

FCC RADIO TEST REPORT

FCC ID: 2AWC9-EN-M0012W

Product : Door and window magnetic sensor

Trade Name : ENZD

Model Name : EN-M0012W

Serial Model : N/A

Report No. : HK2004260758-E

Prepared for

Zhongshan ENZD Electronics Ltd.

No.4, JuYe Road, Torch Development Zone, Zhongshan, Guangdong, China

Prepared by

Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park,
Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant's name : Zhongshan ENZD Electronics Ltd.
Address : No.4, JuYe Road, Torch Development Zone, Zhongshan, Guangdong, China

Manufacture's Name : Zhongshan ENZD Electronics Ltd.
Address : No.4, JuYe Road, Torch Development Zone, Zhongshan, Guangdong, China

Product description

Product name : Door and window magnetic sensor
Trade Mark : ENZD
Model and/or type reference : EN-M0012W
Standards : FCC Rules and Regulations Part 15 Subpart C Section 15.249
ANSI C63.10: 2013

This device described above has been tested by Shenzhen HUAK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen HUAK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests : Apr. 20, 2020 ~Apr. 27, 2020
Date of Issue : Apr. 27, 2020
Test Result : Pass

Testing Engineer :

(Gary Qian)

Technical Manager :

(Eden Hu)

Authorized Signatory :

(Jason Zhou)

Table of Contents	Page
1 TEST SUMMARY	5
2 GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 Carrier Frequency of Channels	7
2.3 Operation of EUT during testing	7
2.4 DESCRIPTION OF TEST SETUP	7
2.5 MEASUREMENT INSTRUMENTS LIST	8
3 CONDUCTED EMISSION TEST	9
3.1 Test Limit	9
3.2 Test Setup	9
3.3 Test Procedure	9
3.4 Test Result	10
4 RADIATED EMISSION TEST	11
4.1 Test Limit	11
4.2 Test Setup	12
4.3 Test Procedure	14
4.4 Test Result	14
5 OCCUPIED BANDWIDTH TEST	20
5.1 Test Setup	20
5.2 Rules and specifications	20
5.3 Test Procedure	20
5.4 Test Result	21
6 ANTENNA REQUIREMENT	22
7 PHOTOGRAPH OF TEST	23
8 PHOTOS OF THE EUT	24

**** Modified History ****

Revision	Description	Issued Date	Remark
Revision 1.0	Initial Test Report Release	Apr. 27, 2020	Jason Zhou

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST		RESULT
AC Power Line Conducted Emission	§ 15.207	N/A
Field Strength of Fundamental Spurious Emissions	§ 15.249 (a) § 15.249 (a) (d)/ §15.209	COMPLIANT COMPLIANT
Band Edge	§ 15.249 (d)/ §15.209	COMPLIANT
20dB Occupied Bandwidth	§ 15.215 (c)	COMPLIANT
Antenna requirement	§ 15.203	COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.
Address : 1/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1229

Test Firm Registration Number: 616276

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty	= 2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	= 3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	= 4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	= 4.06dB, k=2

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Door and window magnetic sensor
Trade Mark	ENZD
Model Name	EN-M0012W
Serial No.	N/A
Model Difference	N/A
FCC ID	2AWC9-EN-M0012W
Antenna Type	Internal Antenna
Antenna Gain	0dBi
Operation frequency	2480 MHz
Number of Channels	1CH
Modulation Type	ASK
Battery	DC3V From Battery
Power Source	DC3V From Battery

2.2 Carrier Frequency of Channels

Operation Frequency each of channel	
Channel	Frequency
01	2480 MHz

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during testing:

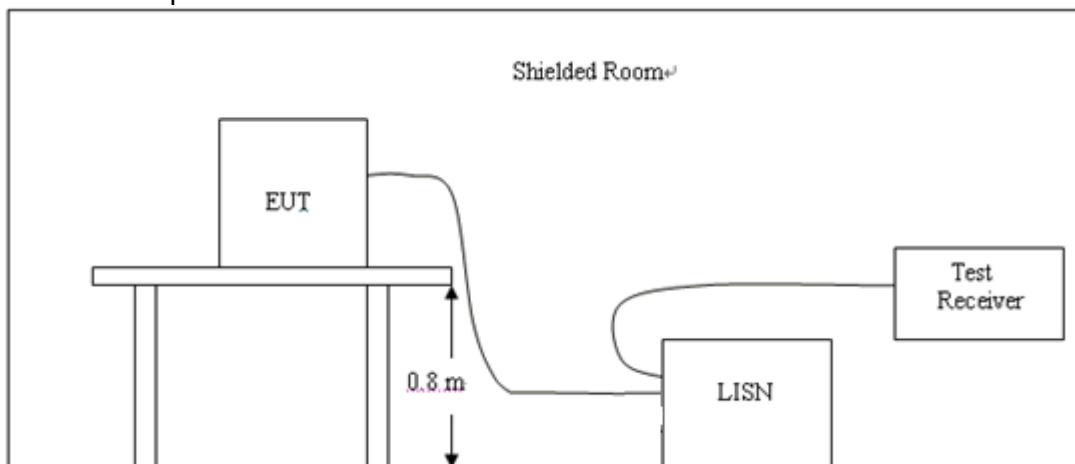
The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated last	Calibrated until
CONDUCTED EMISSIONS TEST						
1	LISN	R&S	ENV216	HKE-002	2019.12.26	2020.12.25
2	LISN	R&S	ENV216	HKE-029	2019.12.26	2020.12.25
3	EMI Test Receiver	R&S	ESCI-7	HKE-010	2019.12.26	2020.12.25
RADIATED EMISSION TEST						
1	Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	2019.12.26	2020.12.25
2	Horn antenna	Schwarzbeck	9120D	HKE-013	2019.12.26	2020.12.25
3	Receiver	R&S	ESCI 7	HKE-010	2019.12.26	2020.12.25
4	Position controller	Taiwan MF	MF7802	HKE-011	2019.12.26	2020.12.25
5	Preamplifier	EMCI	EMC051845SE	HKE-015	2019.12.26	2020.12.25
6	Preamplifier	Agilent	83051A	HKE-016	2019.12.26	2020.12.25
7	High pass filter unit	Tonscend	JS0806-F	HKE-055	2019.12.26	2020.12.25
8	Spectrum analyzer	Agilent	N9020A	HKE-048	2019.12.26	2020.12.25
9	Spectrum analyzer	Agilent	N9020A	HKE-048	2019.12.26	2020.12.25
10	Signal generator	Agilent	83630A	HKE-028	2019.12.26	2020.12.25
11	Signal generator	Agilent	N5182A	HKE-029	2019.12.26	2020.12.25
12	RF automatic control unit	Tonscend	JS0806-2	HKE-060	2019.12.26	2020.12.25
13	Power meter	Agilent	E4419B	HKE-085	2019.12.26	2020.12.25
14	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	2019.12.26	2020.12.25
15	Horn Antenna	Schwarzbeck	BBHA 9170	HKE-017	2019.12.26	2020.12.25

3 CONDUCTED EMISSION TEST

3.1 Test Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Frequency (MHz)	Maximum RF Line Voltage(dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15~0.50	79	66	66~56*	56~46*
0.50~5.00	73	60	56	46
5.00~30.0	73	60	60	50

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
2. Support equipment, if needed, was placed as per ANSI C63.10.
3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
5. All support equipments received AC power from a second LISN, if any.
6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7. Analyzer/Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

Not applicable.

Note: EUT power supply by DC Power, so this test item not applicable.

