

Test report No. Page Issued date FCC ID : 13397625H-A : 1 of 21 : August 4, 2020 : 2AWRK-YS-KT008

RADIO TEST REPORT

Test Report No.: 13397625H-A

Applicant : YOSHIKAWA KOGYO Co.,Ltd.

Type of EUT : STANDARD-TAG

Model Number of EUT : YS-F-T008A

FCC ID : 2AWRK-YS-KT008

Test regulation : FCC Part 15 Subpart C: 2020

Test Result : Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.

Representative test engineer:

Yuichiro Yamazaki
Engineer
Consumer Technology Division

Approved by:

Shinichi Miyazono Engineer Consumer Technology Division

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 2 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

REVISION HISTORY

Original Test Report No.: 13397625H-A

Revision	Test report No.	Date	Page revised	Contents
-	13397625H-A	August 4, 2020	-	-
(Original)				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 3 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

Reference: Abbreviations (Including words undescribed in this report)

MCS The American Association for Laboratory Accreditation Modulation and Coding Scheme ACAlternating Current MRA Mutual Recognition Arrangement AFH N/A Adaptive Frequency Hopping Not Applicable Amplitude Modulation NIST National Institute of Standards and Technology AMAmp, AMP Amplifier NS No signal detect. American National Standards Institute ANSI NSA Normalized Site Attenuation Ant, ANT Antenna **NVLAP** National Voluntary Laboratory Accreditation Program AP Access Point OBW Occupied Band Width ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter AVPCB Printed Circuit Board Average BPSK Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer ВТ Bluetooth PΚ Peak BT LE Bluetooth Low Energy PN Pseudo random Noise BandWidth PRBS BW Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density CCK Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH QP Quasi-Peak CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency Dynamic Frequency Selection DFS RMS Root Mean Square DOPSK Differential OPSK RSS Radio Standards Specifications DSSS Rx Direct Sequence Spread Spectrum Receiving EDR Enhanced Data Rate Spectrum Analyzer SA, S/A SG EIRP, e.i.r.p. Equivalent Isotropically Radiated Power Signal Generator SVSWR **EMC** ElectroMagnetic Compatibility Site-Voltage Standing Wave Ratio **EMI** ElectroMagnetic Interference TR Test Receiver EN European Norm TxTransmitting ERP, e.r.p. Effective Radiated Power VRW Video BandWidth European Union Vertical EUT Equipment Under Test WLAN Wireless LAN Fac. **FCC** Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum FM Frequency Modulation Freq. Frequency FSK Frequency Shift Keying

Hori. Horizontal

GFSK

GNSS

GPS

ICES Interference-Causing Equipment Standard
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers

Global Positioning System

Gaussian Frequency-Shift Keying

Global Navigation Satellite System

IF Intermediate Frequency

ILAC International Laboratory Accreditation Conference
ISED Innovation, Science and Economic Development Canada

ISO International Organization for Standardization

JAB Japan Accreditation Board LAN Local Area Network

LIMS Laboratory Information Management System

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 4 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

PAGE

CONTENTS : 2AWRK-1

SECTION 1:	Customer information	5
SECTION 2:	Equipment under test (EUT)	5
SECTION 3:	Test specification, procedures & results	6
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Radiated emission (Electric Field Strength of Fundamental and Spurious Er	nission)10
SECTION 6:	Automatically deactivate	12
SECTION 7:	-20 dB and 99 % Occupied Bandwidth	12
APPENDIX 1:	Test data	
Automat	cally deactivate	13
	Emission (Electric Field Strength of Fundamental and Spurious Emission)	
	nd 99% Occupied Bandwidth	
	ele	
APPENDIX 2:	Test instruments	18
APPENDIX 3:	Photographs of test setup	19
	emission	
Worst ca	se nosition	21

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 5 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

SECTION 1: Customer information

Company Name : YOSHIKAWA KOGYO Co.,Ltd.

