

SGS Germany GmbH

Test Report No.: P0GN0005

FCC ID: 2AVOXFZEV

Order No.: POGN	Pages: 32
Client:	Fazua GmbH
Equipment Under Test:	FAZUA RIDE 50 Pedelec Drive Unit
Manufacturer / Importer:	FAZUA GmbH
Task:	Compliance with the requirements mentioned below:
Test Specification(s): [covered by accreditation]	 FCC 47 CFR Part 15 §15.107 §15.109 ICES -003 Issue 6
Result:	The EUT complies with the requirements of the test specifications.

The results relate only to the items tested as described in this test report.

More Group Leader May 04, 2022

Date

Signature

This document was signed electronically.

approved by:

CONTENTS

1	Result Summary	4
2	References	6
	2.1 Specification(s)	6
	2.2 Glossary	6
	2.3 Information concerning FCC Equipment Authorization and Labelling	7
	2.4 Information concerning ICES Equipment Authorization	8
	2.4.1 Labelling Requirements	
3	General Information	9
	3.1 Identification of Client	
	3.2 Test Laboratory	9
	3.3 Time Schedule	9
	3.4 Participants	9
	3.5 Environmental conditions	9
4	Equipment Under Test	10
-	4.1 Operational conditions	
	4.1.1 Software	
	4.1.2 Operation modes	
	4.1.3 Configuration mode	
	4.1.3.1 Configuration mode 1	
	4.2 Hardware Configuration	18
	4.2.1 Components of the EUT	18
	4.2.2 Interface description	18
	4.2.2.1 Power supply port	
	4.2.2.2 Earthing and Grounding connections	
	4.2.2.3 Communication and signal ports	
	4.2.3 Cabling	
	4.2.4 Clock frequencies of the EUT resulting in determination of frequency range	
	4.2.5 External protection devices or measures	
	4.2.6 Modifications during the test	
	4.2.7 Operation and monitoring equipment	
	4.3 Deviations from Standard	
5	Test Equipment	23
	5.1 Test Facility	
	5.2 Measurement Uncertainty	24
	5.3 Statement of Conformity & Decision Rule	24

6	Test Conditions and Results	25
	6.1 Conducted disturbance (150 kHz to 30 MHz)	25
	6.2 Radiated disturbances (30 MHz to 1000 MHz)	26
	6.3 Radiated disturbances (1 GHz to 2 GHz)	29
7	Disclaimer	32

1 Result Summary

This report presents the test procedures used and the results obtained during the performance of an FCC 47 CFR Part 15 and ICES-003 test program. The test program was conducted to assess the ability of the tested sample to successfully satisfy the requirements specified in the references listed in Section 2 of this report.

Tables of Results:

Phenomena	Reference	Frequency range	Criteria	Verdict ¹
Conducted Emission AC power port 2	FCC 47 CFR Part 15 §15.107	150 kHz – 30 MHz	Class B	NA
Radiated Emission Electric Field	FCC 47 CFR Part 15 §15.109	30 MHz - 1 GHz	Class B	Р
Radiated Emission Electric Field	FCC 47 CFR Part 15 §15.109	1 GHz - 2 GHz ³	Class B	Р
Conducted Emission AC power port ²	ICES-003	150 kHz – 30 MHz	Class B	NA
Radiated Emission Electric Field	ICES-003	30 MHz - 1 GHz	Class B	Р
Radiated Emission Electric Field	ICES-003	1 GHz - 2 GHz ³	Class B	Р

The test program was conducted to evaluate the new design of the product previously designated as Evation. The test results of the Evation are documented in the test report number P0GN0003.

The current series, designated Evation, is to be continued under the new designation RIDE 50.

In the process, the previous product or model designation for the motor unit changes from evation Drivepack to RIDE 50 Drivepack, which is divided into two model variants: TRAIL / STREET.

Evation Drivepack becomes RIDE 50 STREET for use in road bike pedelecs. RIDE 50 TRAIL for use in moutain bike pedelecs.

¹ P (Pass): test object meets the requirement; F (Fail): test object does not meet the requirement; NA: test case does not apply to the test object; NR: test case is not requested by the client; NP: test case was not performed

According ANSI C.63.4 chapter 7.1: If the EUT normally receives power from another device that in turn connects to the public-utility ac power lines, measurements shall be made on that device with the EUT in operation to ensure that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

³ See chapt. 4.2.4; Clock frequencies of the EUT resulting in determination of frequency range

The RIDE 50 Drivepacks, will only have stronger magnets installed in the same motor (like evation), which will increase the mechanical torque from 55 Nm to 58 Nm at the same power consumption.

The previous product or model designation for the Evation Battery 250 X changes to Energy 250X.

No changes are made to the electronic parts and components, so there are no safety-related issues in this area. No critical components (see Listing Report) in the motor assembly and in the lithium-ion battery are touched.

There are no changes to the battery.

Only the external design of the Drivepacks (motor unit) is slightly changed. The design of the cooling fins on the radiator have been adapted, using the same material and having the same cooling capacity. the volume of the material also remains the same.

These changes do not affect stability, since the radiator is not a load-bearing component. EMC behaviour is slightly different from original but remain compliant.

