

## SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.

Report No.: SUCR250500039101

Rev.: 01 Page: 1 of 13

# Appendix A

# **Detailed System Check Results**

| 1. System Performance Check       |
|-----------------------------------|
| System Performance Check 13 MHz   |
| System Performance Check 750 MHz  |
| System Performance Check 835 MHz  |
| System Performance Check 1750 MHz |
| System Performance Check 1950 MHz |
| System Performance Check 2450 MHz |
| System Performance Check 2600 MHz |
| System Performance Check 5250 MHz |
| System Performance Check 5600 MHz |
| System Performance Check 5750 MHz |

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions">http://www.sgs.com/en/Terms-and-Conditions</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing / inspection report & certificate, please contact us at telephone:(86-755) 8307 1443, or email: <a href="mailto:cN.Doccheck@sgs.com">CN.Doccheck@sgs.com</a>

Test Laboratory: SGS-SAR Lab Date: 2025-06-25

#### **System Performance Check 13MHz**

Communication System: Custom Band; Frequency: 13.000

Medium: HSL. Medium parameters used: f= 13.000 MHz;  $\sigma$ = 0.725 S/m;  $\varepsilon$ <sub>r</sub> = 55.9

#### DASY8 Configuration:

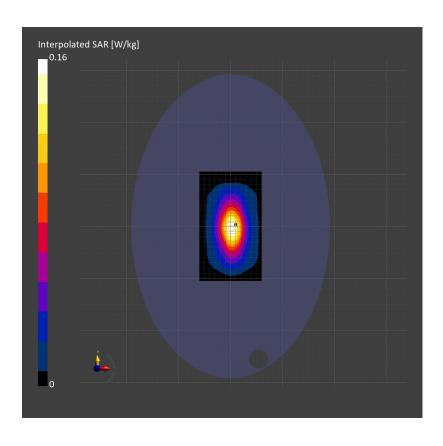
- Probe: EX3DV4 - SN7735; ConvF(13.68, 13.51, 13.73); Calibrated: 2025-01-29

- Sensor-Surface: 1.4 mm

- Electronics: DAE4ip Sn1826; Calibrated: 2025-02-17

- Phantom: ELI V8.0 (20deg probe tilt); Serial: 2217

- Measurement Software: cDASY8 V16.4.0.5005


Area Scan (120.0 mm x 210.0 mm): Measurement Grid: 15.0 mm x 15.0 mm SAR (1g) = 0.103 W/kg; SAR (10g) = 0.054 W/kg;

**Zoom Scan (32.0 mm x 32.0 mm x 30.0 mm)**: Measurement Grid: 6.0 mm x 6.0 mm x 1.5 mm Power Drift = -0.03 dB

SAR (1g) = 0.111 W/kg; SAR (10g) = 0.067 W/kg;

M2/M1 [%] 79.3

Dist 3dB Peak [mm] 21.3



Test Laboratory: SGS-SAR Lab

## System Performance Check 750 MHz Head

DUT: D750V3; Type: Dipole; Serial: 1214

Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1

Medium: HSL750; Medium parameters used: f = 750 MHz;  $\sigma = 0.892$  S/m;  $\varepsilon_r = 41.908$ ;  $\rho = 1000$ 

kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(10.76, 10.76, 10.76); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

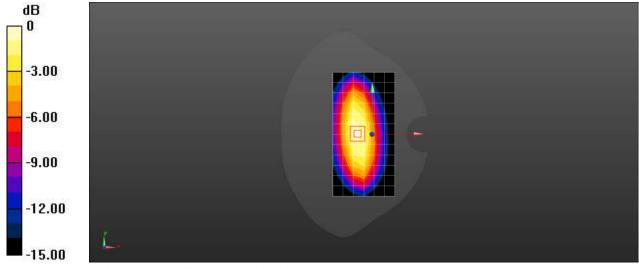
dy=15mm

Maximum value of SAR (measured) = 2.57 W/kg

## Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.15 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 3.32 W/kg

### SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.51 W/kg

Smallest distance from peaks to all points 3 dB below = 16.3 mm

Ratio of SAR at M2 to SAR at M1 = 67.4%

Maximum value of SAR (measured) = 2.93 W/kg



0 dB = 2.93 W/kg = 4.67 dBW/kg

Test Laboratory: SGS-SAR Lab

## **System Performance Check 835 MHz Head**

DUT: D835V2; Type: Dipole; Serial: 4d161

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz;  $\sigma = 0.909$  S/m;  $\epsilon_r = 42.329$ ;  $\rho = 1000$ 

