

KSIGN(Guangdong) Testing Co. Ltd.

First Floor West Side, Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu Village, Shatou Community, Shajing Street, Bao'an District, Shenzhen City, Guangdong Province, P. R. China Tel.: +(86) 0755-2985 2678 Fax:+(86)0755-29852397 E-mail: info@gdksign.cn Website:www.gdksign.com

EST REPORT

Report No....: KS1911S00188E

FCC ID------2AVBU-T50

GUANGZHOU BACKWIN TECHNOLOGY CO., LIMITED Applicant.....

Address..... 6/F, Block C, Shijing Building, 18 Shisha Road, Baiyun District,

Guangzhou, China

Manufacturer.... **GUANGZHOU BACKWIN TECHNOLOGY CO., LIMITED**

Address..... 6/F, Block C, Shijing Building, 18 Shisha Road, Baiyun District,

Guangzhou, China

Product Name....: Sports bluetooth headset

Trade Mark..... **BACKWIN**

Model/Type reference..... T50

Listed Model(s)..... T33, T35, T37, T39, T52, T56, T80, T58, T67, T61, T63, T21, T22,

T23, T24, T25, T26, T27

Standard....:: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of Receipt..... Nov.11, 2019

Date of Test Date...: Nov.11, 2019-Dec.06, 2019

Date of issue..... Dec.06, 2019

Test result....:: **Pass**

Compiled by:

(Printed name+signature)

Supervised by:

(Printed name+signature)

Approved by:

(Printed name+signature)

Emiva

Kelly

Testing Laboratory Name....: KSIGN(Guangdong) Testing Co., Ltd.

Cary Luc

First Floor West Side, Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu Village, Shatou Community, Shajing Street, Bao'an District, Shenzhen City, Guangdong Province, P. R. China Address.....

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

	IABLE OF CONTENTS	Page
1. TEST SUMMARY		3
1.1. TEST STANDARDS		3
1.2. REPORT VERSION		3
1.6. ENVIRONMENTAL CONDITIONS		······· 6
2. GENERAL INFORMATION		
2.1. CLIENT INFORMATION		7
2.2. GENERAL DESCRIPTION OF EUT		7
2.4. MEASUREMENT INSTRUMENTS LIST		S
2.5. TEST SOFTWARE		g
3. TEST ITEM AND RESULTS		10
3.1. ANTENNA REQUIREMENT		10
3.2. CONDUCTED EMISSION		11
	BANDWIDTH	
	UCTED)	
	PING SEQUENCE	
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL		

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Dec.06, 2019	Original

1.3. Test Description

FCC Part 15 Subpart C(15.247)			
	Standard Section	Danult	
Test Item	FCC	Result	Test Engineer
Antenna Requirement	15.203	Pass	Emiya Lin
Conducted Emission	15.207	Pass	Emiya Lin
Restricted Bands	15.205	Pass	Emiya Lin
Hopping Channel Separation	15.247(a)(1)	Pass	Emiya Lin
Dwell Time	15.247(a)(1)	Pass	Emiya Lin
Peak Output Power	15.247(b)(1)	Pass	Emiya Lin
Number of Hopping Frequency	15.247(b)(1)	Pass	Emiya Lin
Band Edge Emissions	15.247(d)	Pass	Emiya Lin
Radiated Spurious Emission	15.247(c)&15.209	Pass	Emiya Lin
99% Occupied Bandwidth & 20dB Bandwidth	15.247(a)	Pass	Emiya Lin
Pseudorandom Frequency Hopping Sequence	15.247 (a)(1)	Pass	Emiya Lin

Note: The measurement uncertainty is not included in the test result.

