-21.47		54.00		Avg
2400	V	78.74	-26.12	52.62	74.00	-21.38	Peak
2400	V		-26.12		54.00		Avg
Т	est Results				PASS		
Fred	quency Ran	ge		24	50MHz~2550N	lHz	
-	Test Mode			GF	SK TX 2480M	Hz	
2483.5	Н	78.81	-25.29	53.52	74.00	-20.48	Peak
2483.5	Н		-25.29		54.00		Avg
2483.5	V	78.82	-25.29	53.53	74.00	-20.47	Peak
2483.5	V		-25.29		54.00		Avg
	MHz 2390 2390 2400 2400 2390 2390 2400 2400 T Free 2483.5 2483.5	Freq Polarity 2390 H 2390 H 2400 H 2400 H 2390 V 2390 V 2390 V 2400 V 2400 V Test Results Frequency Ran Test Mode 2483.5 H 2483.5 H	MHz Polarity (dBuV/m) 2390 H 74.73 2390 H 2400 H 79.43 2400 H 2390 V 75.10 2390 V 75.10 2390 V 2400 V 78.74 2400 V Test Results Frequency Range Test Mode 2483.5 H 78.81 2483.5 V 78.82	Frequency Range Test Mode Freq Polarity Reading (dBuV/m) Factor 2390 H 74.73 -21.47 2390 H21.47 2400 H 79.43 -26.12 2400 H26.12 2390 V 75.10 -21.47 2390 V21.47 2400 V 78.74 -26.12 2400 V26.12 Test Results Frequency Range Test Mode 2483.5 H 78.81 -25.29 2483.5 V 78.82 -25.29	Frequency Range Zest Mode Freq MHz Polarity Reading (dBuV/m) (dBuV/m) Factor Factor (dBuV/m) Result (dBuV/m) 2390 H 74.73 -21.47 53.26 2390 H -21.47 2400 H 79.43 -26.12 53.31 2400 H -26.12 2390 V 75.10 -21.47 53.63 2390 V -21.47 2400 V 78.74 -26.12 52.62 2400 V -26.12 Test Results Frequency Range 24.93 2483.5 H 78.81 -25.29 53.52 2483.5 V 78.82 -25.29 53.53	Test Mode GFSK TX 2402	Frequency Range 2310MHz-2410MHz Test Mode GFSK TX 2402MHz Freq MHz Polarity Reading (dBuV/m) Correct Factor (dBuV/m) Result (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) 2390 H 74.73 -21.47 53.26 74.00 -20.74 2390 H -21.47 54.00 2400 H 79.43 -26.12 53.31 74.00 -20.69 2400 H -26.12 -54.00 2390 V 75.10 -21.47 54.00 2390 V 75.10 -21.47 54.00 2400 V 78.74 -26.12 52.62 74.00 -21.38 2400 V -26.12 54.00 Test Results PASS Frequency Range GFSK TX 2480MHz 2483.5 H

Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain. Result=Reading + Correct Factor. Margin= Result-Limit.

^{3.} If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

		T	est Results			PASS			
		Fred	quency Range		2	310MHz~2410	MHz		
		-	Test Mode		#4 DQPSK TX 2402MHz				
N o.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark	
1	2390	Н	75.04	-21.47	53.57	74.00	-20.43	Peak	
2	2390	Н		-21.47		54.00		Avg	
3	2400	Н	78.81	-26.12	52.69	74.00	-21.31	Peak	
4	2400	Н		-26.12		54.00		Avg	
1	2390	V	74.25	-21.47	52.78	74.00	-21.22	Peak	
2	2390	V		-21.47		54.00		Avg	
3	2400	V	79.13	-26.12	53.01	74.00	-20.99	Peak	
4	2400	V		-26.12		54.00		Avg	
	Т	est Results				PASS			
	Fred	quency Ran	ge		24	50MHz~2550N	1Hz		
	-	Test Mode			#4 D	QPSK TX 2480	0MHz		
1	2483.5	Н	79.23	-25.29	53.94	74.00	-20.06	Peak	
2	2483.5	Н		-25.29		54.00		Avg	
			<u> </u>						
1	2483.5	V	78.92	-25.29	53.63	74.00	-20.37	Peak	
2	2483.5	V		-25.29		54.00		Avg	
		•			•	•	•		

Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain. Result=Reading + Correct Factor. Margin= Result-Limit.