2 References

2.1 Specification(s)

- [1] FCC 47 CFR Part 15: Code of Federal Regulations. Title 47: Telecommunication Part 15: Radio Frequency Devices
- ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-[2] Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
- FCC Public Notice DA 09-2478; Nov 25, 2009; Office of Engineering and Technology [3] Clarifies Use of Recently Published ASC C63® Measurement Standards for Compliance Testing of Intentional and Unintentional Radiators under Part 15
- [4] Industry Canada ICES-003 Issue 6; Information Technology Equipment (ITE) - Limits and methods of measurement
- [5] Test Report P0GN0003

2.2 Glossary

AC	Alternating Current		
AMN	Artificial Mains Network		
AV	Average Detector		
DC	Direct Current		
EMC	Electromagnetic Compati		
CLIT	Equipment Under Test		

ibility **Equipment Under Test**

HW Hardware

LISN Line Impedance Stabilization Network

QΡ Quasi Peak Detector

2.3 Information concerning FCC Equipment Authorization and Labelling

CERTIFICATION (47 CFR Section 2.907)

Certification is the most rigorous approval process for RF Devices with the greatest potential to cause harmful interference to radio services. It is an equipment authorization issued by an FCC-recognized Telecommunication Certification Body (TCB) based on an evaluation of the supporting documentation and test data submitted by the responsible party (e.g., the manufacturer or importer) to the TCB. Testing is performed by an FCC-recognized accredited testing laboratory. Information including the technical parameters and descriptive information for all certified equipment is posted on a Commission-maintained public database. In addition, equipment subject to approval using the Supplier's Declaration of Conformity (SDoC) procedure can optionally use the Certification procedure.

SUPPLIER'S DECLARATION OF CONFORMITY (47 CFR Section 2.906) → SDoC

Supplier's Declaration of Conformity (SDoC) is a procedure that requires the party responsible for compliance ensure that the equipment complies with the appropriate technical standards. The responsible party, who must be located in the United States, is not required to file an equipment authorization application with the Commission or a TCB. Equipment authorized under the SDoC procedure is not listed in a Commission database. However, the responsible party or any other party marketing the equipment must provide a test report and other information demonstrating compliance with the rules upon request by the Commission. The responsible party has the option to use the certification procedure in place of the SDoC procedure.

The key FCC rule sections for SDoC are:

- a. Section 2.906 Supplier's Declaration of Conformity
- b. Section 2.909 Responsible party
- c. Section 2.931 Responsibilities
- d. Section 2.938 Retention of records
- e. Section 2.1072 Limitations on Supplier's Declaration of Conformity
- f. Section 2.1074 Identification
- g. Section 2.1077 Compliance Information

See Guidance on the use of SDoC in $\underline{896810\ D01\ SDoC\ v01r01}$ and $\underline{896810\ D02\ SDoC\ FAQ}$ v01r02 .

As the EMC-Lab of SGS Germany GmbH is an FCC-recognized accredited testing laboratory, this test report can be used as basis for both procedures.

Based on §15.3 the following description for locations and its emission classes is defined:

- (h) Class A digital device. A digital device that is marketed for use in a commercial, industrial or business environment, exclusive of a device which is marketed for use by the general public or is intended to be used in the home.
- (i) Class B digital device. A digital device that is marketed for use in a residential environment notwithstanding use in commercial, business and industrial environments. Examples of such devices include, but are not limited to, personal computers, calculators, and similar electronic devices that are marketed for use by the general public.

Based on §15.105 the relevant information to the limit class has to be included in the manual.

Guidelines for **labeling and user information for RF** devices are contained in the following documents:

- 784748 D01 Labeling Part 15 18 Guidelines v09 provides general guidance for Part 15 and Part 18 labeling and user information.
- 748748 D02 e labeling v02 provides guidelines for displaying label information electronically (e-label).

2.4 Information concerning ICES Equipment Authorization

ITE is designated as Category II Equipment⁴,meaning that no technical acceptability certificate (TAC) or equipment certification is required. ITE subject to ICES-003 is approved through the method of a "supplier's declaration of conformity (SDoC)" by the manufacturer, importer or distributor of ITE, which shall ensure that compliance with all technical requirements prescribed by ICES-003 has been demonstrated and that the results have been compiled into a test report.

2.4.1 Labelling Requirements

The manufacturer, importer or supplier shall meet the labelling requirements set out in this section and in <u>Notice 2014-DRS1003</u> for electronic labelling for every unit:

- (i) prior to marketing in Canada, for ITE manufactured in Canada and
- (ii) prior to importation into Canada, for imported ITE.

Each unit of an ITE model shall bear a label (see below) that represents the manufacturer's or the importer's SDoC with Innovation, Science and Economic Development Canada's ICES-003. This label shall be permanently affixed to the ITE or displayed electronically and its text must be clearly legible. If the dimensions of the device are too small or if it is not practical to place the label on the ITE and electronic labelling has not been implemented, the label shall be, upon agreement with Innovation, Science and Economic Development Canada, placed in a prominent location in the user manual supplied with the ITE. The user manual may be in an electronic format and must be readily available.