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

First Floor West Side, Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu Village, Shatou Community, Shajing Street, Bao'an District, Shenzhen City, Guangdong Province, P. R. China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Zhejiang Kezheng Electronic Product Inspection quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for Zhejiang Kezheng Electronic Product Inspection.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	GUANGZHOU BACKWIN TECHNOLOGY CO.,LIMITED
Address:	6/F, Block C, Shijing Building, 18 Shisha Road, Baiyun District, Guangzhou, China
Manufacturer:	GUANGZHOU BACKWIN TECHNOLOGY CO.,LIMITED
Address:	6/F, Block C, Shijing Building, 18 Shisha Road, Baiyun District, Guangzhou, China

2.2. General Description of EUT

Product Name:	Sports bluetooth headset
Model/Type reference:	T50
Marketing Name:	BACKWIN
Listed Model(s):	T33, T35, T37, T39, T52, T56, T80, T58, T67, T61, T63, T21, T22, T23, T24, T25, T26, T27
Model Difference:	The difference between product models only depends on the appearance color and the model naming is different. Other power supply methods, safety structure and key components are the same, which do not affect the safety and electromagnetic compatibility performance.
Power supply(Battery):	DC3.7Vdc from Li-ion Battery
Hardware version:	V4.0
Software version:	/
BT5.0	
Modulation:	GFSK, π /4-DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Max Peak Output Power:	GFSK: -3.93dBm π /4-DQPSK: -2.53dBm 8DPSK: -2.32dBm
Channel number:	79
Channel separation:	1MHz
Antenna type:	Ceramic Antenna
Antenna gain:	-0.58dBi

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing. Operation Frequency List:

Report No.: KS1911S00188E

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
÷	:
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Measurement Instruments List

Tonscer	Tonscend JS0806-2 Test system				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	Spectrum Analyzer	R&S	FSV40-N	101798	Apr.25, 2020
2	Vector Signal Generator	Agilent	N5182A	MY50142520	Apr.10, 2020
3	Analog Signal Generator	HP	83752A	3344A00337	Apr.10, 2020
4	Power Sensor	Agilent	E9304A	MY50390009	Apr.10, 2020
5	Power Sensor	Agilent	E9300A	MY41498315	Apr.10, 2020
6	Wideband Radio Communication Tester	R&S	CMU200	115297	Apr.10, 2020
7	Climate Chamber	Angul	AGNH80L	1903042120	Apr.10, 2020
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	Apr.10, 2020
9	RF Control Unit	Tonscend	JS0806-2	/	Apr.10, 2020

Transı	Transmitter spurious emissions & Receiver spurious emissions				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESR	102525	Apr.10, 2020
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	Apr.15, 2020
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	Apr.15, 2020
4	Spectrum Analyzer	HP	8593E	3831U02087	Apr.10, 2020
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	Apr.17, 2020
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	Apr.17, 2020
7	Horn Antenna	R&S	Sep-60	69483	Apr.10, 2020
8	Spectrum Analyzer	R&S	FSV40-N	101798	Apr.25, 2020
9	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	Apr.10, 2020
10	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	Apr.10, 2020
11	Pre-Amplifier	EMCI	EMC051835SE	980662	Apr.17, 2020
12	Power Meter	Agilent	E4419B	GB41293710	Apr.10, 2020

Note:

2.5. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

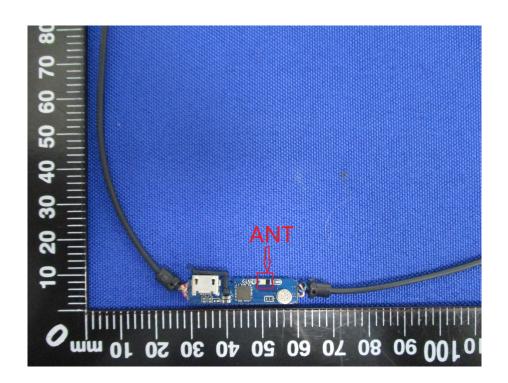
¹⁾The Cal. Interval was one year.
2)The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