Address : 8-1 Hibikinokita Wakamatsu-ku Kitakyusyu City Fukuoka 808-0138

Japan

Telephone Number : +81-93-695-3093 Facsimile Number : +81-93-695-3094 Contact Person : Toshiharu Konomi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : STANDARD-TAG Model Number : YS-F-T008A

Serial Number : Refer to SECTION 4.2

Rating : DC 3.0 V Receipt Date : June 19, 2020

Country of Mass-production : Japan

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: YS-F-T008A (referred to as the EUT in this report) is a STANDARD-TAG.

Radio Specification

[Transmitter part]

Radio Type : Transmitter
Frequency of Operation : 315 MHz
Modulation : ASK

Antenna type : Pattern Antenna

Clock frequency (Maximum) : 9.8 MHz

[Receiver part]

Radio Type : Receiver Frequency of Operation : 125 kHz

Variant model

Tested model: YS-F-T008A has a variant model: YS-F-T003A.

The difference of these models is the presence or absence of the vibration function. (YS-F-T003A has Vibration function.) The two models were compared, all the tests were performed only with model: YS-F-T008A as its result was the worst one.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 6 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on May 26, 2020 and effective July 27, 2020 except 15.258

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207 ISED: RSS-Gen 8.8	N/A	N/A	*1)
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(a)(1) ISED: RSS-210 A1.1	N/A	Complied a)	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.12	FCC: Section 15.231(b) ISED: RSS-210 A1.2	16.8 dB 315 MHz Horizontal PK with Duty Factor	Complied b)	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) ISED: RSS-210 A1.2, 4.4 RSS-Gen 8.9	5.4 dB 1575.000 MHz Horizontal PK with Duty Factor	Complied b)	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(c) ISED: Reference data	N/A	Complied c)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Automatically deactivate)
- b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))
- c) Refer to APPENDIX 1 (data of -20 dB and 99% Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

The test was performed with the New Battery and the stable voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision does not affect the test result conducted before its effective date.

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} The test is not applicable since the EUT does not have AC Mains.

Test report No. : 13397625H-A
Page : 7 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99 % Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: RSS-210 A1.3	N/A	-	Radiated	
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.4 dB
	0.15 MHz to 30 MHz	2.9 dB

Radiated emission

Radiated emission	<u>u</u>		
Measurement distance	Frequency range		Uncertainty (+/-)
3 m	9 kHz to 30 M	Hz	3.3 dB
10 m			3.2 dB
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	5.0 dB
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB
		(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	4.8 dB
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB
		(Vertical)	5.0 dB
3 m	1 GHz to 6 GH	łz	4.9 dB
	6 GHz to 18 GHz		5.2 dB
1 m	10 GHz to 26.5 GHz		5.5 dB
	26.5 GHz to 40 GHz		5.5 dB
10 m	1 GHz to 18 G	Hz	5.2 dB

Antenna Terminal test

Test Item	Uncertainty (+/-)
Automatically Deactivate	0.10 %
-20 dB Emission Bandwidth / 99 % Occupied Bandwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 8 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

 $*A2LA\ Certificate\ Number:\ 5107.02\ /\ FCC\ Test\ Firm\ Registration\ Number:\ 199967\ /\ ISED\ Lab\ Company\ Number:\ 2973C$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 9 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test Item*	Mode
Automatically Deactivate	Normal use mode
Duty Cycle	
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx) *1)
Electric Field Strength of Spurious Emission	
-20 dB & 99 % Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a user would normally use it) for testing.

* EUT was set by the software as follows;

Software: V22.18.06

(Date: 2020.06.15, Storage location: EUT memory)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

F

* Setup was taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	STANDARD-TAG	YS-F-T008A	300710 *1)	YOSHIKAWA KOGYO	EUT
			300594 *2)	Co.,Ltd.	

^{*1)} Used for Transmitting mode

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, EUT stops to transmit in a given time, even if transceiver button is being pressed.)