 $kg/m^3$ 

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(10.34, 10.34, 10.34); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

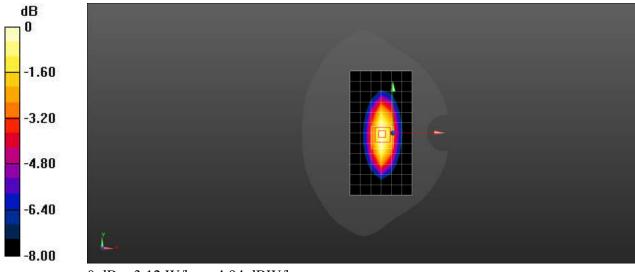
dy=15mm

Maximum value of SAR (measured) = 3.09 W/kg

## Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 61.71 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.63 W/kg

### SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.59 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 67.8%

Maximum value of SAR (measured) = 3.12 W/kg



0 dB = 3.12 W/kg = 4.94 dBW/kg

Test Laboratory: SGS-SAR Lab

## System Performance Check 1750 MHz Head

DUT: D1750V2; Type: Dipole; Serial: 1105

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: HSL1750; Medium parameters used: f = 1750 MHz;  $\sigma = 1.33$  S/m;  $\varepsilon_r = 39.026$ ;  $\rho = 1000$ 

kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(8.95, 8.95, 8.95); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=10mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

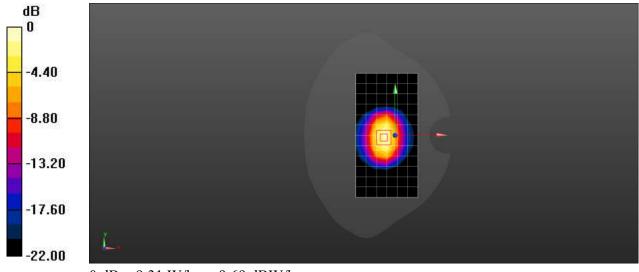
dy=15mm

Maximum value of SAR (measured) = 8.86 W/kg

## Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 16.0 W/kg

### SAR(1 g) = 8.93 W/kg; SAR(10 g) = 4.71 W/kg

Smallest distance from peaks to all points 3 dB below = 11 mm

Ratio of SAR at M2 to SAR at M1 = 57.6%

Maximum value of SAR (measured) = 9.31 W/kg



0 dB = 9.31 W/kg = 9.69 dBW/kg

Test Laboratory: SGS-SAR Lab

## System Performance Check 1950 MHz Head

DUT: D1950V3; Type: Dipole; Serial: 1218

Communication System: UID 0, CW (0); Frequency: 1950 MHz; Duty Cycle: 1:1

Medium: HSL1950; Medium parameters used: f = 1950 MHz;  $\sigma = 1.4$  S/m;  $\varepsilon_r = 39.235$ ;  $\rho = 1000$ 

kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(8.6, 8.6, 8.6); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=10mm, Pin=250mW/Area Scan (9x11x1): Measurement grid: dx=15mm,

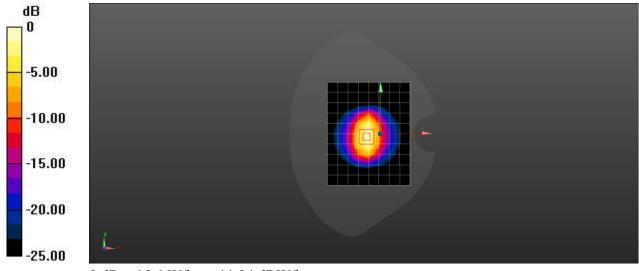
dy=15mm

Maximum value of SAR (measured) = 14.5 W/kg

## Body/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 96.69 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 18.63 W/kg

### SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.14 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 53.6%

Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.94 dBW/kg

Test Laboratory: SGS-SAR Lab

## **System Performance Check 2450 MHz Head**

DUT: D2450V2; Type: Dipole; Serial: 922

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: f = 2450 MHz;  $\sigma = 1.793$  S/m;  $\varepsilon_r = 39.047$ ;  $\rho = 1000$ 