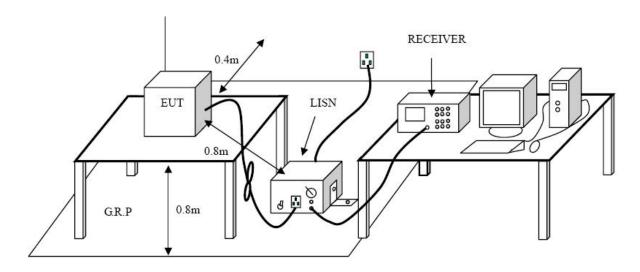
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

3.2. Conducted Emission

Limit


Conducted Emission Test Limit

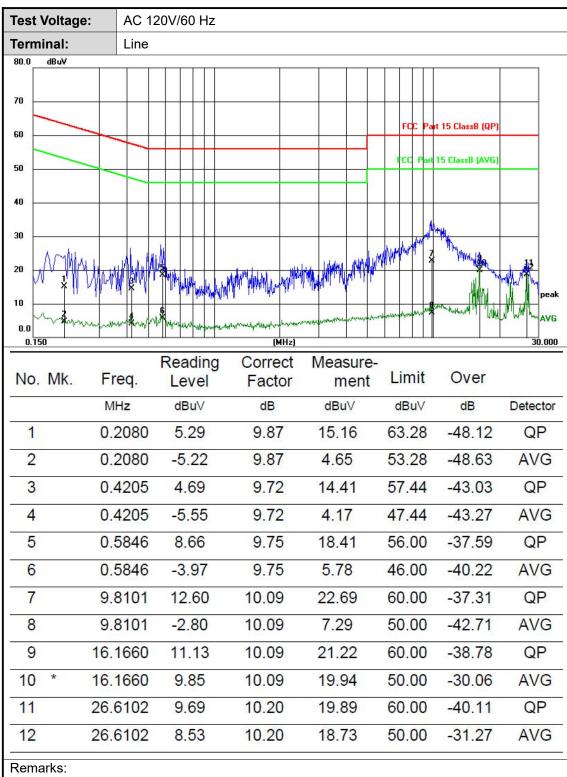
Fraguency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

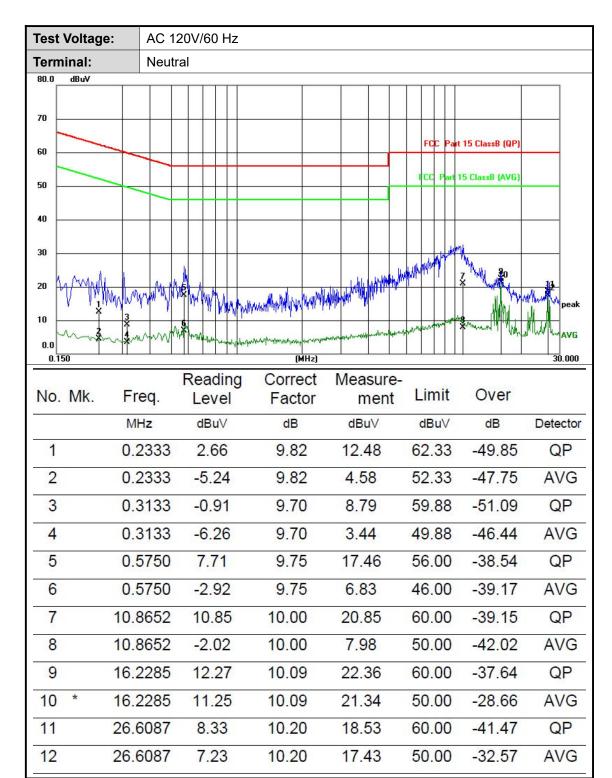
Test Procedure


- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.
 - The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode:

Please refer to the clause 2.3.