^{3.} If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

		T	est Results			PASS				
		Fred	quency Range		2	310MHz~2410	MHz			
		-	Test Mode		8DPSK TX 2402MHz					
N o.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark		
1	2390	Н	74.86	-21.47	53.39	74.00	-20.61	Peak		
2	2390	Н		-21.47		54.00		Avg		
3	2400	Н	78.87	-26.12	52.75	74.00	-21.25	Peak		
4	2400	Н		-26.12		54.00		Avg		
1	2390	V	74.46	-21.47	52.99	74.00	-21.01	Peak		
2	2390	V		-21.47		54.00		Avg		
3	2400	V	79.08	-26.12	52.96	74.00	-21.04	Peak		
4	2400	V		-26.12		54.00		Avg		
	Т	est Results				PASS				
	Fred	quency Ran	ge		24	50MHz~2550N	lHz			
	-	Test Mode			8DI	PSK TX 2480N	1Hz			
1	2483.5	Н	78.56	-25.29	53.27	74.00	-20.73	Peak		
2	2483.5	Н		-25.29		54.00		Avg		
1	2483.5	V	79.18	-25.29	53.89	74.00	-20.11	Peak		
2	2483.5	V		-25.29		54.00		Avg		

Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain. Result=Reading + Correct Factor. Margin= Result-Limit.

^{3.} If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

		Т	est Results			PASS				
		Fred	quency Range		2310MHz~2410MHz					
		-	Test Mode		GFSK Hopping					
N o.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark		
1	2390	Н	74.47	-21.47	53.00	74.00	-21.00	Peak		
2	2390	Н		-21.47		54.00		Avg		
3	2400	Н	79.10	-26.12	52.98	74.00	-21.02	Peak		
4	2400	Н		-26.12		54.00		Avg		
1	2390	V	74.72	-21.47	53.25	74.00	-20.75	Peak		
2	2390	V		-21.47		54.00		Avg		
3	2400	V	79.53	-26.12	53.41	74.00	-20.59	Peak		
4	2400	V		-26.12		54.00		Avg		
	T	est Results				PASS				
	Fred	quency Ran	ge		24	50MHz~2550M	Hz			
		Test Mode				GFSK Hopping				
1	2483.5	Н	79.04	-25.29	53.75	74.00	-20.25	Peak		
2	2483.5	Н		-25.29		54.00		Avg		
			· · ·			•				
1	2483.5	V	78.65	-25.29	53.36	74.00	-20.64	Peak		
2	2483.5	V		-25.29		54.00		Avg		

Note: 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.

Result=Reading + Correct Factor.

Margin= Result-Limit.

^{2.} Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

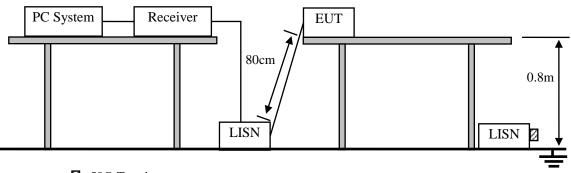
^{3.} If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

	Test Results PASS							
Frequency Range				2310MHz~2410MHz				
Test Mode				#4 DQPSK Hopping				
NI.								
N o.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark
1	2390	Н	74.92	-21.47	53.45	74.00	-20.55	Peak
2	2390	Н		-21.47		54.00		Avg
3	2400	Н	78.90	-26.12	52.78	74.00	-21.22	Peak
4	2400	Н		-26.12		54.00		Avg
1	2390	V	74.94	-21.47	53.47	74.00	-20.53	Peak
2	2390	V		-21.47		54.00		Avg
3	2400	V	79.56	-26.12	53.44	74.00	-20.56	Peak
4	2400	V		-26.12		54.00		Avg
Test Results			PASS					
Frequency Range			2450MHz~2550MHz					
Test Mode			#4 DQPSK Hopping					
1	2483.5	Н	78.41	-25.29	53.12	74.00	-20.88	Peak
2	2483.5	Н		-25.29		54.00		Avg
1	2483.5	V	78.71	-25.29	53.42	74.00	-20.58	Peak
2	2483.5	V		-25.29		54.00		Avg

Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain. Result=Reading + Correct Factor. Margin= Result-Limit.