^{*2)} Used for Normal use mode

Test report No. : 13397625H-A
Page : 10 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

<u>SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)</u>

Test Procedure and conditions

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

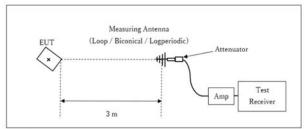
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

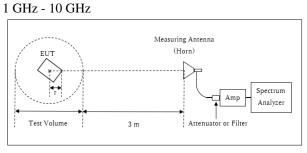
The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn


	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 13397625H-A
Page : 11 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

[Test Setup]

Below 1 GHz

× : Center of turn table

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Test Distance: 3 m

Distance Factor: $20 \times \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.75 m

SVSWR Volume : 1.5 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) $r=0.0 \; \text{m}$

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range : 9 kHz - 3.2 GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13397625H-A

 Page
 : 12 of 21

 Issued date
 : August 4, 2020

 FCC ID
 : 2AWRK-YS-KT008

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used		
20 dB Bandwidth	300 kHz	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer		
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer		
Peak hold was appli	Peak hold was applied as Worst-case measurement.								

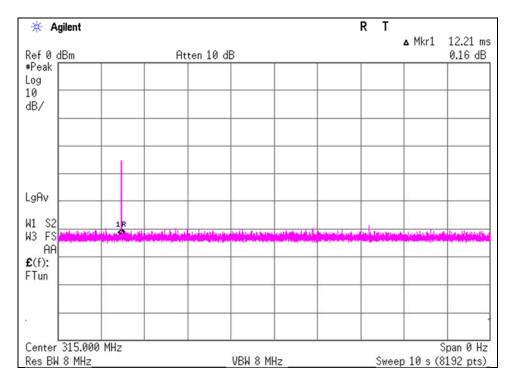
Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 13 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

APPENDIX 1: Test data


Automatically deactivate

Report No. 13397625H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date
July 3, 2020
Temperature / Humidity
Engineer
Tomohisa Nakagawa
Mode
Normal use mode

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.01221	5.00	Pass

^{*} The EUT transmits UHF when LF signal is received from a DETECTOR. Please refer to the "User's Manual".

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 14 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13397625H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

 $\begin{array}{lll} \text{Date} & \text{June 24, 2020} \\ \text{Temperature / Humidity} & \text{23 deg. C / } 60 \text{ \% RH} \\ \text{Engineer} & \text{Yuichiro Yamazaki} \\ \text{Mode} & \text{Transmitting mode (Tx)} \end{array}$