Test Results



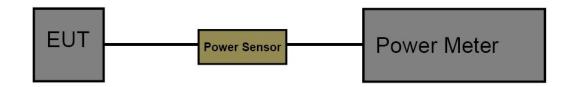
^{1.}Measurement = Reading Level+ Correct Factor

^{2.}Over = Measurement -Limit

Remarks:

^{1.}Measurement = Reading Level+ Correct Factor

^{2.}Over = Measurement -Limit


3.3. Peak Output Power

<u>Limit</u>

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125mW(21dBm)	2400~2483.5

Report No.: KS1911S00188E

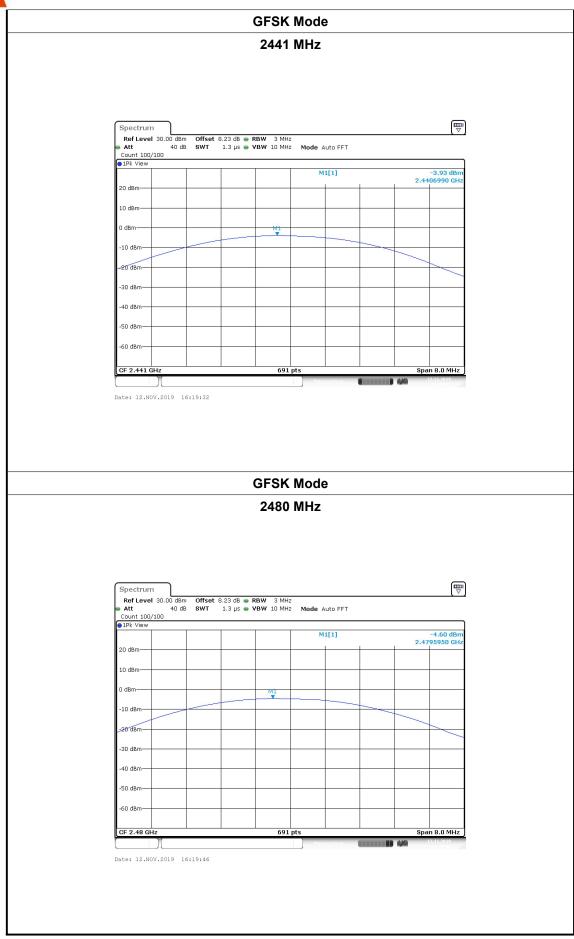
Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

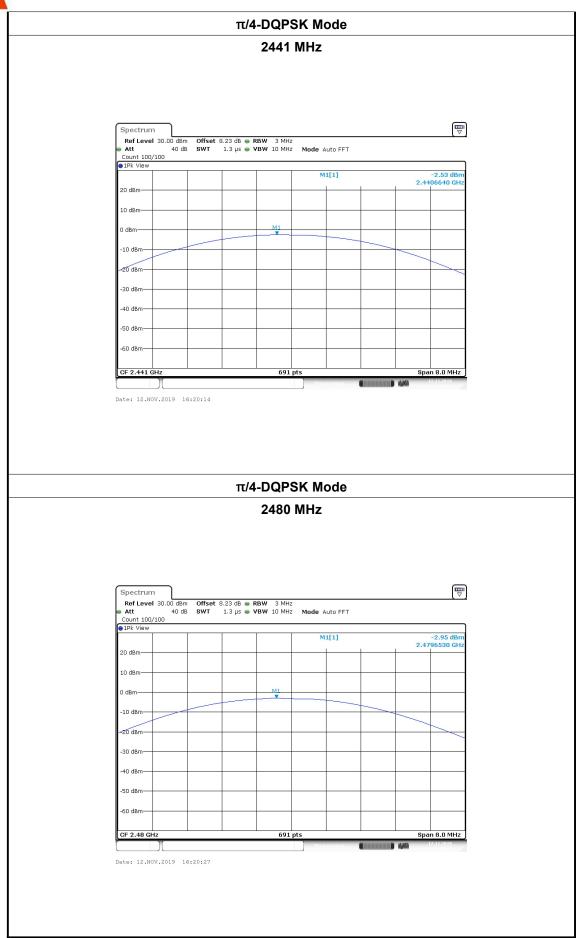
Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=10 MHz for bandwidth more than 1MHz.