Innovation, Science and Economic Development Canada ICES-003 Compliance Label: CAN ICES-3 (*)/NMB-3(*)

* Insert either "A" or "B" but not both to identify the applicable Class of ITE.

_

⁴ See Radiocommunication Regulations (SOR/96-484).

3 General Information

3.1 Identification of Client

Fazua GmbH Testing Department Marie-Curie-Straße 6 85521 Ottobrunn

3.2 Test Laboratory

SGS Germany GmbH Hofmannstraße 50 81379 München

3.3 Time Schedule

Delivery of EUT: Jun 16, 2021 Start of test: Jun 16, 2021 End of test: Jun 16, 2021

3.4 Participants

Name	Function
Rami Ben Hassine	Accredited testing, Editor

3.5 Environmental conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature: 20 - 26 °C Humidity: 30 - 60 %

4 Equipment Under Test

Test item description: Pedelec (EPAC)

Trademark...... FAZUA

Manufacturer / Importer: FAZUA GmbH

Model/Type FAZUA RIDE 50 Pedelec Drive Unit

Number of tested samples...: One EPAC with integrated drive unit and battery

RIDE 50 Drivepack TRAIL, SN: 3501011793

Bottom Bracket, SN: 3902007358 Remote FX, SN: 4207083167

ENERGY 250 X, SN: 3305410025

The FAZUA RIDE 50 is an electric motor support system for Pedelecs (EPAC). It is designed for Pedelec 25 usage (limited to 25 km/h). The system has a modular design configuration to achieve a high level of integration into the bicycle frames, the power to weight ratio and user flexibility.

FAZUA RIDE 50 is compatible with frame designs for mountain, road, gravel and city bikes and the system can be activated or deactivated according to the user's needs. The main components of the FAZUA RIDE 50 as shown in Figure 4-1 are as following:

- 1. RIDE 50 Drivepack TRAIL
- 2. Bottom Bracket
- 3. Remote FX
- 4. ENERGY 250 X (Li-Ion 10INR19/66-2, capacity 252 Wh)
- 5. Charger US/CA
- 6. 12 V Connector Box (DC adapter) for Lighting

Note: Spider, cranks, and lights (front and rear) are not provided by FAZUA and not part of the accessories either. The remote can be integrated into the top tube or in the down tube (therefor interface adapter 4a).

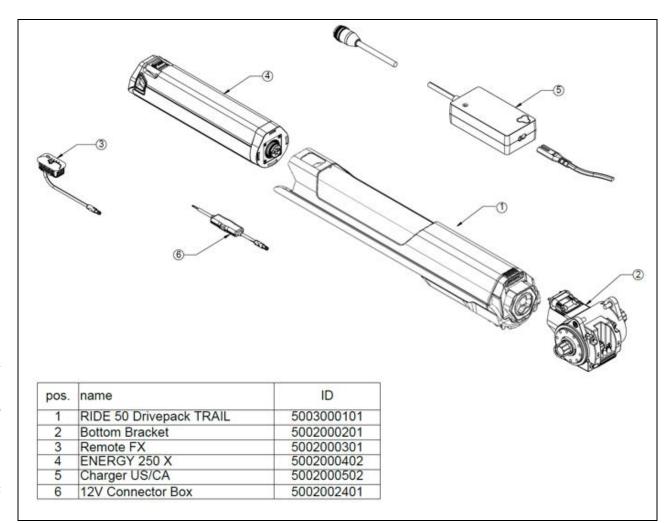


Figure 4-1: Main components of FAZUA RIDE 50

Pedelec (EPAC) with Drive Unit

Remote FX (tested)

ENERGY 250 X (tested)

Figure 4-2: Main components of FAZUA RIDE 50 Pedelec Drive unit with Remote, Battery, DrivePack and Bottom Bracket

Bottom Bracket (tested)

ENERGY 250 X

Drivepack RIDE 50 TRAIL

Bottom Bracket

Figure 4-5: Copy of type plates

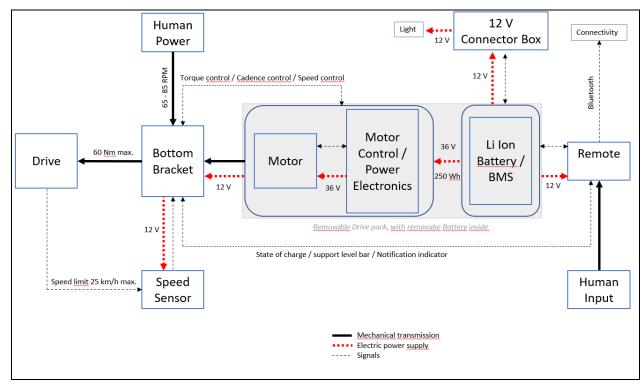


Figure 4-6: Block diagram of function for the FAZUA RIDE 50 Pedelec Drive Unit

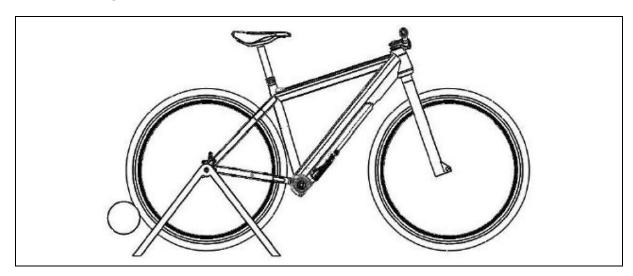
4.1 Operational conditions

4.1.1 Software

Software necessary for operating, controlling and monitoring the EUT:

	Identification Code/Issue	Task
FAZUA Service \ tool box	Version: 2.04	Configuration, controls and monitoring of EUT parameters

4.1.2 Operation modes


Normal operation

The Operation mode on EPAC during the test is: Driving

4.1.3 Configuration mode

4.1.3.1 Configuration mode 1

Mode	180 W
Motor speed	3000 RPM
Motor torque	1.0 Nm
Gear (11-fold)	Gear 6
Speed (EPAC)	22 km/h (98 % speed) particularly during the radiated Emission test
Controlling of motor dur-	Computer via USB connection / Remote via FAZUA Service
ing testing	Toolbox / special software for stand-alone operating mode
Roller dynamometer	Training bike stand (ELITE or Tacx)

4.2 Hardware Configuration

4.2.1 Components of the EUT

Name	Identification Code/Issue/Serial Number	Interface type	Quantity
Bike	Representative test bike		1
RIDE 50 Drive- pack TRAIL	SN: 3501011793	Rosenberger connector type B001-12-XXX-C	1
Bottom Bracket	AN: 5002000201 SN: 3902007358	screwed to the bicycle frame	1
ENERGY 250 X	SN: 3305410025 / 3305410047	integrated in the DrivePack, Rosenberger connector type Discharge C003-G3_300-C Charge B001-28-65-C	1
Remote FX	SN: 4207083167	integrated in the frame, con- nected to bottom bracket via electrical plug connection	1

4.2.2 Interface description

All interfaces are identified independent whether they are tested or not.

4.2.2.1 Power supply port

Type (AC/DC)	Voltage	Frequency	Current	Power	Comment
DC	12V	-	2 A	24 W	Internal Power supply from Battery to Remote and to
					Lighting Module
DC	36 V		15 A	540 W	Internal Power supply from
					Battery to Motor drive

4.2.2.2 Earthing and Grounding connections ⁵

Туре	Task	Connected to	Test E/I/NA

⁵ Safety ground, functional earth, specific ground connections

4.2.2.3 Communication ⁶ and signal ⁷ ports

Туре	Bit rate/frequency/ Signal	Task	Connected to
CAN	250 kHz	Communication	To the main drive system controller for communication between Remote, Battery, Drivepack (motor unit) and 12 V box
I2C	100 kHz	Communication	For processing the information from the bottom bracket, e.g. torque, speed, in the main drive system controller
USB	250 kHz	Communication	To Fazua Service Toolbox, for update a new Software revision or configuration, controls and monitoring of drive system parameters

4.2.3 Cabling

Name	Identification Code/Issue/ Serial Number	shield	Description of Connection / plug type	length	Quantity
USB A to mini USB B	AWM Style 2725 VW-1		Configuration, controls and monitoring of EUT parameters	< 3m	1

⁶ Connections to communication networks, Analog, Ethernet, Antenna, Wireless, GPS,

⁷ Signalling, monitoring, and control ports

4.2.4 Clock frequencies of the EUT resulting in determination of frequency range

System / Subsystem	Clock Freqency for Operation*	Comment
12 V CONNECTOR BOX	32 MHz (MCU) 8 MHz (CAN controller)	
BATTERY 250 X (Battery pack)	40 MHz (MCU) 32.768 kHz (low frequency clock)	8 MHz (MCU) x 5
DRIVEPACK (Motor unit)	48 MHz (MCU) 8 MHz (CAN controller) 250 MHz (xCORE motor control chip) 32.768 kHz (low frequency clock)	250 kHz for CAN-Bus communication
REMOTE fX	32 MHz (MCU) 8 MHz (CAN controller)	The integrated Bluetooth module chip is also operated with 32 MHz.
BOTTOM BRACKET	72 MHz (MCU)	8 MHz (MCU) x 9
CAN-Bus Communication	250 kHz	For communication between Remote fX, Battery 250 X, Drivepack and 12 V Connector Box.
I2C-Bus Communication	100 kHz	For processing the information from the Bottom Bracket, e.g. torque, speed, in the main drive system controller in the Drivepack.
Communication via USB	12 MHz	For USB 2.0 full speed to FAZUA Service Toolbox, for update a new Software revision or configuration, controls and monitoring of drive system parameters by end customers.

The highest clock frequency of the EUT during the Drive operation mode is: 250 MHz

The result of the table above with the highest frequency of the internal source is basis of the determination of the necessity of measurement above 1 GHz. The highest internal source of a EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.

See FCC §15.33 a) for relevant frequency range of intentional radiators.

See FCC §15.33 b) for relevant frequency range of unintentional radiators.

