

TEST REPORT

Application No.: DNT241254R1682-4629

Applicant: Diecast Masters Company Limited

Address of Room 1801-5, 18/F., King Palace Plaza, 52A Sha Tsui Road Tsuen Wan, N.T..,

Applicant: Hong Kong

EUT Description: Brick Blocks RC GT Race Car

Model No.: DM-21011

FCC ID: 2AUJF-21011

Power Supply DC 3V

Trade Mark: /

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2024/6/15

Date of Test: 2024/6/16 to 2024/7/1

Date of Issue: 2024/7/1

Test Result: PASS

Prepared By: Wanne Jin (Testing Engineer)

Reviewed By: (Project Engineer)

Approved By: (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Date:July 1, 2024

Page: 2/34

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0	1	Jul.1, 2024	Valid	Original Report

Date:July 1, 2024

Page: 3/34

1 Test Summary

Test Item	Standard Section	Test Result
Antenna Requirement	15.203	PASS
20dB Occupied Bandwidth	15.215	PASS
Duty Cycle	N/A	PASS
Field Strength	15.249(a)	PASS
Radiated Spurious Emissions And Band Edge	15.205, 15.209, 15.249(a)(c)(d)(e),	PASS
AC Power Line Conducted Emissions	15.35(b) 15.207	N/A

Date:July 1, 2024

Page: 4/34

Contents

1 Test Summary			 	 3
2 General Information			 	 5
2.1 Test Location			 	 5
2.2 General Description of EUT			 	 6
2.3 Power Setting of Test Software				
2.4 Test Environment and Mode			 	 8
2.5 Channel List			 	 8
2.6 Description of Support Units			 	 8
2.7 Test Facility			 	 g
2.8 Measurement Uncertainty (95% confide	ence level	s, k=2)	 	 g
2.9 Equipment List			 	 10
2.10 Assistant equipment used for test			 	 11
3 Test results and Measurement Data			 	 12
3.1 Antenna requirements			 	 12
3.2 20dB Occupied Bandwidth			 	 13
3.3 Duty Cycle			 	 16
3.4 Field Strength of Fundamental				
3.5 Radiated Spurious Emissions			 	 23
3.6 AC Power Line Conducted Emissions				33

Date:July 1, 2024

Page: 5/34

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date:July 1, 2024

Page: 6/34

2.2 General Description of EUT

Manufacturer:	Guangdong Yu Lee Technology Corporation Limited					
Address of Manufacturer:	357 Qingxi Qingfeng Road,Qingxi Town,Dongguan City,Guangdong Province					
EUT Description:	Brick Blocks RC GT Race Car					
Test Model No.:	DM-21011					
Additional Model(s):						
Power Supply	DC 3V					
Chip Type:	RF2517					
Serial number:	PR241254R1682					
Trade Mark:	1					
Hardware Version:	V1.0					
Software Version:	V1.0					
Operation Frequency:	2410MHz-2473MHz					
Type of Modulation:	GFSK					
Sample Type:	Prototype production					
Antenna Type:	☐ External, ⊠ Integrated					
Antenna Ports						
Antenna Gain*:	⊠ Provided by applicant					
Antenna Gain .	-0.58dBi					
	⊠ Provided by applicant					
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);					

Date:July 1, 2024

Page: 7/34

Remark:

*All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date:July 1, 2024

Page: 8/34

2.3 Power Setting of Test Software

Software Name	N/A				
Frequency(MHz)	2410	2442	2473		
Setting	Default	Default	Default		

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

2.5 Channel List

Operation Frequency of each channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2410	11	2429	21	2450	31	2469
2	2414	12	2430	22	2452	32	2473
3	2415	13	2431	23	2454		
4	2416	14	2433	24	2456		
5	2417	15	2434	25	2458		
6	2418	16	2439	26	2462		
7	2419	17	2441	27	2464	0, <), ()
8	2421	18	2442	28	2465	,	
9	2426	19	2444	29	2466		
10	2428	20	2446	30	2467		

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

• A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	±0.41dB
2	RF power density, conducted	±1.96dB

No.	Item	Measurement Uncertainty		
1.	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
		± 4.8dB (Below 1GHz)		
		± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
		± 5.02dB (Above 18GHz)		