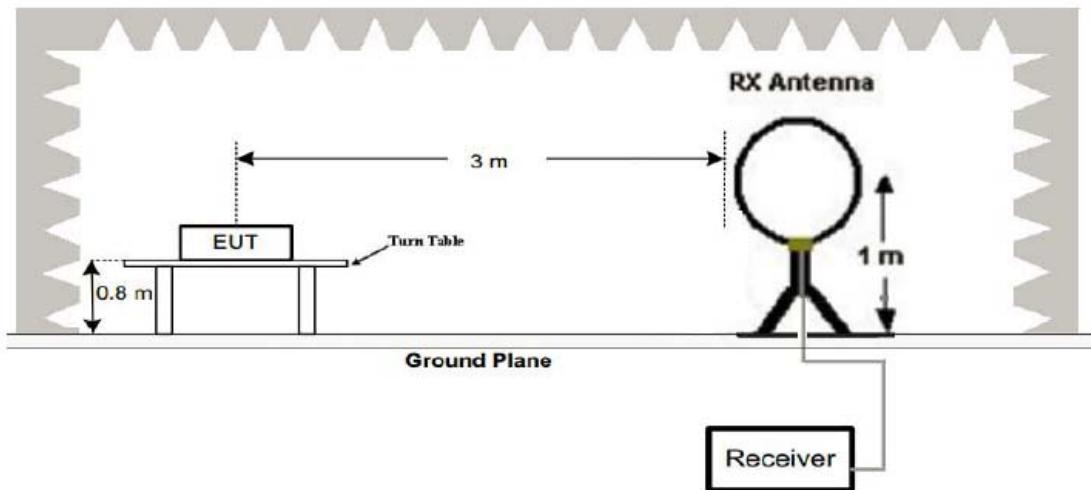
4 RADIATED EMISSION TEST

4.1 Test Limit

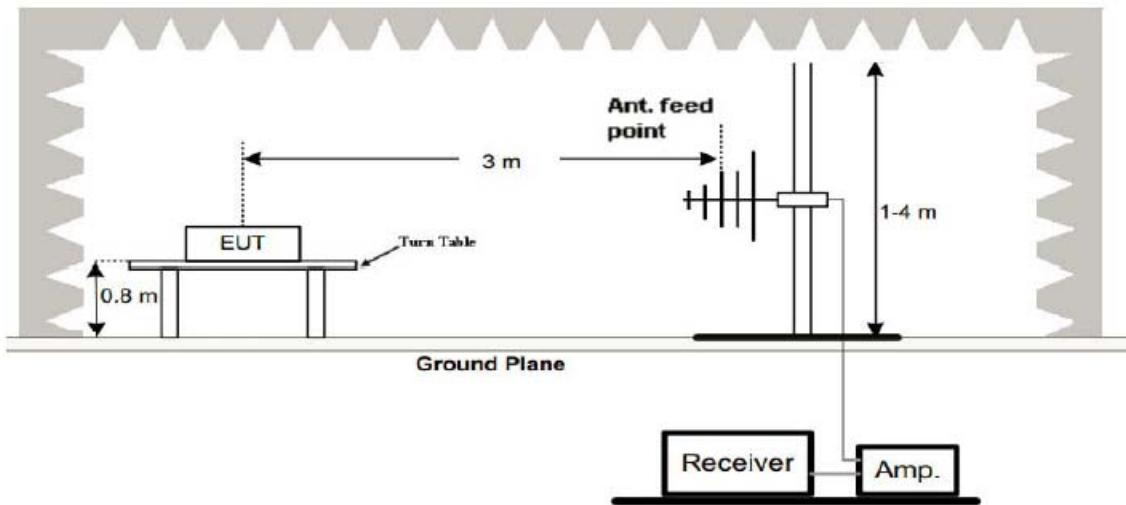
1. Limit (Field strength of the fundamental signal):

Frequency	Limit(dBuV/m@3m)	Remark
2400-2483.5 MHz	94.00	Average Value
	114.00	Peak Value