^{3.} If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

Test Results				PASS				
Frequency Range				2310MHz~2410MHz				
Test Mode				8DPSK Hopping				
N o.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark
1	2390	Н	74.97	-21.47	53.50	74.00	-20.50	Peak
2	2390	Н		-21.47		54.00		Avg
3	2400	Н	79.08	-26.12	52.96	74.00	-21.04	Peak
4	2400	Н		-26.12		54.00		Avg
1	2390	V	74.67	-21.47	53.20	74.00	-20.80	Peak
2	2390	V		-21.47		54.00		Avg
3	2400	V	78.92	-26.12	52.80	74.00	-21.20	Peak
4	2400	V		-26.12		54.00		Avg
Test Results			PASS					
Frequency Range			2450MHz~2550MHz					
Test Mode			8DPSK Hopping					
1	2483.5	Н	78.62	-25.29	53.33	74.00	-20.67	Peak
2	2483.5	Н		-25.29		54.00		Avg
1	2483.5	V	78.48	-25.29	53.19	74.00	-20.81	Peak
2	2483.5	V		-25.29		54.00		Avg


Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain. Result=Reading + Correct Factor. Margin= Result-Limit.

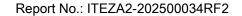
^{3.} If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

10. POWER LINE CONDUCTED EMISSIONS

10.1.Block Diagram of Test Setup

 \square :50 Ω Terminator

10.2.Limit


	Maximum RF Line Voltage			
Frequency	Quasi-Peak Level	Average Level		
	dB(μV)	dB(μV)		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Notes: 1. * Decreasing linearly with logarithm of frequency.

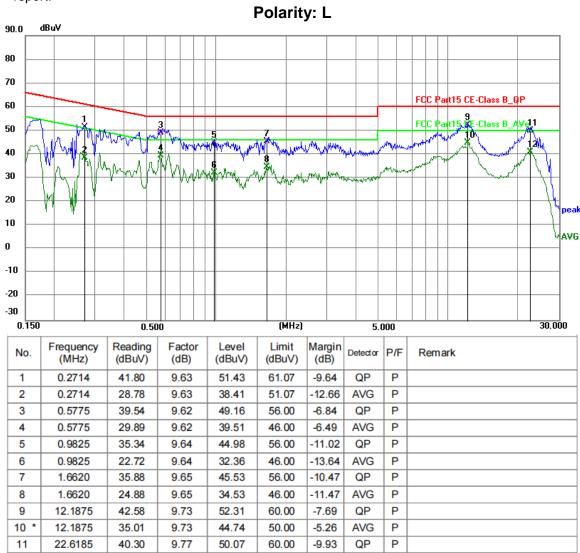
2. The lower limit shall apply at the transition frequencies.

10.3.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10KHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

10.4.Test Result

Pass

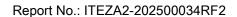

12

22.6185

31.18

9.77

Remark: All modes have been tested, and only worst data of GFSK mode CH79 was listed in this report.


Р

AVG

40.95

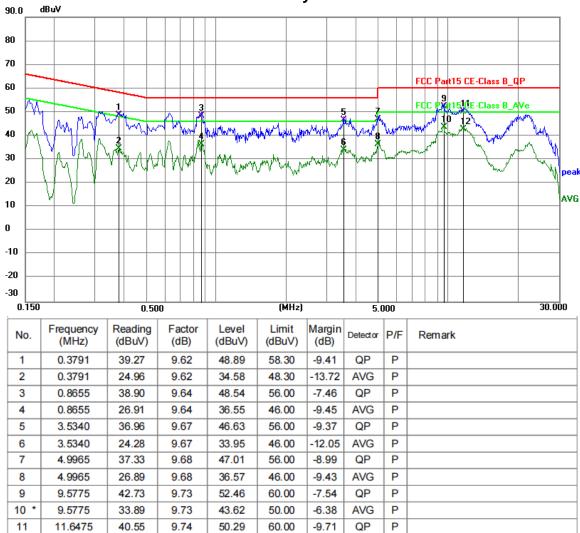
50.00

-9.05

12

11.6475

33.13


9.74

42.87

50.00

-7.13

Polarity: N

Р

AVG

11. ANTENNA REQUIREMENTS

11.1.Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2.Result

The EUT antenna is PIFA Antenna. It comply with the standard requirement.

Please reference to the appendix I Test Setup Photo for details.

13. PHOTOS OF EUT

Please reference to the appendix II external photos and appendix III internal photos for details.
-----END OF REPORT-----