Date:July 1, 2024

Page: 10 / 34

2.9 Equipment List

	For Conne	ct EUT Anten	na Terminal	Test	
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

Test Equipment for Conducted Emission							
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date		
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23		
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23		
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23		

I ESI L	quipment for I	Vadiated Little	SSIOLICACION	TOUUIVII IZ	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23
Single ring magnetic field ring antenna	ETS-LINDGREN	6502	6502	2023-10-24	2024-10-23

Test E	quipment for I	Radiated Emi	ssion(Above	1000MHz				
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date			
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23			
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23			
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23			
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23			
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA			
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23			
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23			

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	1	Adapter	Chenyang	ICSO1

Report No.: DNT241254R1682-4629 Date:July 1, 2024 Page: 12 / 34

3 Test results and Measurement Data

3.1 Antenna requirements

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

The antenna is welded on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

3.2 20dB Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.215
Test Method:	ANSI C63.10:2013 Section 7.8.7
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the worst case
Limit:	no wider than 0.25% of the center frequency
Test Results:	Pass

Test Data:

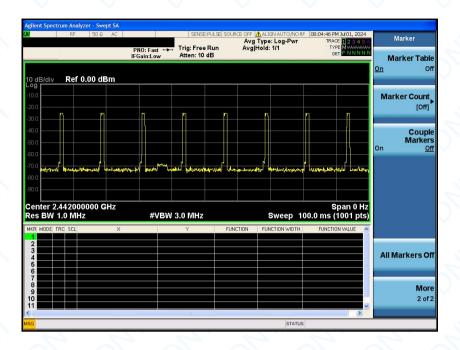
Test Frequency (MHz)	20dB Bandwidth (MHz)	Result
2410	1.091	Pass
2442	1.073	Pass
2473	1.266	Pass

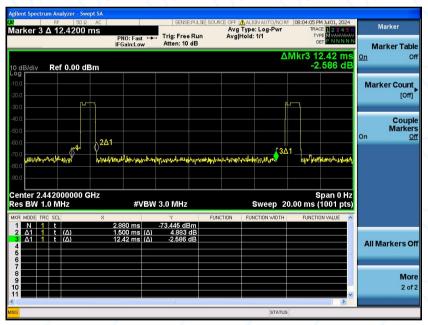
Report No.: DNT241254R1682-4629 Date:July 1, 2024 Page: 14 / 34

Test Graphs

S CONTRACTOR OF THE PARTY OF TH

Report No.: DNT241254R1682-4629 Date:July 1, 2024 Page: 15 / 34




Date:July 1, 2024

Page: 16 / 34

3.3 Duty Cycle

Limit:N/A

The average correction factor is computed by analyzing the on time less than or equal to 100ms over one complete pulse train. Analysis of the remote transmitter on time in one complete pulse train, therefore the average value of fundamental frequency is: Average = Peak value + 20log (Duty cycle), where the duty factor is calculated from following formula:

20log (Duty cycle) =20log(1.5*8/100)=20log(0.058)= -18.42dB

Please refer to below plots for more details.

3.4 Field Strength of Fundamental

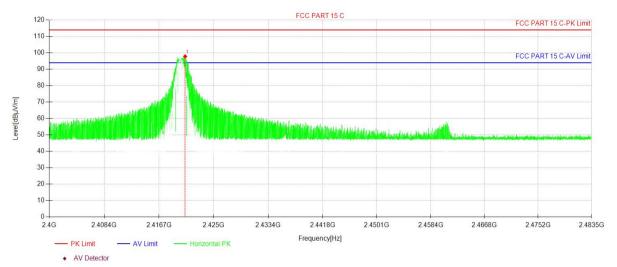
Test Requirement:	47 CFR Part 15C Section 15	.249(a)					
Test Method:	ANSI C63.10 :2020 Section	11.12	0, 0, 0				
Test Setup:	AE (T)	Test Receiver Piece Control	enna Tower				
Test Instruments:	Refer to section 2.9 for detail		· · · · · · · · · · · · · · · · · · ·				
Exploratory Test Mode							
Final Test Mode:	Through Pre-scan, find the w	vorst case					
Limit:	Fundamental frequency		of fundamental@3m ovolts/meter)				
	902-928MHz		50				
	2400-2483.5MHz		50				
	5725-5875MHz	0000	50				
	24.0-24.25	24.0-24.25 250					
	The EUT fundamental frequency is in 2400-2483.5MHz,So the A						
	Fundamental	Field strength of fund	damental@3m (dBµV/m)				
	frequency	Average Limit	Peak Limit				
	2400-2483.5MHz	94	114				
	Note: 1. Average Limit (dBµV/m)=20×log[1000×Field Strength (mV/m)]. 2. Peak Limit (dBµV/m)= Average Limit (dBµV/m)+20dB						
Test Configuration:	RBW: ≥OBW VBW: 3XRBW Start frequency: 2400MH Stop frequency: 2483.5N Sweep Time: Auto Detector: PEAK/AVG	łz.					