Test Mode

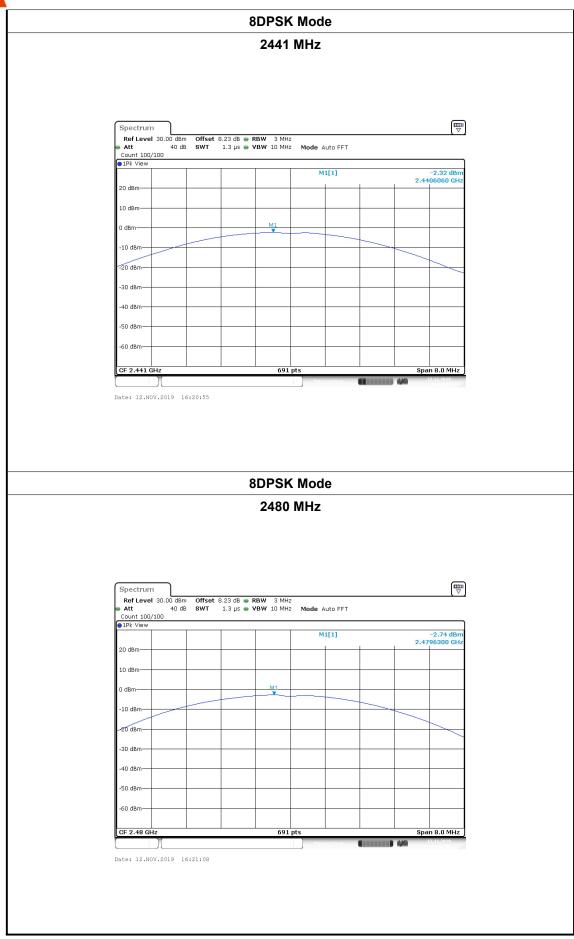

Please refer to the clause 2.3

Test Result

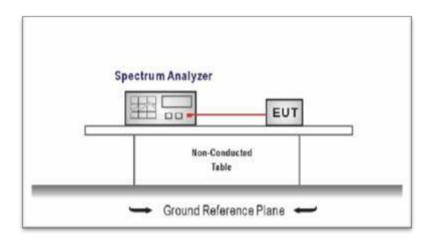
est Mode:	GFSK Mod	de		
Channel freque	ncy (MHz)	Test Res	ult (dBm)	Limit (dBm)
2402		-4.	.04	
2441		-3.	.93	30
2480			.60	
			Mode	
		2402	MHz	
	Spectrum			▽
	Ref Level 30.00 dBm (Att 40 dB 8 Count 100/100	Offset 8.23 dB ● RBW 3 MH: SWT 1.3 µs ● VBW 10 MH:		
	1Pk View		M1[1]	
			mara j	-4.04 dBm
	20 dBm-			-4.U4 dbm 2.4016060 GHz
	20 dBm			
	10 dBm-	M1	1045	
	10 dBm 0 dBm10 dBm	M1		
	10 dBm	M1		
	10 dBm 0 dBm10 dBm	M1		
	10 dBm	Mi		
	10 dBm	Mi		
	10 dBm	M1 ¥		



est Mode:	π/4-DQPS	SK Mode	
Channel frequen	cy (MHz)	Test Result (dBm)	Limit (dBm)
2402		-2.76	
2441		-2.53	30
2480	2480		
	1	π/4-DQPSK Mode	
		2402 MHz	
R	pectrum Ref Level 30.00 dBm 0		∀
		Offset 8.23 dB ● RBW 3 MHz SWT 1.3 μs ● VBW 10 MHz Mode Auto FFT M1[1]	-2.76 dBm 2.4016060 GHz
20 10	Att 40 dB S ount 100/100	SWT 1.3 µs • VBW 10 MHz Mode Auto FFT	-2.76 dBm 2.4016060 GHZ
20 10 0 d	Att 40 dB S punt 100/100 Pk View dBm	3WT 1.3 μs • VBW 10 MHz Mode Auto FFT M1[1]	
20 10 0 d	Att 40 dB Sount 100/100 Pk View dBm dBm	3WT 1.3 μs • VBW 10 MHz Mode Auto FFT M1[1]	
20 10 0 d -10 -20 -30 -40	Att 40 dB Sount 100/100 Pk View dBm dBm dBm d dBm 0 dBm 0 dBm 0 dBm	3WT 1.3 μs • VBW 10 MHz Mode Auto FFT M1[1]	
20 10 0 d -10 -20 -30 -40 -50	Att 40 dB Sount 100/100 Pik View dBm dBm JBBm J dBm J dBm J dBm J dBm J dBm	3WT 1.3 μs • VBW 10 MHz Mode Auto FFT M1[1]	
20 10 0 d -10 <20 -40 -40 -50 -60	Att 40 dB Sount 100/100 Pk View dBm dBm dBm d dBm 0 dBm 0 dBm 0 dBm	3WT 1.3 μs • VBW 10 MHz Mode Auto FFT M1[1]	