 $kg/m^3$ 

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(8.03, 8.03, 8.03); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=10mm, Pin=250mW/Area Scan (9x15x1): Measurement grid: dx=12mm,

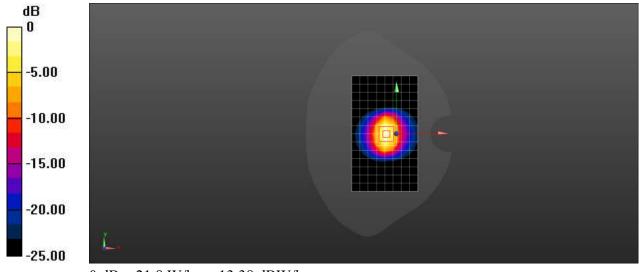
dy=12mm

Maximum value of SAR (measured) = 21.3 W/kg

## Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 104.1 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 26.7 W/kg

## SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.28 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 50.7%

Maximum value of SAR (measured) = 21.8 W/kg



0 dB = 21.8 W/kg = 13.38 dBW/kg

Test Laboratory: SGS-SAR Lab

## System Performance Check 2600 MHz Head

DUT: D2600V2; Type: Dipole; Serial: 1158

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz;  $\sigma = 1.957$  S/m;  $\varepsilon_r = 38.721$ ;  $\rho = 1000$ 

 $kg/m^3$ 

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(7.85, 7.85, 7.85); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=10mm, Pin=250mW/Area Scan (9x15x1): Measurement grid: dx=12mm,

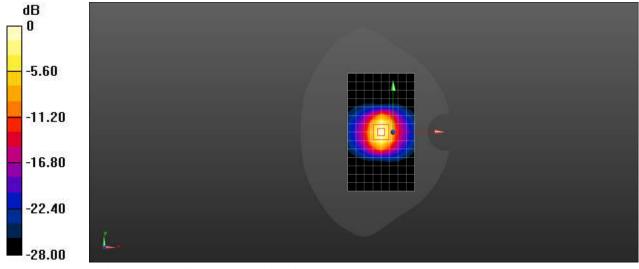
dy=12mm

Maximum value of SAR (measured) = 23.4 W/kg

## Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 99.96 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 28.9 W/kg

### SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.14 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 47.8%

Maximum value of SAR (measured) = 23.4 W/kg



0 dB = 23.4 W/kg = 13.69 dBW/kg

Test Laboratory: SGS-SAR Lab

## System Performance Check 2600 MHz Head

DUT: D2600V2; Type: Dipole; Serial: 1158

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz;  $\sigma = 2.013$  S/m;  $\varepsilon_r = 39.988$ ;  $\rho = 1000$ 

 $kg/m^3$ 

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(7.85, 7.85, 7.85); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=10mm, Pin=250mW/Area Scan (9x11x1): Measurement grid: dx=12mm,

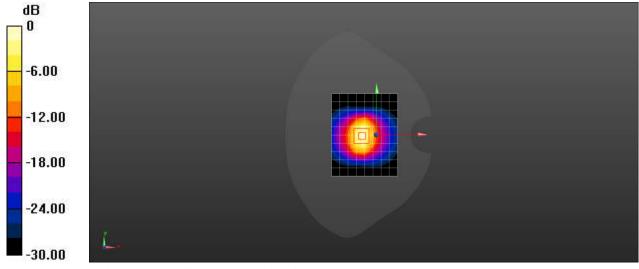
dy=12mm

Maximum value of SAR (measured) = 19.4 W/kg

## Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 85.76 V/m; Power Drift = 0.12 dB


Peak SAR (extrapolated) = 27.4 W/kg

## SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.31 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 51%

Maximum value of SAR (measured) = 22.6 W/kg



0 dB = 22.6 W/kg = 13.53 dBW/kg

Test Laboratory: SGS-SAR Lab

## System Performance Check 5.25 GHz Head

DUT: D5GHzV2; Type: Dipole; Serial: 1174

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: HSL5000; Medium parameters used: f = 5250 MHz;  $\sigma = 4.77$  S/m;  $\varepsilon_r = 36.775$ ;  $\rho = 1000$ 

kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(5.73, 5.73, 5.73); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=10mm, Pin=100mW, f=5250 MHz/Area Scan (8x8x1): Measurement grid:

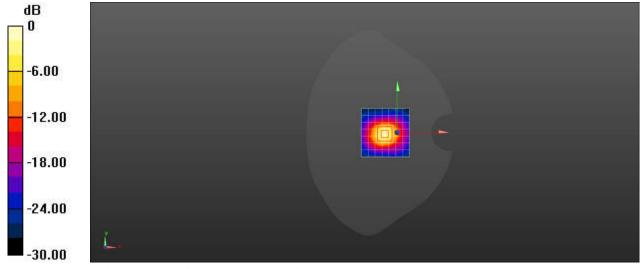
dx=10mm, dy=10mm

Maximum value of SAR (measured) = 15.7 W/kg

## Body/d=10mm, Pin=100mW, f=5250 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.01 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 34.7 W/kg

### SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.18 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 60.5%

Maximum value of SAR (measured) = 20.4 W/kg



0 dB = 20.4 W/kg = 13.09 dBW/kg

Test Laboratory: SGS-SAR Lab

## **System Performance Check 5.6 GHz Head**

DUT: D5GHzV2; Type: Dipole; Serial: 1174

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: HSL5000; Medium parameters used: f = 5600 MHz;  $\sigma = 5.156$  S/m;  $\varepsilon_r = 35.907$ ;  $\rho = 1000$ 

 $kg/m^3$ 

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(5.12, 5.12, 5.12); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=10mm, Pin=100mW, f=5250 MHz/Area Scan (8x8x1): Measurement grid:

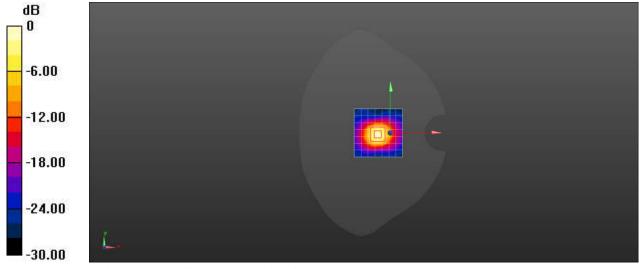
dx=10mm, dy=10mm

Maximum value of SAR (measured) = 20.1 W/kg

## Body/d=10mm, Pin=100mW, f=5250 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 81.47 V/m; Power Drift = 0.12 dB


Peak SAR (extrapolated) = 38.4 W/kg

### SAR(1 g) = 8.28 W/kg; SAR(10 g) = 2.38 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 59.9%

Maximum value of SAR (measured) = 22.8 W/kg



0 dB = 22.8 W/kg = 13.57 dBW/kg

Test Laboratory: SGS-SAR Lab

## System Performance Check 5.75 GHz Head

DUT: D5GHzV2; Type: Dipole; Serial: 1174

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: HSL5000; Medium parameters used: f = 5750 MHz;  $\sigma = 5.351$  S/m;  $\varepsilon_r = 35.726$ ;  $\rho = 1000$ 

kg/m<sup>3</sup>

Phantom section: Flat Section

#### DASY 5 Configuration:

• Probe: EX3DV4 - SN7767; ConvF(5.21, 5.21, 5.21); Calibrated: 2024/12/31

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1484; Calibrated: 2024/10/15

• Phantom: SAM 8; Type: SAM; Serial: 1824

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Body/d=10mm, Pin=100mW, f=5750 MHz/Area Scan (8x8x1): Measurement grid:

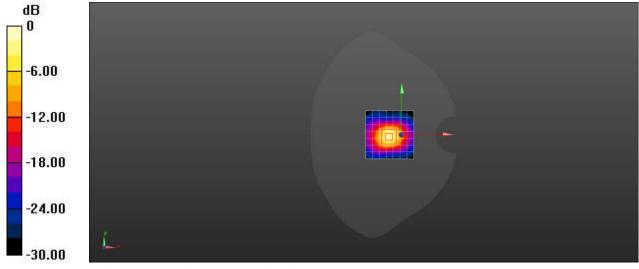
dx=10mm, dy=10mm

Maximum value of SAR (measured) = 16.3 W/kg

## Body/d=10mm, Pin=100mW, f=5750 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.06 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 37.4 W/kg

### SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.17 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 58.6%

Maximum value of SAR (measured) = 21.4 W/kg



0 dB = 21.4 W/kg = 13.31 dBW/kg



# SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.

Report No.: SUCR250500039101

Rev.: 01

Page: 13 of 13

- End of the Appendix -