Report No	.: DNT241254R1682-4629 Date:July 1, 2024 Page: 18 / 34
	Trace Mode: Max Hold
Test Procedure:	 a. the EUT was placed on the top of a rotating table 1 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Results:	Pass

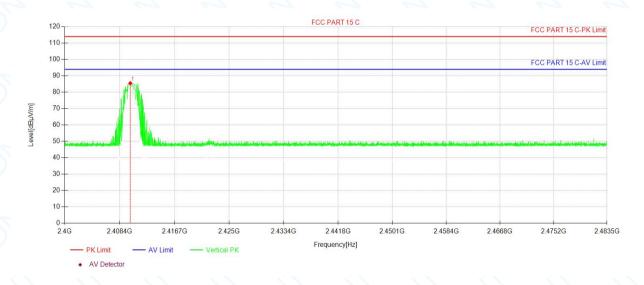
Date:July 1, 2024

Page: 19 / 34

Frequency (MHz)	20log (Duty cycle) (dB)	Peak Level (dBμV/m)	Average Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector Type	Polarity
2410	-18.42	97.60	79.18	94	14.82	AVG	Н
2410	-18.42	85.51	67.09	94	26.91	AVG	V
2442	-18.42	96.95	78.53	94	15.47	AVG	Н
2442	-18.42	86.39	67.97	94	26.03	AVG	V
2473	-18.42	96.86	78.44	94	15.56	AVG	Н
2473	-18.42	84.60	66.18	94	27.82	AVG	V



Date:July 1, 2024

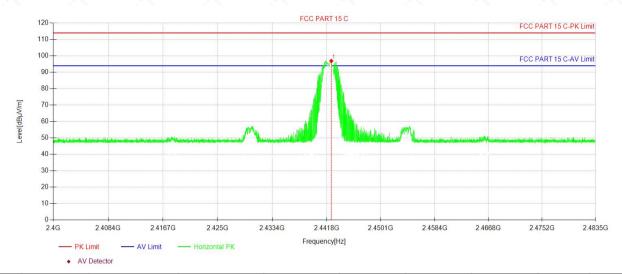

Page: 20 / 34

2410MHz

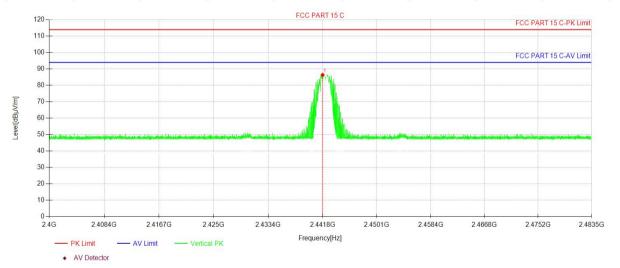
Horizontal:

1	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB µ V/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	2409.99	98.27	-0.67	97.60	114.00	16.40	150	87	PK

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB µ V/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2409.96	86.18	-0.67	85.51	114.00	28.49	150	132	PK



Date:July 1, 2024

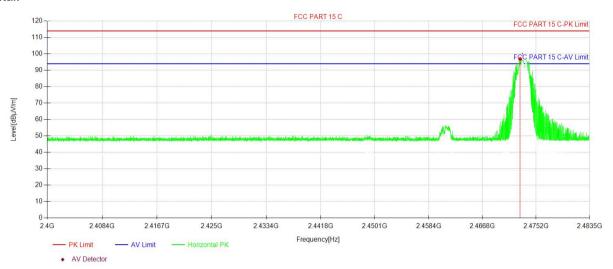

Page: 21/34

2442MHz

Horizontal:

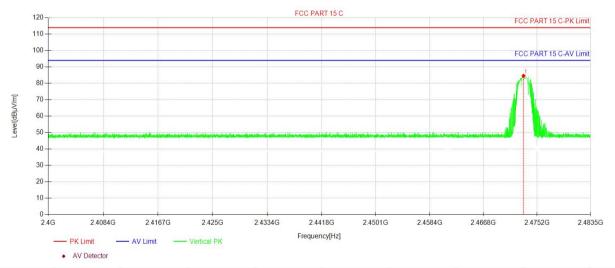
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB µ V/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2442.47	97.42	-0.47	96.95	114.00	17.05	150	83	PK

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2441.75	86.86	-0.47	86.39	114.00	27.61	150	172	PK



Date:July 1, 2024

Page: 22 / 34


2473MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB µ V/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2472.66	97.21	-0.35	96.86	114.00	17.14	150	79	PK

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2473.04	84.95	-0.35	84.60	114.00	29.40	150	267	PK

Note

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. Average Level=Peak Level + 20log(Duty cycle)

Date:July 1, 2024

Page: 23 / 34

3.5 Radiated Spurious Emissions

	-								
Test Requirement:	47 CFR Part 15C Sectio 47 CFR Part 15C Sectio	n 15.209							
	47 CFR Part 15C Sectio								
Test Method:	ANSI C63.10 :2020 Section 11.12 Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
Test Site:				,					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
Limit:		15.209 Radiated	l emission	limits					
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)		V-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	- ,	- /	30				
	1.705MHz-30MHz	30		<u>-</u> []	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Remark:Unless otherwise missions is 20dB above applicable to the equipmemission level radiated by the limits on the field strong the fundamental frequent attenuated to the average table or to the general limits strength.	e the maximum per ent under test. This by the device. rength of the spurio uency of the intention e (or, alternatively,	mitted avera s peak limit a ous emission onal radiator CISPR qua	age emission ling applies to the to so in the below the Spurious emissi-peak) limits so	tal peak cable are based ssions shall be shown in this				

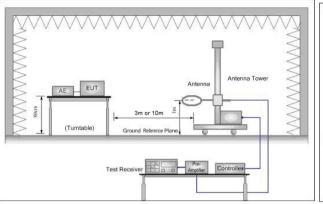
Fundamental frequency	Field strength of harmonics@3m (microvolts/meter)					
902-928MHz	500					
2400-2483.5MHz	500					
5725-5875MHz	500					
24.0-24.25	2500					

The EUT fundamental frequency is 2400-2483.5MHz,So the Average Limit& Peak Limit is show in below table:

Fundamental frequency	Field strength of spurious emission@3m (dBμV/m)					
(MHz)	Average Limit	Peak Limit				
2400-2483.5	54	74				

Note:

- 1.Average Limit ($dB\mu V/m$)=20×log[1000×Field Strength (mV/m)].
- 2.Peak Limit (dBµV/m)= Average Limit (dBµV/m)+20dB


15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Test Setup:

Date:July 1, 2024

Page: 25 / 34

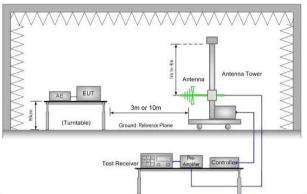


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

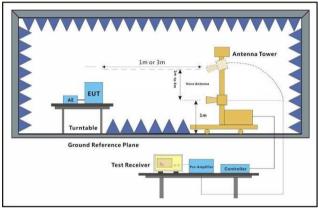


Figure 3. Above 1 GHz

Test Procedure:

- h. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- i. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- j. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- k. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- m. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- n. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- o. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- p. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- q. Repeat above procedures until all frequencies measured was complete.

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates. Transmitting mode.

Report No.: DNT241254R1682-4629 Date:July 1, 2024 Page: 26 / 34

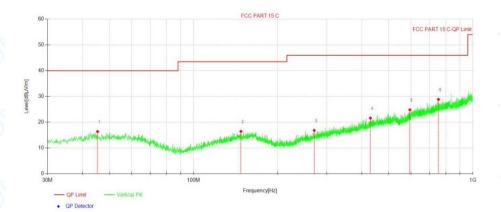
Final Test Mode: Pretest the EUT at Transmitting mode.
Through Pre-scan, find the worst case.