est Mode:	8DPSK				
Channel frequer	ncy (MHz)	Test Resu	ult (dBm)		Limit (dBm)
2402		-2.	41		
2441	2441 2480		-2.32		
2480			74		
		8DPSK	Mode	1	
		2402	MHz		
G	Con a atmuse				▽
		Offset 8.23 dB ● RBW 3 MHz SWT 1.3 µs ● VBW 10 MHz			[♥]
	Count 100/100	210 ps - 1011 20 11112	MOGE AUTOTT		
	1Pk View				
•	1Pk View		M1[1]		-2.41 dBm 2.4016180 GHz
2	91Pk View 20 d8m		M1[1]		
2 1	91Pk View 20 dBm		M1[1]		
2 1	91Pk View 20 d8m	M1	M1[1]		
2 1 C	91Pk View 20 dBm	Mi	M1[1]		
2 1 1	20 dBm	Mi	M1[1]		
1 c c	20 dBm 00 dBm 010 dBm	M1	M1[1]		
1 1 C -	20 dBm	M1	M1[1]		
2 1 1 -	20 dBm	Mi	M1[1]		
2 1 1 -	20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 40 dBm 40 dBm	M1	M1[1]		
€1C---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------<l< td=""><td>20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 40 dBm 550 dBm 550 dBm</td><td>M1 V</td><td></td><td></td><td></td></l<>	20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 40 dBm 550 dBm 550 dBm	M1 V			


3.4. 99% Occupied Bandwidth & 20dB Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5

Report No.: KS1911S00188E

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

20dB Bandwidth

- (1) Set RBW = 30 kHz.
- (2) Set the video bandwidth (VBW) ≥ 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

99% Occupied Bandwidth

- (1) Set RBW = 20 kHz.
- (2) Set the video bandwidth (VBW) =100 kHz.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

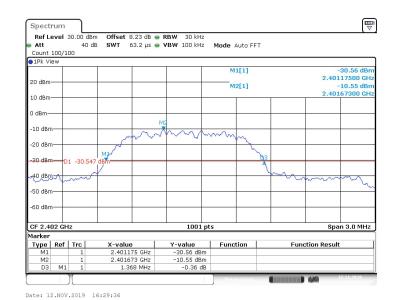
Test Mode

Please refer to the clause 2.3.