See e.g. the following table taken from FCC §15.33 b) 1)

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40
	GHz, whichever is lower

4.2.5 External protection devices or measures

EMC relevant external protection devices or measures, are specified in the user's manual (e.g. overvoltage, shielding, bonding and grounding).

None

4.2.6 Modifications during the test

None

4.2.7 Operation and monitoring equipment

Name / Identifi-	Task	Availability 8
cation		C/L
FAZUA Service	Configuration, controls and monitoring of the driven motor param-	С
Toolbox	eters	

FAZUA service toolbox and monitoring are not part of the EUT and delivered only for testing purpose.

4.3 Deviations from Standard

None

⁸ C: Provided by the customer, L: Available at laboratory

5 Test Equipment

5.1 Test Facility

The EMC-tests are carried out in the EMC-laboratory of SGS Germany, Consumer and Retail, Hofmannstraße 50, 81379 München, Germany.

Chamber	1	2	3	4/5	6
Dimensions (net)	17.7 * 10.8 * 6.8 m	9.6 * 8.5 * 5.3 m	7.4 * 6.6 * 5.2 m	4.1 * 3.5 * 3.5m	6.4 * 4.3 * 4.3m
Max. Door Exit (w x h)	2.9 * 3.86 m	3.9 * 4.0 m	2.0 * 2.7 m	0.9 * 2.25 m	1.8 * 3.0 m
Shielding material	Sheet steel (Thick- ness:1.5mm on floor, 1.0 mm on walls and ceiling)	Sheet steel	Sheet steel	Sheet steel	Sheet steel
Absorbers	Hybrid absorbers on walls and ceiling (TDK), length 1 m	Hybrid absorbers on walls and ceiling (E+C), length 0.5 m	Hybrid absorbers on walls and ceiling (E+C), length 0.3 m	Without absorbers	Without absorbers
Floor	Metallic ground plane floor load: 12 t/m²	Metallic ground plane floor load: 1.5 t/m²	Metallic ground plane floor load: 1 t/m²	Metallic ground plane	Metallic ground plane
Turntable	Ø4 m / 7 t	Ø 3.2 m / 1.5 t	Ø 2.0 m / 1 t		
Listings		VCCI-listed until Oct. 2019, Reg. No. R-2623, G-266			VCCI-listed until Oct. 2019, Reg. No. C-2866 & No. T-1942
Specials	Emission:	Emission:	Emission:		
	30 – 1000 MHz (d = 10 m)	30 – 1000 MHz (d = 3 m)	30 - 1000 MHz (d = 3 m)		
	- NSA acc. to:	- NSA acc. to:	- NSA acc. to:		
	· CISPR 16-1-4	· CISPR 16-1-4	· CISPR 16-1-4		
	· ANSI C63.4	· ANSI C63.4	· ANSI C63.4		
	1 – 18 GHz (d = 3 m) Site VSWR 1 – 18 GHz acc. to CISPR 16-1-4	1 – 18 GHz (d = 3 m) Site VSWR 1 – 18 GHz acc. to CISPR 16-1-4	1 – 18 GHz (d = 3 m) Site VSWR 1 – 18 GHz acc. to CISPR 16-1-4		
	Immunity:	Immunity:	Immunity:		
	Field uniformity 27 – 6000 MHz acc. IEC/EN 61000-4-3	Field uniformity 80 – 6000 MHz acc. IEC/EN 61000-4-3	Field uniformity 80 – 6000 MHz acc. IEC/EN 61000-4-3		

FCC (Federal Communication Commission): Recognition by Bundesnetzagentur (BNetzA-CAB-14/21-09) and Designation as CAB (Conformity Assessment Body): Designation Number DE0013; Test firm Registration #: 366296

Designation KBA (Kraftfahrt-Bundesamt) as Technical Service category A and D. Registration Number: KBA-P 00083-97

CB Testing Laboratory under the responsibility of SGS CEBEC as National Certification Body and to carry out testing within the **IECEE CB Scheme**.

Designation No. for RRA (Radio Research Agency) in Korea; EU0145

5.2 Measurement Uncertainty

As far as the underlying standards include requirements concerning the uncertainty of measuring instruments or measuring methods, they are met.

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The expanded measurement uncertainty of the measuring chain was calculated for all tests according to the "ISO Guide to the expression of uncertainty in measurement (GUM)". The results are documented in an "internal controlled document".

The measuring accuracy for all measuring devices is given in their technical description. The measuring instruments, including any accessories, are calibrated respectively verified to ensure the necessary accuracy. Depending on the kind of measuring equipment it is checked within regular intervals or directly before the measurement is performed. Adjustments are made and correction factors applied to measured data in accordance with the specifications of the specific instrument.

The expanded measurement instrumentation uncertainty of our Test Laboratory meets the requirements of IEC CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modeling – Measurement instrumentation uncertainty" and the relevant basic standards for all listed Tests.