Instruments Used: Refer to section 2.9 for details

Test Results: Pass

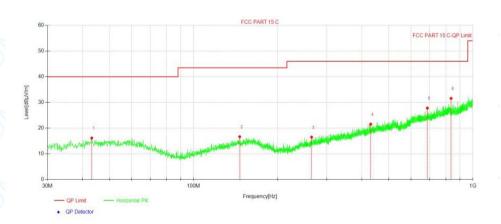
Test data For Field strength of spurious emission of the intentional radiator

Frequency (MHz)	20log (Duty cycle) (dB)	Peak Level (dBμV/m)	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Detector Type	Polarity
7230	-18.42	51.40	32.98	54	17.21	AVG	Н
7230	-18.42	52.52	34.1	54	35.62	AVG	V
7326	-18.42	53.92	35.5	54	20.37	AVG	Н
7326	-18.42	51.92	33.5	54	27.5	AVG	V
7419	-18.42	49.55	31.13	54	15.64	AVG	Н
7419	-18.42	49.59	31.17	54	35.92	AVG	V



Date:July 1, 2024

Page: 27 / 34

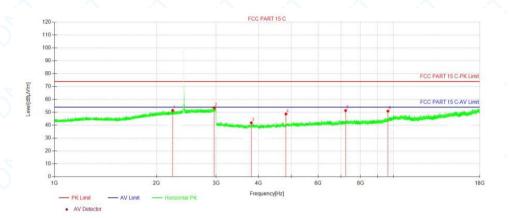

For 30-1000MHz TX

Vertical:

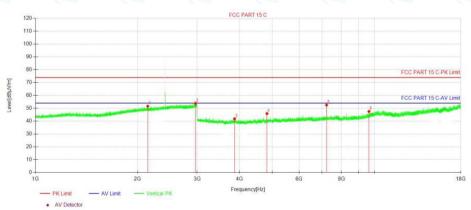
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	45.32	24.59	-8.23	16.36	40.00	23.64	200	224	Peak
2	147.76	24.42	-7.99	16.43	43.50	27.07	200	38	Peak
3	270.48	24.80	-8.01	16.79	46.00	29.21	100	360	Peak
4	429.87	24.95	-3.36	21.59	46.00	24.41	100	331	Peak
5	595.17	25.01	-0.19	24.82	46.00	21.18	200	184	Peak
6	753.40	25.41	3.47	28.88	46.00	17.12	100	212	Peak

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	43.19	24.53	-8.39	16.14	40.00	23.86	200	57	Peak
2	146.31	24.72	-8.08	16.64	43.50	26.86	100	206	Peak
3	264.76	24.84	-8.36	16.48	46.00	29.52	100	54	Peak
4	430.94	24.86	-3.32	21.54	46.00	24.46	100	6	Peak
5	687.62	25.64	2.16	27.80	46.00	18.20	100	326	Peak
6	836.05	27.02	4.55	31.57	46.00	14.43	200	315	Peak


Date:July 1, 2024

Page: 28 / 34

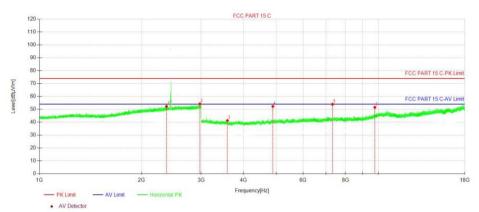

For above 1GHz TX

2410MHz

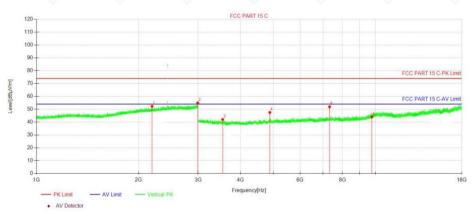
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2232.32	53.00	-1.53	51.47	74.00	22.53	150	264	PK
2	2961.79	52.54	1.02	53.56	74.00	20.44	150	86	PK
3	3809.29	48.21	-6.38	41.83	74.00	32.17	150	0	PK
4	4821.09	53.35	-4.63	48.72	74.00	25.28	150	345	PK
5	7231.71	53.11	-1.71	51.40	74.00	22.60	150	196	PK
6	9641.58	49.91	1.03	50.94	74.00	23.06	150	32	PK