Test Results

Test Mode:	GFS	K Mode			
Channel frequer (MHz)	ncy	20dB Bandwidth [MHz]	FL[MHz]	FH[MHz]	Verdict
2402		0.984	2401.364	2402.348	PASS
2441		1.035	2440.313	2441.348	PASS
2480		1.032	2479.313	2480.345	PASS
		GFS	SK Mode		
			02 MHz		
•	Att	30.00 dBm Offset 8.23 dB • RBW 3 40 dB SWT 63.2 μs • VBW 10			
	Count 100/10 1Pk View 20 dBm	40 dB SWT 63.2 μs 🖷 VBW 10		-27.42 dBm 2.40136400 GHz -7.41 dBm 2.40191300 GHz	
	Count 100/10 1Pk View	40 dB SWT 63.2 μs ⊚ VBW 10	M1[1] M2[1]	2.40136400 GHz -7.41 dBm	
	20 dBm-10 dBm	40 dB SWT 63.2 μs ⊚ VBW 10	00 kHz Mode Auto FFT M1[1]	2.40136400 GHz -7.41 dBm	
	Count 100/10 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm	40 dB SWT 63.2 μs ⊚ VBW 10	M1[1] M2[1]	2.40136400 GHz -7.41 dBm	
	Count 100/10 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm	40 dB SWT 63.2 μs • VBW 10	M1[1] M2[1]	2.40136400 GHz -7.41 dBm	
	Count 100/10 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	40 dB SWT 63.2 μs • VBW 10	M1[1] M2[1]	2.40136400 GHz -7.41 dBm	
	Count 100/10 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -60 dBm	40 dB SWT 63.2 μs • VBW 10	M1[1] M2[1] M2 M3	2.40136400 GHz -7.41 dBm 2.40191300 GHz	
	Count 100/10 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	40 dB SWT 63.2 μs • VBW 10	M1[1] M2[1]	2.40136400 GHz -7.41 dBm	
	Count 100/10 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -40 dBm -60 dBm -60 dBm CF 2.402 GH:	40 dB SWT 63.2 μs • VBW 10 1 -27.409 dBm	M1[1] M2[1] M2 1001 pts	2.40136400 GHz -7.41 dBm 2.40191300 GHz	

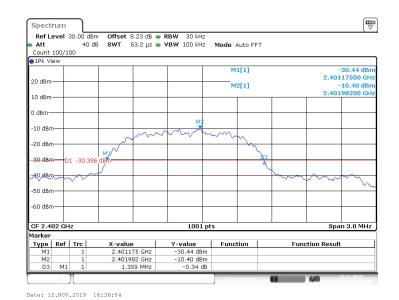
Page 22 of 70



Test Mode:	π/4	π/4DQPSK Mode				
Channel frequer (MHz)	ісу	20dB Bandwidth [MHz]	FL[MHz]	FH[MHz]	Verdict	
2402		1.368	2401.175	2402.543	PASS	
2441		1.365	2440.172	2441.537	PASS	
2480		1.365	2479.169	2480.534	PASS	
		π/4DQI	PSK Mode			