QP or PK

Frequency	Detector	Read	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
315.000	PK	76.6	73.0	13.9	9.9	27.9	-	72.5	68.9	95.6	23.1	26.7	Carrier
630.000	PK	34.9	36.2	19.2	11.7	29.4	-	36.4	37.7	75.6	39.2	37.9	Outside
945.000	PK	36.8	38.6	21.9	13.1	28.9	-	43.0	44.8	75.6	32.6	30.8	Outside
1260.000	PK	58.8	57.6	26.0	5.5	36.0	-	54.3	53.1	75.6	21.3	22.5	Outside
1575.000	PK	67.7	67.6	25.3	5.0	35.8	-	62.2	62.1	73.9	11.7	11.8	Inside
1890.000	PK	68.1	68.5	25.6	5.0	35.5	-	63.2	63.5	75.6	12.4	12.1	Outside
2205.000	PK	53.2	53.6	28.5	5.0	35.3	-	51.4	51.9	73.9	22.5	22.1	Inside
2520.000	PK	54.1	53.7	27.5	5.1	35.2	-	51.6	51.1	75.6	24.1	24.5	Outside
2835.000	PK	49.6	48.7	28.5	5.2	35.0	-	48.2	47.4	73.9	25.7	26.6	Inside
3150.000	PK	48.3	45.9	28.8	5.4	34.9	-	47.6	45.1	75.6	28.1	30.5	Outside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
315.000	PK	76.6	73.0	13.9	9.9	27.9	-13.7	58.8	55.2	75.6	16.8	20.4	Carrier
630.000	PK	34.9	36.2	19.2	11.7	29.4	-13.7	22.7	24.0	55.6	32.9	31.6	Outside
945.000	PK	36.8	38.6	21.9	13.1	28.9	-13.7	29.3	31.1	55.6	26.3	24.5	Outside
1260.000	PK	58.8	57.6	26.0	5.5	36.0	-13.7	40.6	39.4	55.6	15.0	16.2	Outside
1575.000	PK	67.7	67.6	25.3	5.0	35.8	-13.7	48.5	48.4	53.9	5.4	5.5	Inside
1890.000	PK	68.1	68.5	25.6	5.0	35.5	-13.7	49.5	49.8	55.6	6.1	5.8	Outside
2205.000	PK	53.2	53.6	28.5	5.0	35.3	-13.7	37.7	38.2	53.9	16.2	15.8	Inside
2520.000	PK	54.1	53.7	27.5	5.1	35.2	-13.7	37.9	37.4	55.6	17.8	18.2	Outside
2835.000	PK	49.6	48.7	28.5	5.2	35.0	-13.7	34.5	33.7	53.9	19.4	20.3	Inside
3150.000	PK	48.3	45.9	28.8	5.4	34.9	-13.7	33.9	31.4	55.6	21.8	24.2	Outside

Sample calculation:

 $Result \ of \ PK = Reading + Ant \ Factor + Loss \ \{Cable + Attenuator + Filter \ (above \ 1GHz) + Distance \ factor \ (above \ 1\ GHz)\} - Gain \ (Amplifier)$

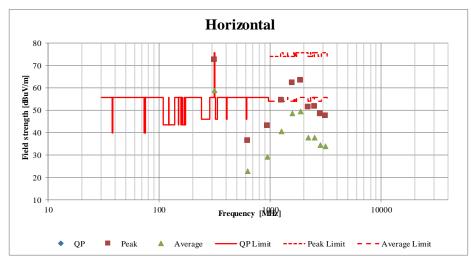
Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

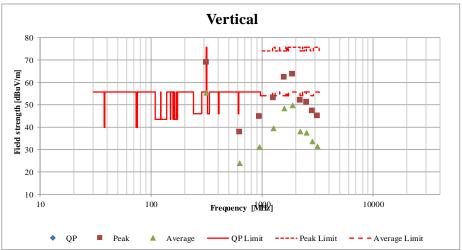
For above 1GHz : Distance Factor: $20 \times \log (3.75 \text{ m}/3.0 \text{ m}) = 1.94 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 13397625H-A
Page : 15 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008


Radiated Spurious Emission (Plot data, Worst case)

Report No. 13397625H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date June 24, 2020
Temperature / Humidity 23 deg. C / 60 % RH
Engineer Yuichiro Yamazaki
Mode Transmitting mode (Tx)

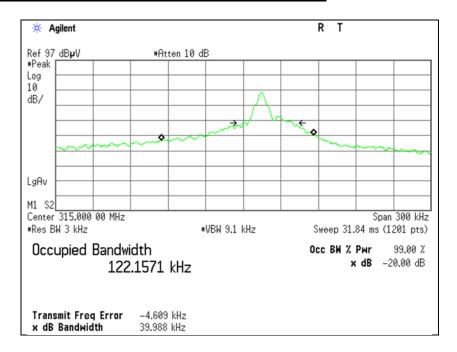
^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13397625H-A
Page : 16 of 21
Issued date : August 4, 2020
FCC ID : 2AWRK-YS-KT008

-20 dB and 99% Occupied Bandwidth

Report No. 13397625H Test place Ise EMC Lab.