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2144.51	53.45	-1.81	51.64	74.00	22.36	150	357	PK
2	2966.79	52.83	1.04	53.87	74.00	20.13	150	122	PK
3	3867.79	48.12	-6.34	41.78	74.00	32.22	150	306	PK
4	4821.09	50.54	-4.63	45.91	74.00	28.09	150	278	PK
5	7229.46	54.23	-1.71	52.52	74.00	21.48	150	87	PK
6	9642.33	46.51	1.04	47.55	74.00	26.45	150	71	PK



Date:July 1, 2024

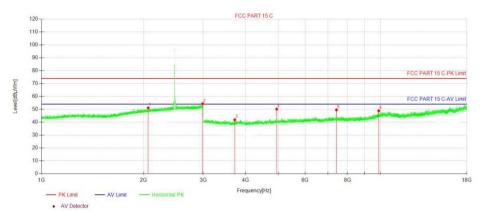

Page: 29 / 34

2442MHz

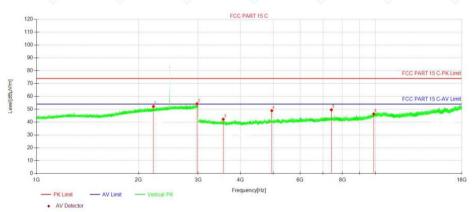
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2370.33	53.15	-0.86	52.29	74.00	21.71	150	39	PK
2	2973.19	53.17	1.07	54.24	74.00	19.76	150	178	PK
3	3585.77	48.26	-6.99	41.27	74.00	32.73	150	209	PK
4	4884.84	57.01	-4.72	52.29	74.00	21.71	150	128	PK
5	7326.21	55.40	-1.48	53.92	74.00	20.08	150	0	PK
6	9766.83	49.88	1.66	51.54	74.00	22.46	150	290	PK

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2192.51	53.89	-1.60	52.29	74.00	21.71	150	334	PK
2	2991.99	53.79	1.17	54.96	74.00	19.04	150	360	PK
3	3543.02	49.23	-7.19	42.04	74.00	31.96	150	264	PK
4	4883.34	52.29	-4.72	47.57	74.00	26.43	150	278	PK
5	7327.71	53.40	-1.48	51.92	74.00	22.08	150	48	PK
6	9766.08	42.25	1.66	43.91	74.00	30.09	150	157	PK



Date:July 1, 2024

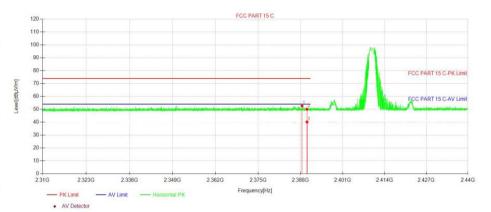

Page: 30 / 34

2473MHz

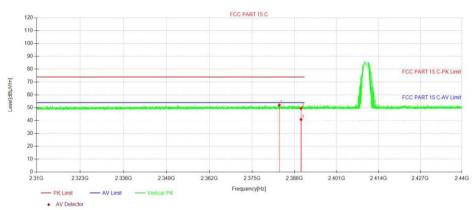
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2064.50	53.32	-2.16	51.16	74.00	22.84	150	292	PK
2	2988.59	53.20	1.15	54.35	74.00	19.65	150	212	PK
3	3718.53	48.41	-6.54	41.87	74.00	32.13	150	14	PK
4	4946.34	55.03	-4.84	50.19	74.00	23.81	150	144	PK
5	7419.97	50.87	-1.32	49.55	74.00	24.45	150	34	PK
6	9894.34	46.66	2.17	48.83	74.00	25.17	150	287	PK

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2213.32	53.76	-1.57	52.19	74.00	21.81	150	212	PK
2	2976.39	53.19	1.09	54.28	74.00	19.72	150	212	PK
3	3558.02	49.34	-7.13	42.21	74.00	31.79	150	110	PK
4	4947.09	53.78	-4.85	48.93	74.00	25.07	150	268	PK
5	7418.47	50.90	-1.31	49.59	74.00	24.41	150	89	PK
6	9892.09	44.20	2.17	46.37	74.00	27.63	150	146	PK