Page 24 of 70

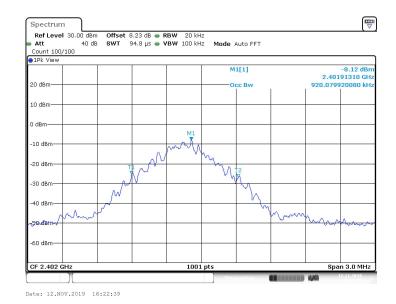
2402 MHz

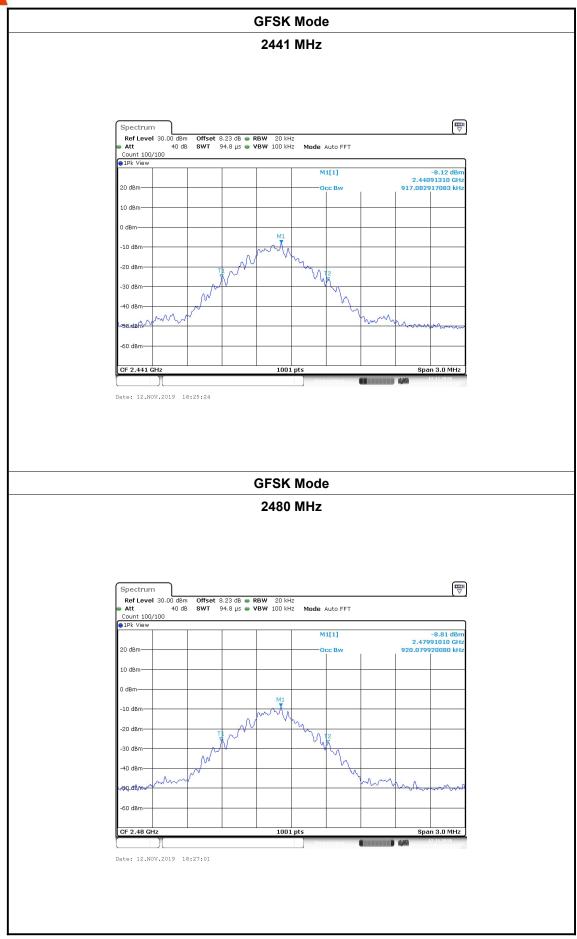




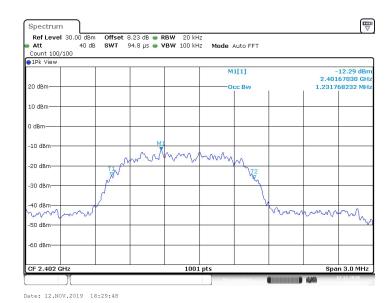
Test Mode:	8DPSK Mode					
Channel frequence (MHz)	cy 20dB Bandwidth [MHz]	FL[MHz]	FH[MHz]	Verdict		
2402	1.359	2401.175	2402.534	PASS		
2441	1.356	2440.172	2441.528	PASS		
2480	1.350	2479.172	2480.522	PASS		
	π/4D	QPSK Mode				
	2	402 MHz				

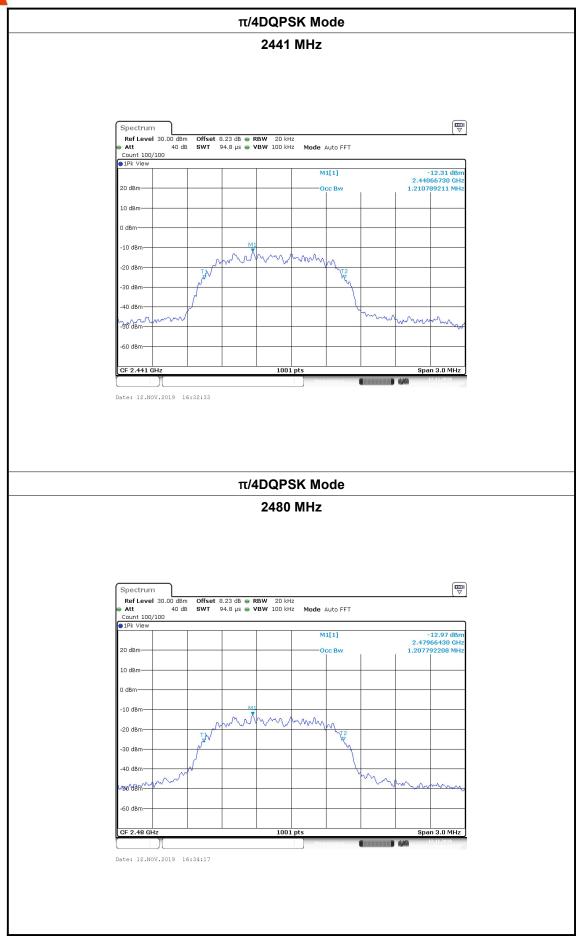
Page 26 of 70





Test Mode:	GFSK Mode					
Channel frequenc (MHz)	99% OCB [MHz]	FL[MHz]	FH[MHz]	Verdict		
2402	0.920	2401.398	2402.318	PASS		
2441	0.917	2440.398	2441.315	PASS		
2480	0.920	2479.395	2480.315	PASS		
	G	FSK Mode				
		2402 MHz				




Test Mode:	π/4DQPSK Mode					
Channel frequer (MHz)	су	99% OCB [MHz]	FL[MHz]	FH[MHz]	Verdict	
2402		1.232	2401.242	2402.474	PASS	
2441		1.211	2440.248	2441.459	PASS	
2480		1.208	2479.245	2480.453	PASS	
		π/4[QPSK Mode			

Page 30 of 70

2402 MHz

