

FCC TEST REPORT FCC ID: 2AWQ6KPC307

Product	:	Thermal printer				
Model Name	:	PC307-UB				
Brand	:	caysn				
Report No.	:	PTC23072411301E-FC03				
	Prepared for					
Xiamen Apt Electronic Tech. Co., Ltd						

Prepared by

202, NO.46 HE NING LI, HULI DISTRICT, XIAMEN, FUJIAN

Precise Testing & Certification Co., Ltd.

Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China.

TEST RESULT CERTIFICATION

Applicant's name : Xiamen Apt Electronic Tech. Co., Ltd

Address : 202, NO.46 HE NING LI, HULI DISTRICT, XIAMEN, FUJIAN

Manufacture's name : Xiamen Apt Electronic Tech. Co., Ltd

Address : 202, NO.46 HE NING LI, HULI DISTRICT, XIAMEN, FUJIAN

Product name : Thermal printer

Model name : KPC307-UB

Test procedure : FCC CFR47 Part 1.1307(b)(1)

Test Date : Jul. 25, 2023 to Jul. 31, 2023

Date of Issue : August 01, 2023

Test Result : PASS

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Simon Pu /Engineer

Simon

Technical Manager:

Ronnie Liu / Manager

Contents

	Page
2 TEST SUMMARY	4
3 GENERAL INFORMATION	5
3.1 GENERAL DESCRIPTION OF E.U.T.	5
4 RF EXPOSURE	6
4.1 REQUIREMENTS	6
4.2 THE PROCEDURES / LIMIT	6
4.3 MPE CALCULATION METHOD	7
4 4 Test Result	7

2 Test Summary

Test Items	Test Requirement	Result			
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	15.247 (i)	PASS			
Remark:					
N/A: Not Applicable					

3 General Information

3.1 General Description of E.U.T.

	_			
Product Name	:	Thermal printer		
Model Name	:	KPC307-UB		
Specification	:	BDR and BLE		
Operation Frequency	:	2402-2480MHz		
Number of Channel : 79 channels for BDR 40 channels for BLE				
Type of Modulation	:	GFSK For DSS GFSK For DTS		
Antenna installation	:	PCB antenna		
Antenna Gain	:	-1.62 dBi		
Power supply	:	DC 12V===2A		
Hardware Version	:	N/A		
Software Version	:	N/A		

4 RF Exposure

Test Requirement : FCC Part 1.1307(b)(1)

Evaluation Method : KDB 447498 D01 General RF Exposure Guidance v06

4.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

4.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500	01.4	0.100	F/300	6
300-1300			F/300	0
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
	27.0	0.070	-	
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

4.3 MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2} \theta \varphi$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

4.4 Test Result

Mode	Antenna Gain (numeric)	Max. Peak Output Power (dBm)		Max Tune Up Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)	Result
BDR	0.69	5.97	5.97±1	4.977371	0.000682	1	Pass
BLE	0.69	5.83	5.83±1	4.819478	0.000660	1	Pass

******THE END REPORT*****