Expanded uncertainty:

Conducted emission	0.15 – 30 MHz	+ 2.2 dB / -2.5 dB
Radiated emission	30 – 1000 MHz	+3.1 dB / -3.9 dB
Radiated emission	1 – 6 GHz	+3.9 dB / -5.2 dB
Radiated emission	6 – 18 GHz	+4.2 dB / -5.7 dB

5.3 Statement of Conformity & Decision Rule

Concerning radiated/conducted emission, if not otherwise stated in the relevant standards, the decision rule for statement of conformity is based on U_{CISPR} given in CISPR 16-4-2. When the expanded uncertainty calculations of the EMC-lab for the single emission tests is below U_{CISPR} , then it can be considered, based on ILAC-G8, that the measurement result is valid without any need of adaption and e.g. a result of 0 dB to the limit can be stated as pass.

Concerning immunity tests the required levels are created and coupled within the required uncertainty limits which are given in the relevant standards or are typical for that kind of phenomena. Unless differently specified in the standards, to assess the conformity of the EUT, the laboratory applies the decision rule defined in the referenced product standards. The given compliance criteria listed in the basic and product standards (e.g. A, B, C; functional status, ...) are related with the pass/fail- and performance criteria of the tested sample given from the client or test plan.

6 Test Conditions and Results

6.1 Conducted disturbance (150 kHz to 30 MHz)

Phenomena	Reference	Frequency Range	Criteria	Verdict ¹
	FCC 47 CFR Part 15 §15.107	150 kHz – 30 MHz	Class B	NA
Conducted Emission AC Power Ports	ICES-003	150 kHz – 30 MHz	Class B	NA

(The conducted emission limits of FCC 47 CFR Part 15 §15.107 Class A/B are identical with ICES-003 class A/B.)

6.2 Radiated disturbances (30 MHz to 1000 MHz)

Phenomena	Reference	Frequency Range	Criteria	Verdict ¹
Radio Disturbance Electric Field	FCC 47 CFR Part 15 §15.109	30 MHz - 1 GHz	Class B	Р
rieid	915.109	distance 3 m		
Radio Disturbance Electric	ICES-003	30 MHz - 1 GHz	Class B	Р
Field		distance 3 m		

(The radiated emission limits < 1 GHz of FCC 47 CFR Part 15 §15.109 Class A/B are identical with ICES-003 class A/B.)

Tested by : Ben Hassine

Test date : 2021-06-16 Test location : EMC chamber No. 3

Test procedure:

Radiated measurements are performed in a semi-anechoic chamber meeting the normalized site attenuation of ANSI C63.4 and listed with the FCC. The applicable frequency spectrum is scanned with a calibrated RF measuring system using an appropriate broadband antenna and an EMI-receiver/spectrum analyzer and compared to the required limits. The measuring instrument performs the field strength calculations automatically. The measuring software provides resident AF and CF figures for individual antennas and cables. The receiver/analyzer is set to "peak" mode from 30 MHz to 1 GHz. On any emission of concern, the receiver is set to quasipeak mode.

"Maximization" of each suspect frequency is accomplished by a combination of a 360° azimuth search using a turntable and varying the antenna to ground plane height from 1 m to 4 m. Also, both the vertical and horizontal polarization is scanned in the required frequency range per AN-SI C63.4.

Maximization of emission results starts at 0° of the turn table with antenna in horizontal polarization is set to 1 m. While the turntable slowly moves to 360°, the spectrum analyzer is sweeping from 30 to 1000 MHz and maximum data is recorded. Antenna is set to 2 m and turntable slowly moves back to 0° while the spectrum analyzer is sweeping again. This is repeated until the antenna height of 4 m is reached.

The antenna polarization is set to vertical and the procedure described above is repeated. For each frequency, the measuring software stores the maximum level as well as the corresponding settings of turntable and antenna. An azimuth resolution of about 3° is realized using this method.

At least the six highest frequencies are selected automatically by the software for performing the final measurements.

At each of these frequencies the turntable as well as the antenna is set to the corresponding settings. Then the antenna is slowly moved 50 cm down/up related to initial position while the receiver is measuring at this frequency. The highest emission level and the corresponding height are recorded. At this final position, the measurement is performed with quasi-peak detector. Exploratory emission measurements are to be performed considering operation states and cable arrangement to evaluate configuration with highest emission levels (C63.4, Clause 8.3.1 and 8.3.2).

Table-top equipment is arranged 80 cm above ground plane.

EMC-Test-SW: EMC32 version 10.60.20 (R&S)

Sample Calculation with all conversion and correction factors used: $\Sigma CF = CF_{Cables} + CF_{Antenna}$

Instruments and accessories

ID	Description	Manufacturer	Model	Serial No.	Status	Cal. date	Cal. due
P1326	EMI receiver	R&S	ESU26	100058	cal	Apr 01, 2020	Apr 2022
P1299	video camera MZ3	Pontis		6410703001	ind		
P1303	Mast (MZ3)	innco GmbH	MA 4660-XPET		cnn		
P1304	Controller	innco GmbH	CO 3000	CO3000/915	cnn		
P0014	antenna	Chase	CBL6111	1140	cal	Apr 26, 2019	Apr 2022
P2472	Digital Optical Transmitter f. USB Signals	mk Messtechnik (EMCO)	optoUSB2.0 + BP- 84	19- 016426+19- 016427+19- 016354	cnn		
P1914	Data logger for humidity and temperature (MZ3)	testo AG	testo 175 H1	40342576	cal	Aug 07, 2020	Aug 2023
P0338	EMC chamber 3	Siemens			chk		

cal = Calibration, car = Calibration restricted use, chk = Check, chr = Check restricted use, cpu = Check prior to use, calchk = Calibration and check, ind = for indication only, cnn = Calibration not necessary, service = Wartung (Service), man = Maintenance, calservice = Calibration & Service, chkservice = Check & Service, calchkservice = Calibration & Check & Service

Photo documentation of the test set-up:

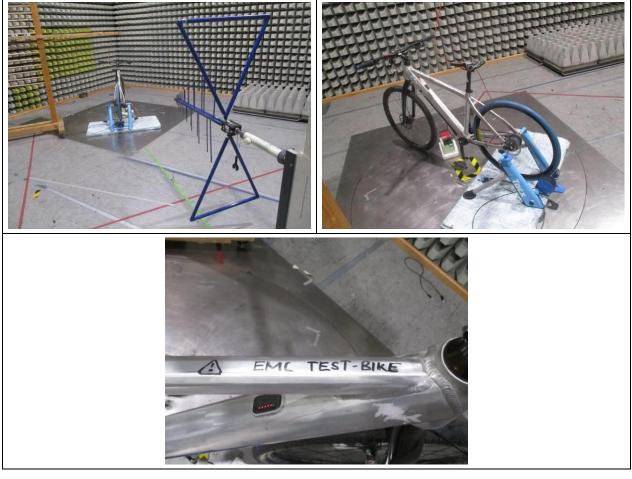


Figure 6-1: test setup for Radiated disturbances 30 MHz to 1000 MHz

Result:

For detailed results, please see below.

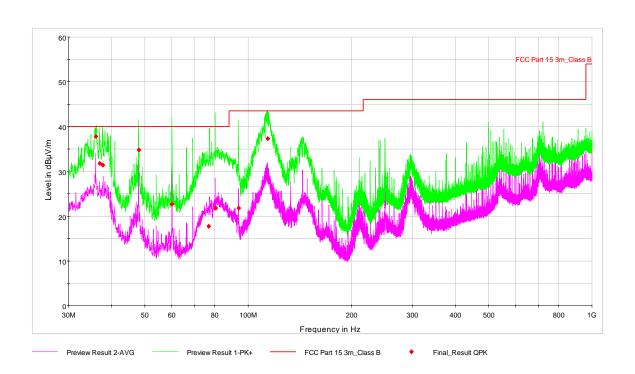


Figure 6-2: Graphical presentation Radiated disturbances 30 MHz to 1000 MHz

Result table:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
36.059500	37.80	40.00	2.20	15000.0	120.000	110.0	٧	356.0	16
36.932500	31.81	40.00	8.19	15000.0	120.000	102.0	٧	-2.0	16
37.763000	31.40	40.00	8.60	15000.0	120.000	121.0	٧	27.0	15
48.013500	34.76	40.00	5.24	15000.0	120.000	203.0	٧	85.0	10
59.873000	22.69	40.00	17.31	15000.0	120.000	325.0	Н	235.0	6
76.773500	17.73	40.00	22.27	15000.0	120.000	405.0	Н	120.0	7
80.297500	21.80	40.00	18.20	15000.0	120.000	181.0	Н	227.0	8
93.772000	21.77	43.50	21.73	15000.0	120.000	196.0	٧	245.0	10
113.788000	37.32	43.50	6.18	15000.0	120.000	100.0	V	153.0	12

6.3 Radiated disturbances (1 GHz to 2 GHz)

Phenomena	Reference	Frequency Range	Criteria	Verdict ¹
Radio Disturbance Electric		1 GHz - 2 GHz	Class B	Р
Field	§15.109	Distance 3 m		
Radio Disturbance Electric	ICES-003	1 GHz - 2 GHz	Class B	Р
Field		Distance 3 m		

(The radiated emission limits > 1 GHz for AV-detector of FCC 47 CFR Part 15 §15.109 Class A/B are identical with ICES-003 class A/B. In addition, ICES-003 requires also a peak-limit with 20 dB above relevant AV-limit.)

Tested by : Ben Hassine

Test date : 2021-06-16 Test location : EMC chamber No. 3

Test Execution

Radiated measurements are performed in a semi-anechoic chamber meeting the normalized site attenuation of ANSI C63.4 as well as the Site VSWR requirements of CISPR16 and listed with the FCC. The applicable frequency spectrum is scanned with a calibrated RF measuring system using an appropriate broadband antenna and an EMI-receiver/spectrum analyzer and compared to the required limits. The measuring instrument performs the field strength calculations automatically. The measuring software provides resident AF and CF figures for individual antennas and cables. The receiver/analyzer is set to "peak" mode in the relevant frequency range. On any emission of concern, the receiver is set to average mode.

For EUTs having a size larger than the beamwidth of the antenna, appropriate countermeasures shall be taken, e.g. increasing the measuring distance or different antenna positions (lateral) to scan the complete surface of EUT.

"Maximization" of each suspect frequency is accomplished by a combination of a 360° azimuth search using a turntable and varying the antenna to ground plane height from 1 m to 4 m. Both, the vertical and horizontal polarization is scanned in the required frequency range per ANSI C63.4.

Maximization of emission results starts at 0° of the turn table with antenna in horizontal polarization is set to 1 m. While the turntable slowly moves to 360°, the spectrum analyzer is sweeping from 1 to 2 GHz and maximum data is recorded. Antenna is set to 1.5 m and turntable slowly moves back to 0° while the spectrum analyzer is sweeping again. This is repeated until the antenna height of 4 m is reached (step: 0.5m).

The antenna polarization is set to vertical and the procedure described above is repeated. For each frequency, the measuring software stores the maximum level as well as the corresponding settings of turntable and antenna. An azimuth resolution of about 3° is realized using this method.

At least the six highest frequencies are selected automatically by the software for performing the final measurements. At each of these frequencies the turntable as well as the antenna is set to the corresponding settings. Then the antenna is slowly moved 25 cm down/up related to initial position while the receiver is measuring at this frequency. The highest emission level and the corresponding height are recorded. At this final position, the measurement is performed with average detector.

Exploratory emission measurements are to be performed considering operation states and cable arrangement to evaluate configuration with highest emission levels (C63.4, Clause 8.3.1 and 8.3.2).

Final measurements were performed acc C63.4, clause 8.3.2.2 aimed at the emission source for receiving the maximum signal.

Table-top equipment is arranged 80 cm above ground plane.

EMC-Test-SW: EMC32 version 10.60.20 (R&S)

Sample Calculation with all conversion and correction factors used: $\sum CF = CF_{Cables} + CF_{Antenna} + CF_{Preamplifier}$

Instruments and accessories

ID	Description	Manufacturer	Model	Serial No.	Status	Cal. date	Cal. due
P1326	EMI receiver	R&S	ESU26	100058	cal	Apr 01, 2020	Apr 2022
P1299	video camera MZ3	Pontis		6410703001	ind		
P1303	Mast (MZ3)	innco GmbH	MA 4660-XPET		cnn		
P1304	Controller	innco GmbH	CO 3000	CO3000/915	cnn		
P0030	antenna (MZ3)	EATON	96001	2622	cal	Apr 14, 2020	Apr 2022
P1650	preamplifier (MZ3)	Kuhne electronic	KU LNA BB 202 A		cal	Mar 24, 2021	Mar 2023
P2472	Digital Optical Transmitter f. USB Signals	mk Messtechnik (EMCO)	optoUSB2.0 + BP- 84	19- 016426+19- 016427+19- 016354	cnn		
P1914	Data logger for humidity and temperature (MZ3)	testo AG	testo 175 H1	40342576	cal	Aug 07, 2020	Aug 2023
P0338	EMC chamber 3	Siemens			chk		

cal = Calibration, car = Calibration restricted use, chk = Check, chr = Check restricted use, cpu = Check prior to use, calchk = Calibration and check, ind = for indication only, cnn = Calibration not necessary, service = Wartung (Service), man = Maintenance, calservice = Calibration & Service, chkservice = Check & Service, calchkservice = Calibration & Check & Service

Photo documentation of the test set-up:

Figure 6-3: test setup for radiated disturbances 1 GHz to 2 GHz

Result:

verdict:	pass
----------	------

For detailed results, please see below.

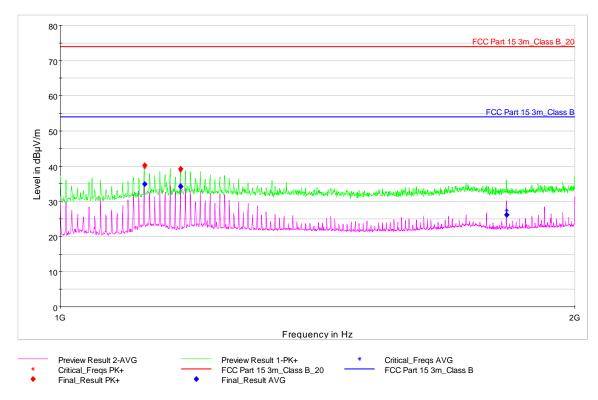


Figure 6-4: Graphical presentation Radiated disturbances 1 GHz to 2 GHz

Result table:

Frequency	MaxPeak	Average	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB/m)
					(ms)					
1120.166667		34.92	54.00	19.08	1000.0	1000.000	101.0	٧	125.0	-2
1120.166667	40.25		74.00	33.75	1000.0	1000.000	101.0	٧	128.0	-2
1175.866667		34.17	54.00	19.83	1000.0	1000.000	105.0	Н	137.0	-2
1175.866667	39.25		74.00	34.75	1000.0	1000.000	104.0	٧	231.0	-2
1824.133333		26.18	54.00	27.82	1000.0	1000.000	196.0	٧	192.0	2

7 Disclaimer

This document is issued by the Company subject to its General Conditions of Service (www.sgsgroup.de/agb). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is an original. If the document is submitted digitally, it is to be treated as an original within the meaning of UCP 600.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

End of Test Report