Date:July 1, 2024

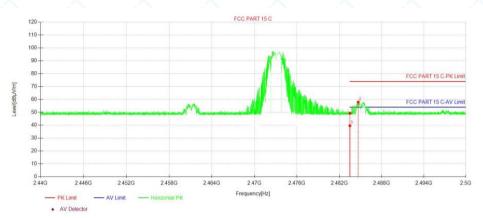

Page: 31/34

2410MHz

Horizontal:

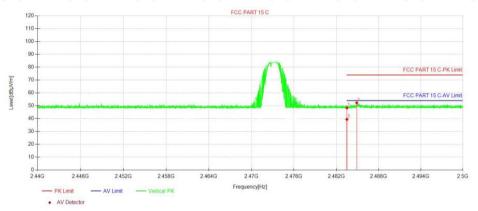
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2388.48	53.45	-0.80	52.65	74.00	21.35	150	228	PK
2	2390.01	50.90	-0.80	50.10	74.00	23.90	150	265	PK
3	2390.01	40.98	-0.80	40.18	54.00	13.82	150	217	AV

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2383.35	52.83	-0.83	52.00	74.00	22.00	150	181	PK
2	2390.01	50.34	-0.80	49.54	74.00	24.46	150	210	PK
3	2390.01	41.63	-0.80	40.83	54.00	13.17	150	69	AV



Date:July 1, 2024

Page: 32 / 34


2473MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	49.59	-0.29	49.30	74.00	24.70	150	130	PK
2	2484.68	58.23	-0.27	57.96	74.00	16.04	150	89	PK
3	2483.50	39.88	-0.29	39.59	54.00	14.41	150	223	AV

Vertical:

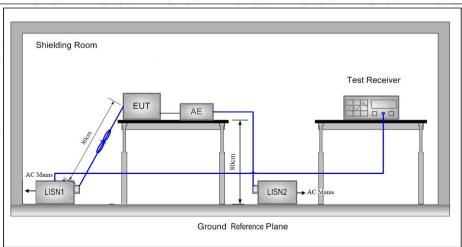
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	48.64	-0.29	48.35	74.00	25.65	150	247	PK
2	2484.90	52.54	-0.27	52.27	74.00	21.73	150	178	PK
3	2483.51	39.71	-0.29	39.42	54.00	14.58	150	280	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Measurement Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

- 2. Average Level=Peak Level + 20log(Duty cycle)
- 3. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Date:July 1, 2024 Page: 33 / 34

3.6 AC Power Line Conducted Emissions

Test Requirement: 47 CFR Part 15C Section 15.207								
Test Method:	ANSI C63.10: 2020							
Test Frequency Range:	150kHz to 30MHz		V V					
Limit:	[(NALL-)	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	<u> </u>	46					
	5-30	60	50					
	* Decreases with the logarit	nm of the frequency.	<u>),),),), </u>					
Test Procedure:	1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization Nei impedance. The power cabl a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the rate 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground of the EUT shall be 0.4 m frowertical ground reference plane. The LISN a unit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equal of the interval in order to find the maximum equipment and all of the interval.	to AC power source three twork) which provides a set of all other units of the bonded to the ground reference plane, with a vertical ground reference plane was bonded to the hill was placed 0.8 m from to a ground reference plane. This of the LISN 1 and the EU uipment was at least 0.8 m emission, the relative perface cables must be che	ough a LISN 1 (Line 50Ω/50μH + 5Ω linear e EUT were connected to eference ng measured. A ciple power cables to a exceeded. It table 0.8m above the gement, the EUT was ference plane. The rear eference plane. The torizontal ground the boundary of the ene for LISNs distance was JT. All other units of m from the LISN 2. positions of					

Test Setup:

Report No.: DNT241254R1682-4629 Date:July 1, 2024 Page: 34 / 34 Exploratory Test Mode: Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the 6.5Mbps of rate of 802.11n(HT20) at lowest channel is the worst case. Charge + Transmitting mode. Only the worst case is recorded in the report. Instruments Used: Refer to section 2.9 for details Test Results: N/a

---END REPORT---