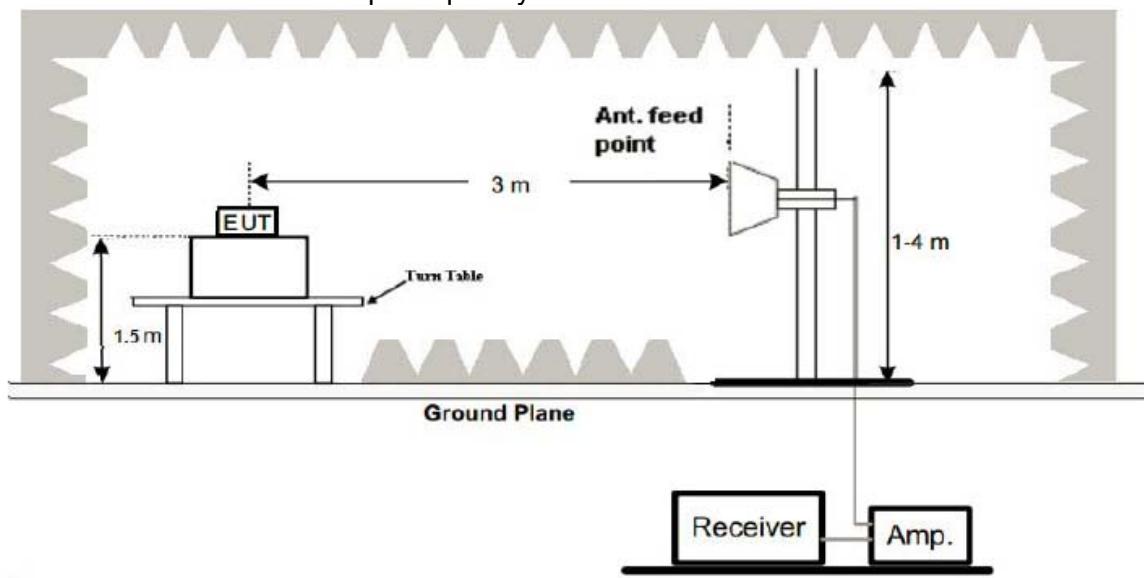
2. Limit (Spurious Emissions):


Frequency	Limit(dBuV/m@3m)	Remark
0.009-0.490	2400/F(KHz)	Quasi-peak Value
0.490-1.705	24000/F(KHz)	Quasi-peak Value
1.705-30	30	Quasi-peak Value
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
	74.0	Peak Value

3. Limit (Band edge):


Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

4.2 Test Setup


1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4. Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value
150kHz-30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Peak	1MHz	10Hz	Average Value

4.3 Test Procedure

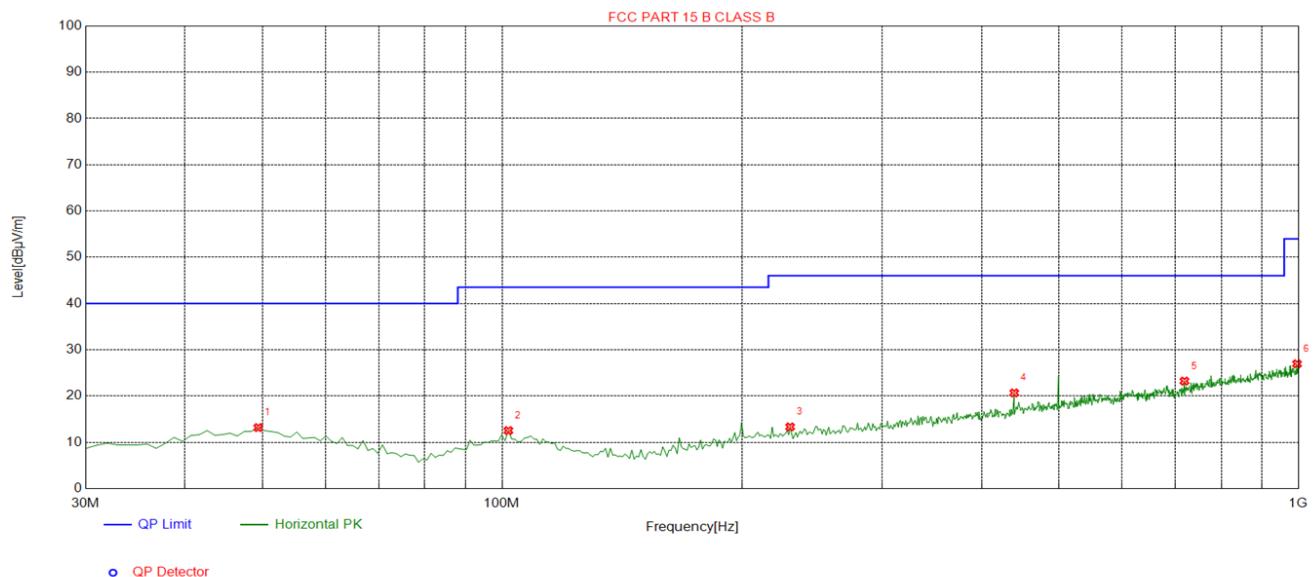
1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber in below 1GHz, 1.5m above the ground in above 1GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

4.4 Test Result

Field Strength of Fundamental:

Frequency (MHz)	Emission (dBuV/m)	Ant. Pol.	Limits PK/AV (dBuV/m)	Margin (dB)	Remark
2480	94.23	H	114	-19.77	PK
2480	81.59	H	94	-12.41	AV
2480	94.73	V	114	-19.27	PK
2480	82.06	V	94	-11.94	AV

Spurious Emissions:

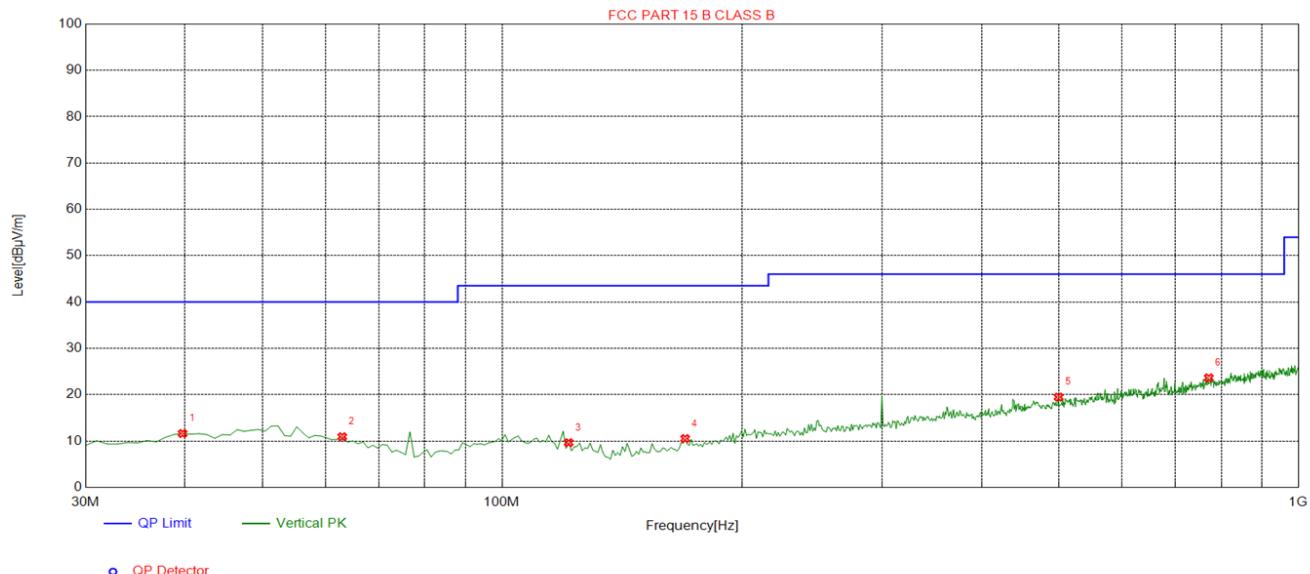

For 9 kHz-30MHz Test Results:

Note: The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

For 30MHz-1GHz Test Results:

All the test modes completed for test. The worst case of Radiated Emission is 2480MHz; the test data of this mode was reported.

Temperature:	22°C	Relative Humidity:	46%
Test Date:	Apr. 24, 2020	Pressure:	1010hPa
Test Voltage:	DC3V From Battery	Polarization:	Horizontal
Test Mode:	Transmitting mode		


Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dBμV/m]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	49.4194	-13.65	26.81	13.16	40.00	26.84	100	11	Horizontal
2	101.8519	-15.41	27.93	12.52	43.50	30.98	100	348	Horizontal
3	230.0200	-14.32	27.64	13.32	46.00	32.68	100	34	Horizontal
4	439.7498	-9.43	30.10	20.67	46.00	25.33	100	154	Horizontal
5	719.3894	-4.72	27.94	23.22	46.00	22.78	100	306	Horizontal
6	996.1161	-0.97	27.92	26.95	54.00	27.05	100	226	Horizontal

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Temperature:	22°C	Relative Humidity:	46%
--------------	------	--------------------	-----

Test Date:	Apr. 24, 2020	Pressure:	1010hPa
Test Voltage:	DC3V From Battery	Polarization:	Vertical
Test Mode:	Transmitting mode		

Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dB μ V/m]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	39.7097	-14.64	26.25	11.61	40.00	28.39	100	220	Vertical
2	63.0130	-15.92	26.84	10.92	40.00	29.08	100	191	Vertical
3	121.2713	-17.29	26.93	9.64	43.50	33.86	100	256	Vertical
4	169.8198	-17.32	27.84	10.52	43.50	32.98	100	42	Vertical
5	499.9500	-8.30	27.77	19.47	46.00	26.53	100	360	Vertical
6	771.8218	-3.25	26.88	23.63	46.00	22.37	100	42	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

For Above 1GHz Test Results:

Frequency (MHz)	Ant. Pol.	PK Reading (dB μ V)	AV Reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin Peak(dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
4960	H	50.95	---	-4.12	46.83	---	74.00	54.00	-27.17
7740	H	50.74	---	-0.58	50.16	---	74.00	54.00	-23.84
4960	V	55.27	---	-4.17	51.1	---	74.00	54.00	-22.9
7740	V	51.13	---	-0.58	50.55	---	74.00	54.00	-23.45

Note:

1. Emission Level = Peak Reading + Correction Factor; Correction Factor = Antenna Factor + Cable loss – Pre-amplifier
2. Margin = Emission - Limit
3. The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
5. When the test results of Peak Detected below the AVG limit, the Average Detected is not need completed.

Band Edge Requirement:

Horizontal (Worst case)

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2310	58.14	-5.81	52.33	74	-21.67	peak
2310	/	-5.81	/	54	/	AVG
2390	52.54	-5.84	46.7	74	-27.3	peak
2390	/	-5.84	/	54	/	AVG
2400	51.36	-5.84	45.52	74	-28.48	peak
2400	/	-5.84	/	54	/	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2310	55.48	-5.81	49.67	74	-24.33	peak
2310	/	-5.81	/	54	/	AVG
2390	52.66	-5.84	46.82	74	-27.18	peak
2390	/	-5.84	/	54	/	AVG
2400	55.39	-5.84	49.55	74	-24.45	peak
2400	/	-5.84	/	54	/	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Horizontal (Worst case)

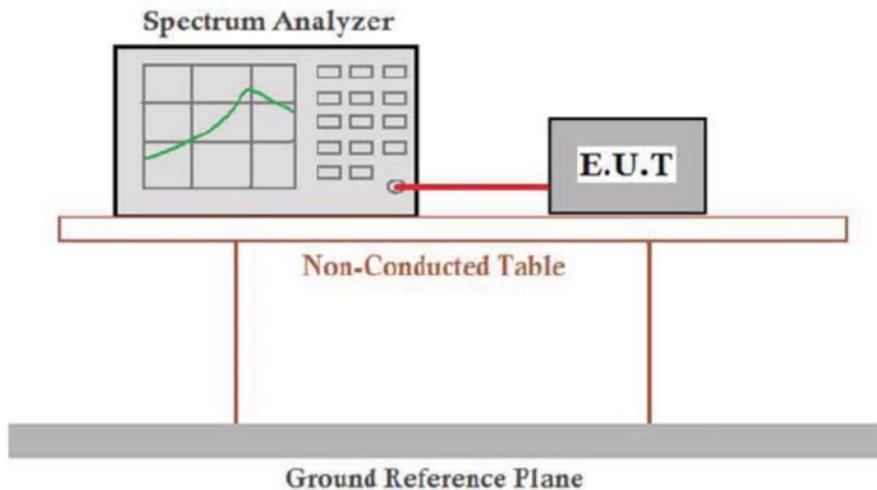
Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2483.50	56.47	-5.65	50.82	74	-23.18	peak
2483.50	/	-5.65	/	54	/	AVG
2500.00	53.33	-5.65	47.68	74	-26.32	peak
2500.00	/	-5.65	/	54	/	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency (MHz)	Reading Result (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
2483.50	56.63	-5.65	50.98	74	-23.02	peak
2483.50	/	-5.65	/	54	/	AVG
2500.00	52.69	-5.65	47.04	74	-26.96	peak
2500.00	/	-5.65	/	54	/	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.


Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Note:

1. Emission Level = Peak Reading + Correction Factor; Correction Factor = Antenna Factor + Cable loss – Pre-amplifier
2. Margin = Emission - Limit
3. The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
5. When the test results of Peak Detected below the AVG limit, the Average Detected is not need completed.

5 OCCUPIED BANDWIDTH TEST

5.1 Test Setup

5.2 Rules and specifications

CFR 47 Part 15.215(c)

ANSI C63.10: 2013

5.3 Test Procedure

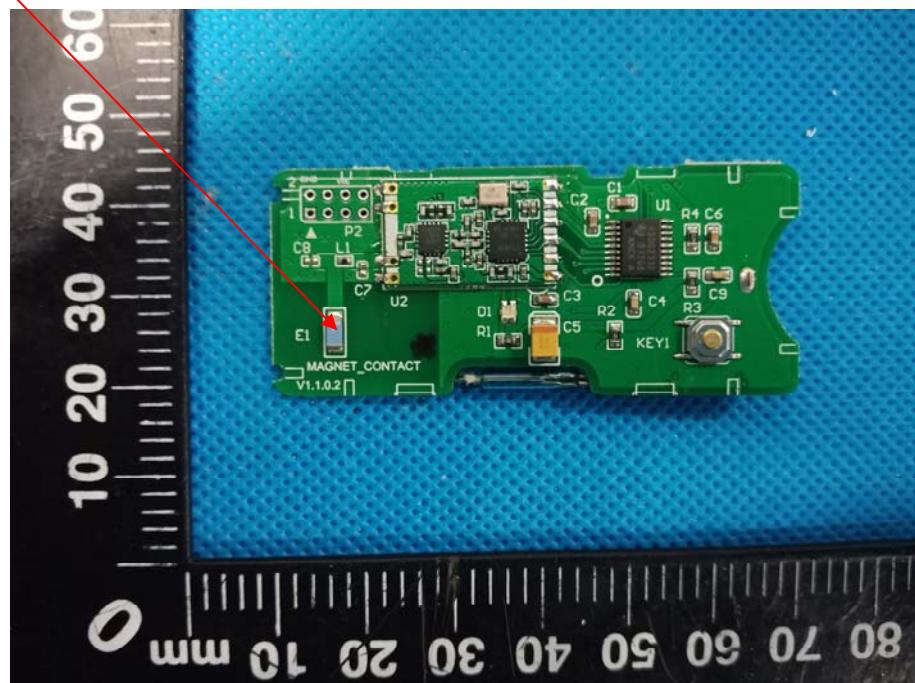
1. According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT.
2. Set to the maximum power setting and enable the EUT transmit continuously.
3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW $\geq 1\%$ of the 20dB bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold.
4. Measure and record the results in the test report.

5.4 Test Result

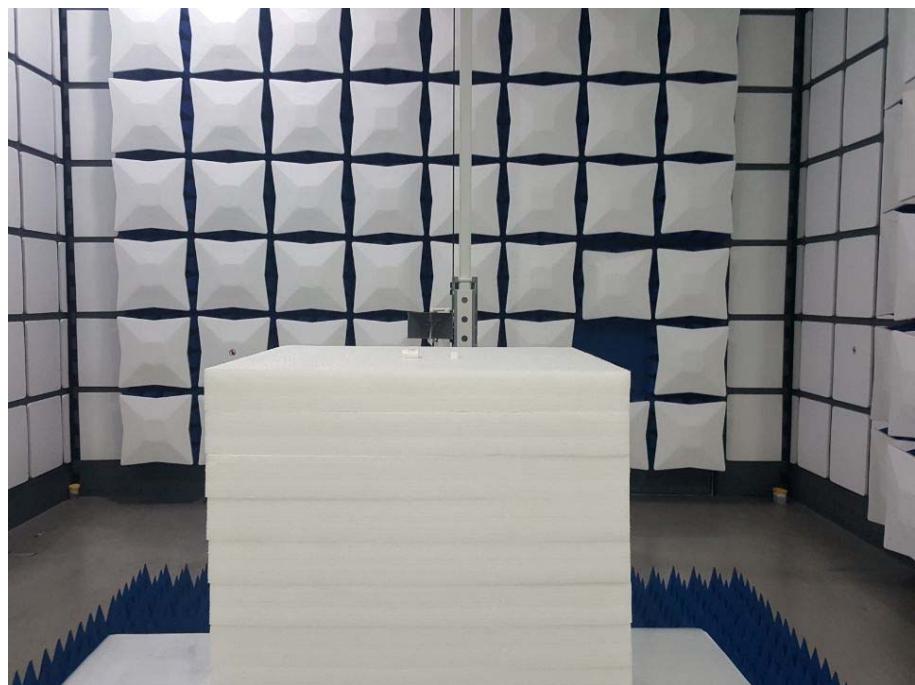
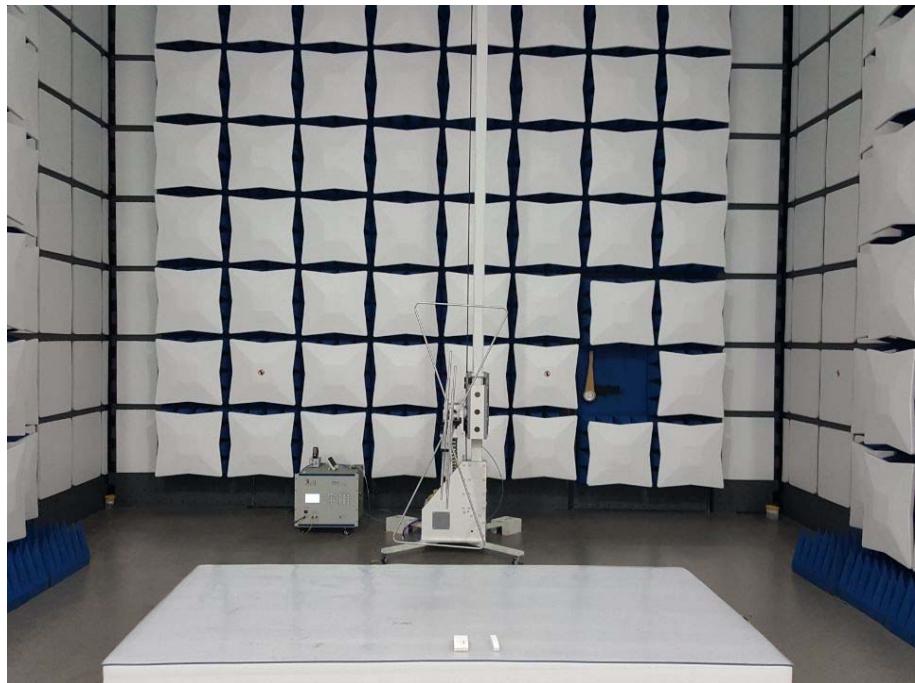
PASS

Mode	Frequency(MHz)	20dB Bandwidth (KHz)	Limit (kHz)	Conclusion
TX	2480	778.2	/	PASS

6 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.



Antenna Connected Construction

The antenna used in this product is a Internal Internal, The directional gains of antenna used for transmitting is 0dBi.

ANTENNA

7 PHOTOGRAPH OF TEST

8 PHOTOS OF THE EUT

Reference to the reporter : ANNEX A of external photos and ANNEX B of internal photos

-----End of test report-----