Semi Anechoic Chamber No.2

 $\begin{array}{lll} \text{Date} & \text{June 24, 2020} \\ \text{Temperature / Humidity} & \text{23 deg. C / 60 \% RH} \\ \text{Engineer} & \text{Yuichiro Yamazaki} \\ \text{Mode} & \text{Transmitting mode (Tx)} \end{array}$

Bandwidth Limit : Fundamental Frequency 315.00 MHz x 0.25% = 787.50 kHz
* The above limit was calculated from more stringent nominal frequency.

-20dB Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
39.988	787.50	Pass

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
122.1571	787.50	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13397625H-A

 Page
 : 17 of 21

 Issued date
 : August 4, 2020

 FCC ID
 : 2AWRK-YS-KT008

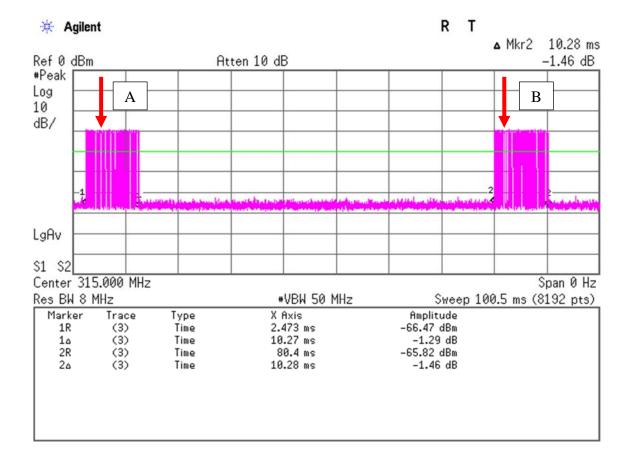
Duty Cycle

Report No. 13397625H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date July 3, 2020
Temperature / Humidity 25 deg. C / 53% RH
Engineer Tomohisa Nakagawa
Mode Normal use mode

		ON time(One pulse)	ON time(in 100ms)
Type	Times	[ms]	[ms]
A	1	10.27	10.27
В	1	10.28	10.28


^{*1)}ON time(in 100ms) = Times * ON time(One pulse)

(Total)

ON time	Cycle	Duty	Duty
[ms]	[ms]	(On time/Cycle)	[dB]
20.55	100.00	0.21	-13.7

^{*3)}ON time = Type A's ON time (in 100ms) + Type B's ON time (in 100ms)

^{*4)}Duty = 20log10(ON time/Cycle)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)}The train of pulses was exceeding 100msec, and that sampled 100msec was the worst case against the pulse train.

 Test report No.
 : 13397625H-A

 Page
 : 18 of 21

 Issued date
 : August 4, 2020

 FCC ID
 : 2AWRK-YS-KT008

APPENDIX 2: Test instruments

Test equipment

	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/26/2020	24
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM	CTH-201	0013	12/19/2019	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/20/2019	12
RE	MJM-27	142228	Measure	KOMELON	KMC-36	-	_	-
RE	COTS-ME MI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	_	_	-
RE	MAEC-02- SVSWR	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/01/2019	24
RE	MAT-07	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/07/2019	12
RE	MBA-08	141427	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103B+BBA 9106	8031	08/23/2019	12
RE	MCC-12	141317	Coaxial Cable	Fujikura/Agilent	-	-	09/03/2019	12
RE	MLA-21	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-190	08/23/2019	12
RE	MPA-24	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/10/2020	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/08/2019	12
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	254	09/03/2019	12
RE	MCC-216	141392	Microwave Cable	Junkosha	MWX221	1604S253(1 m) / 537073/126E(5 m)	02/18/2020	12
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	01/07/2020	12
RE	MHF-27	141297	High Pass Filter(1.1-10GHz)	ТОКҮО КЕІКІ	TF219CD1	1001	01/09/2020	12
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	02/06/2020	12
RE	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/21/2019	12
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	-	-

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, Automatically deactivate and Duty cycle tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN