
SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.2.21.MVGB.A

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS**6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID**

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-27.03	-20	$52.4 \Omega - 3.7 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-45.39	-20	$49.9 \Omega - 0.5 j\Omega$

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.2.21.MVGB.A

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 \pm 1 %.		250.0 \pm 1 %.		6.35 \pm 1 %.	
450	290.0 \pm 1 %.		166.7 \pm 1 %.		6.35 \pm 1 %.	
750	176.0 \pm 1 %.		100.0 \pm 1 %.		6.35 \pm 1 %.	
835	161.0 \pm 1 %.	-	89.8 \pm 1 %.	-	3.6 \pm 1 %.	-
900	149.0 \pm 1 %.		83.3 \pm 1 %.		3.6 \pm 1 %.	
1450	89.1 \pm 1 %.		51.7 \pm 1 %.		3.6 \pm 1 %.	
1500	80.5 \pm 1 %.		50.0 \pm 1 %.		3.6 \pm 1 %.	
1640	79.0 \pm 1 %.		45.7 \pm 1 %.		3.6 \pm 1 %.	
1750	75.2 \pm 1 %.		42.9 \pm 1 %.		3.6 \pm 1 %.	
1800	72.0 \pm 1 %.		41.7 \pm 1 %.		3.6 \pm 1 %.	
1900	68.0 \pm 1 %.		39.5 \pm 1 %.		3.6 \pm 1 %.	
1950	66.3 \pm 1 %.		38.5 \pm 1 %.		3.6 \pm 1 %.	
2000	64.5 \pm 1 %.		37.5 \pm 1 %.		3.6 \pm 1 %.	
2100	61.0 \pm 1 %.		35.7 \pm 1 %.		3.6 \pm 1 %.	
2300	55.5 \pm 1 %.		32.6 \pm 1 %.		3.6 \pm 1 %.	
2450	51.5 \pm 1 %.		30.4 \pm 1 %.		3.6 \pm 1 %.	
2600	48.5 \pm 1 %.		28.8 \pm 1 %.		3.6 \pm 1 %.	
3000	41.5 \pm 1 %.		25.0 \pm 1 %.		3.6 \pm 1 %.	
3300	-		-		-	
3500	37.0 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3700	34.7 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.2.21.MVGB.A

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 \pm 10 %		0.87 \pm 10 %	
450	43.5 \pm 10 %		0.87 \pm 10 %	
750	41.9 \pm 10 %		0.89 \pm 10 %	
835	41.5 \pm 10 %	40.6	0.90 \pm 10 %	0.89
900	41.5 \pm 10 %		0.97 \pm 10 %	
1450	40.5 \pm 10 %		1.20 \pm 10 %	
1500	40.4 \pm 10 %		1.23 \pm 10 %	
1640	40.2 \pm 10 %		1.31 \pm 10 %	
1750	40.1 \pm 10 %		1.37 \pm 10 %	
1800	40.0 \pm 10 %		1.40 \pm 10 %	
1900	40.0 \pm 10 %		1.40 \pm 10 %	
1950	40.0 \pm 10 %		1.40 \pm 10 %	
2000	40.0 \pm 10 %		1.40 \pm 10 %	
2100	39.8 \pm 10 %		1.49 \pm 10 %	
2300	39.5 \pm 10 %		1.67 \pm 10 %	
2450	39.2 \pm 10 %		1.80 \pm 10 %	
2600	39.0 \pm 10 %		1.96 \pm 10 %	
3000	38.5 \pm 10 %		2.40 \pm 10 %	
3300	38.2 \pm 10 %		2.71 \pm 10 %	
3500	37.9 \pm 10 %		2.91 \pm 10 %	
3700	37.7 \pm 10 %		3.12 \pm 10 %	
3900	37.5 \pm 10 %		3.32 \pm 10 %	
4200	37.1 \pm 10 %		3.63 \pm 10 %	
4600	36.7 \pm 10 %		4.04 \pm 10 %	
4900	36.3 \pm 10 %		4.35 \pm 10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 8/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

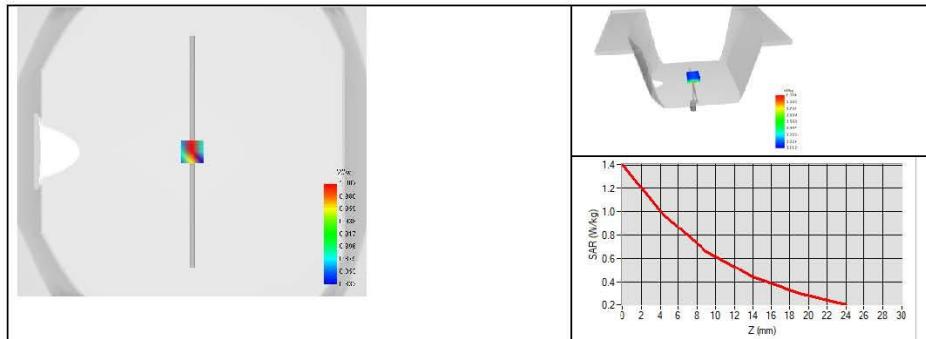
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.2.21.MVGB.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPG0333
Liquid	Head Liquid Values: $\epsilon_{\text{ps}}^* : 40.6$ $\sigma : 0.89$
Distance between dipole center and liquid	15.0 mm
Area scan resolution	$\text{dx} = 8\text{mm}/\text{dy} = 8\text{mm}$
Zoon Scan Resolution	$\text{dx} = 8\text{mm}/\text{dy} = 8\text{mm}/\text{dz} = 5\text{mm}$
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.53 (0.95)	6.22	6.03 (0.60)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200	-		-	
4600	-		-	
4900	-		-	


Page: 9/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.2.21.MVGB.A

Page: 10/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.2.21.MVGB.A

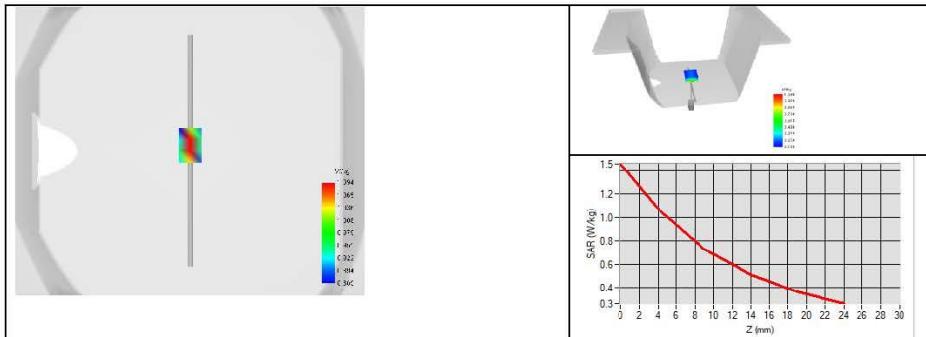
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 \pm 10 %		0.80 \pm 10 %	
300	58.2 \pm 10 %		0.92 \pm 10 %	
450	56.7 \pm 10 %		0.94 \pm 10 %	
750	55.5 \pm 10 %		0.96 \pm 10 %	
835	55.2 \pm 10 %	52.3	0.97 \pm 10 %	0.94
900	55.0 \pm 10 %		1.05 \pm 10 %	
915	55.0 \pm 10 %		1.06 \pm 10 %	
1450	54.0 \pm 10 %		1.30 \pm 10 %	
1610	53.8 \pm 10 %		1.40 \pm 10 %	
1800	53.3 \pm 10 %		1.52 \pm 10 %	
1900	53.3 \pm 10 %		1.52 \pm 10 %	
2000	53.3 \pm 10 %		1.52 \pm 10 %	
2100	53.2 \pm 10 %		1.62 \pm 10 %	
2300	52.9 \pm 10 %		1.81 \pm 10 %	
2450	52.7 \pm 10 %		1.95 \pm 10 %	
2600	52.5 \pm 10 %		2.16 \pm 10 %	
3000	52.0 \pm 10 %		2.73 \pm 10 %	
3300	51.6 \pm 10 %		3.08 \pm 10 %	
3500	51.3 \pm 10 %		3.31 \pm 10 %	
3700	51.0 \pm 10 %		3.55 \pm 10 %	
3900	50.8 \pm 10 %		3.78 \pm 10 %	
4200	50.4 \pm 10 %		4.13 \pm 10 %	
4600	49.8 \pm 10 %		4.60 \pm 10 %	
4900	49.4 \pm 10 %		4.95 \pm 10 %	
5200	49.0 \pm 10 %		5.30 \pm 10 %	
5300	48.9 \pm 10 %		5.42 \pm 10 %	
5400	48.7 \pm 10 %		5.53 \pm 10 %	
5500	48.6 \pm 10 %		5.65 \pm 10 %	
5600	48.5 \pm 10 %		5.77 \pm 10 %	
5800	48.2 \pm 10 %		6.00 \pm 10 %	

Page: 11/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.2.21.MVGB.A

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPG0333
Liquid	Body Liquid Values: $\epsilon\mu_s' : 52.3$ sigma : 0.94
Distance between dipole center and liquid	15.0 mm
Area scan resolution	$dx=8mm/dy=8mm$
Zoon Scan Resolution	$dx=8mm/dy=8mm/dz=5mm$
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	10.17 (1.02)	6.62 (0.66)

Page: 12/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44220687	05/2020	05/2023

Page: 13/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

F.4 1800 MHz Dipole

SAR Reference Dipole Calibration Report

Ref : ACR.77.4.21.MVGB.A

**KUNSHAN BALUN COMMUNICATIONS
TECHNOLOGY CO.,LTD.**
ROOM 101, BUILDING 5, NO. 1689, ZIZHU ROAD
YUSHAN TOWN, KUNSHAN, JIANGSU, CHINA
MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ

SERIAL NO.: SN 08/21 DIP1G800-449

Calibrated at MVG MVG

Z.I. de la pointe du diable

**Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE**

Calibration date: 03/18/2021

Accreditations #2-6789 and #2-6814
Scope available on www.cofrac.fr

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.77.4.21.MVGB.A

	Name	Function	Date	Signature
Prepared by:	Jérôme Le Gall	Measurement Responsible	3/18/2021	
Checked by:	Jérôme Luc	Technical Manager	3/18/2021	
Approved by:	Yann Toutain	Laboratory Director	3/18/2021	

2021.03.1
8 13:37:54
+01'00'

	Customer Name
Distribution:	KUNSHAN BALUN COMMUNICATIO NS TECHNOLOGY Co.,Ltd.

Issue	Name	Date	Modifications
A	Jérôme Luc	3/18/2021	Initial release

Page: 2/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

TABLE OF CONTENTS

1	Introduction.....	4
2	Device Under Test	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	5
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
5	Measurement Uncertainty.....	5
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
6	Calibration Measurement Results.....	6
6.1	Return Loss and Impedance In Head Liquid	6
6.2	Return Loss and Impedance In Body Liquid	6
6.3	Mechanical Dimensions	7
7	Validation measurement	7
7.1	Head Liquid Measurement	8
7.2	SAR Measurement Result With Head Liquid	8
7.3	Body Liquid Measurement	11
7.4	SAR Measurement Result With Body Liquid	12
8	List of Equipment	13

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.4.21.MVGB.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID1800
Serial Number	SN 08/21 DIP1G800-449
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

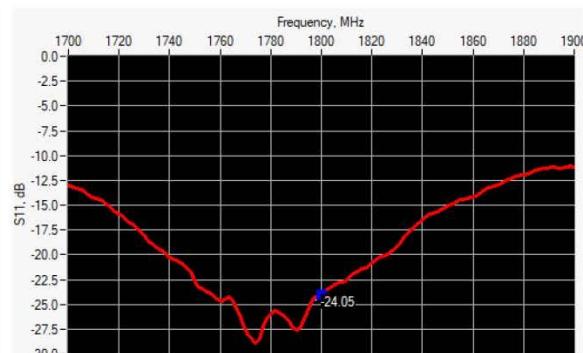
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

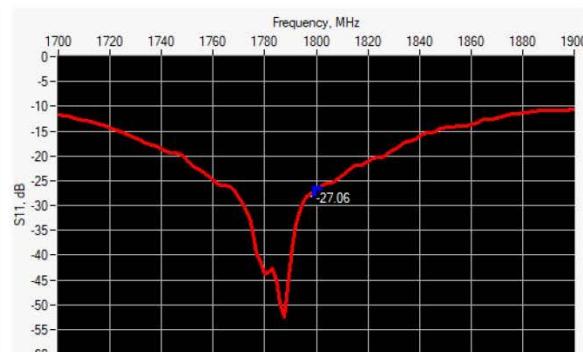
Page: 5/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR 77.4.21 MVGB.A

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1800	-24.05	-20	$46.4 \Omega + 5.1 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1800	-27.06	-20	$45.6 \Omega + 0.7 j\Omega$

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.4.21.MVGB.A

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 \pm 1 %.		250.0 \pm 1 %.		6.35 \pm 1 %.	
450	290.0 \pm 1 %.		166.7 \pm 1 %.		6.35 \pm 1 %.	
750	176.0 \pm 1 %.		100.0 \pm 1 %.		6.35 \pm 1 %.	
835	161.0 \pm 1 %.		89.8 \pm 1 %.		3.6 \pm 1 %.	
900	149.0 \pm 1 %.		83.3 \pm 1 %.		3.6 \pm 1 %.	
1450	89.1 \pm 1 %.		51.7 \pm 1 %.		3.6 \pm 1 %.	
1500	80.5 \pm 1 %.		50.0 \pm 1 %.		3.6 \pm 1 %.	
1640	79.0 \pm 1 %.		45.7 \pm 1 %.		3.6 \pm 1 %.	
1750	75.2 \pm 1 %.		42.9 \pm 1 %.		3.6 \pm 1 %.	
1800	72.0 \pm 1 %.	-	41.7 \pm 1 %.	-	3.6 \pm 1 %.	-
1900	68.0 \pm 1 %.		39.5 \pm 1 %.		3.6 \pm 1 %.	
1950	66.3 \pm 1 %.		38.5 \pm 1 %.		3.6 \pm 1 %.	
2000	64.5 \pm 1 %.		37.5 \pm 1 %.		3.6 \pm 1 %.	
2100	61.0 \pm 1 %.		35.7 \pm 1 %.		3.6 \pm 1 %.	
2300	55.5 \pm 1 %.		32.6 \pm 1 %.		3.6 \pm 1 %.	
2450	51.5 \pm 1 %.		30.4 \pm 1 %.		3.6 \pm 1 %.	
2600	48.5 \pm 1 %.		28.8 \pm 1 %.		3.6 \pm 1 %.	
3000	41.5 \pm 1 %.		25.0 \pm 1 %.		3.6 \pm 1 %.	
3300	-		-		-	
3500	37.0 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3700	34.7 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.4.21.MVGB.A

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 \pm 10 %		0.87 \pm 10 %	
450	43.5 \pm 10 %		0.87 \pm 10 %	
750	41.9 \pm 10 %		0.89 \pm 10 %	
835	41.5 \pm 10 %		0.90 \pm 10 %	
900	41.5 \pm 10 %		0.97 \pm 10 %	
1450	40.5 \pm 10 %		1.20 \pm 10 %	
1500	40.4 \pm 10 %		1.23 \pm 10 %	
1640	40.2 \pm 10 %		1.31 \pm 10 %	
1750	40.1 \pm 10 %		1.37 \pm 10 %	
1800	40.0 \pm 10 %	43.7	1.40 \pm 10 %	1.34
1900	40.0 \pm 10 %		1.40 \pm 10 %	
1950	40.0 \pm 10 %		1.40 \pm 10 %	
2000	40.0 \pm 10 %		1.40 \pm 10 %	
2100	39.8 \pm 10 %		1.49 \pm 10 %	
2300	39.5 \pm 10 %		1.67 \pm 10 %	
2450	39.2 \pm 10 %		1.80 \pm 10 %	
2600	39.0 \pm 10 %		1.96 \pm 10 %	
3000	38.5 \pm 10 %		2.40 \pm 10 %	
3300	38.2 \pm 10 %		2.71 \pm 10 %	
3500	37.9 \pm 10 %		2.91 \pm 10 %	
3700	37.7 \pm 10 %		3.12 \pm 10 %	
3900	37.5 \pm 10 %		3.32 \pm 10 %	
4200	37.1 \pm 10 %		3.63 \pm 10 %	
4600	36.7 \pm 10 %		4.04 \pm 10 %	
4900	36.3 \pm 10 %		4.35 \pm 10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 8/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

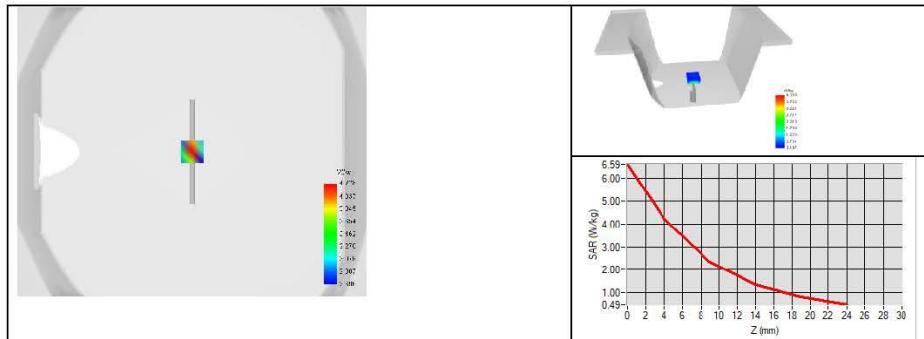
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.4.21 MVGB.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPG0333
Liquid	Head Liquid Values: ϵ_r : 43.7 sigma : 1.34
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	39.01 (3.90)	20.1	20.64 (2.06)
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200	-		-	
4600	-		-	
4900	-		-	


Page: 9/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.4.21 MVGB.A

Page: 10/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.4.21.MVGB.A

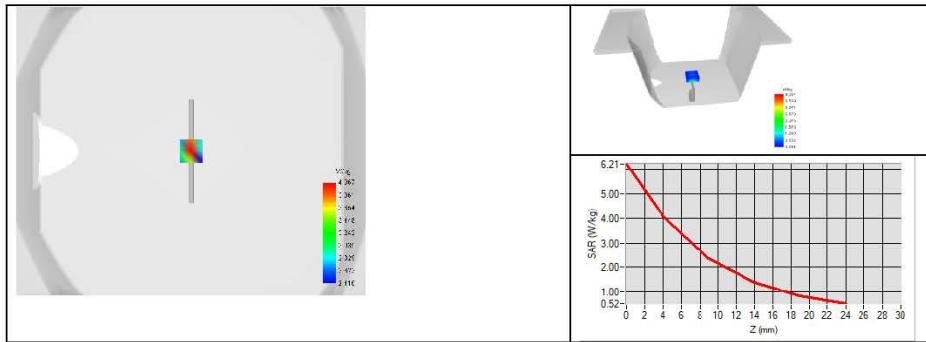
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 \pm 10 %		0.80 \pm 10 %	
300	58.2 \pm 10 %		0.92 \pm 10 %	
450	56.7 \pm 10 %		0.94 \pm 10 %	
750	55.5 \pm 10 %		0.96 \pm 10 %	
835	55.2 \pm 10 %		0.97 \pm 10 %	
900	55.0 \pm 10 %		1.05 \pm 10 %	
915	55.0 \pm 10 %		1.06 \pm 10 %	
1450	54.0 \pm 10 %		1.30 \pm 10 %	
1610	53.8 \pm 10 %		1.40 \pm 10 %	
1800	53.3 \pm 10 %	55.3	1.52 \pm 10 %	1.49
1900	53.3 \pm 10 %		1.52 \pm 10 %	
2000	53.3 \pm 10 %		1.52 \pm 10 %	
2100	53.2 \pm 10 %		1.62 \pm 10 %	
2300	52.9 \pm 10 %		1.81 \pm 10 %	
2450	52.7 \pm 10 %		1.95 \pm 10 %	
2600	52.5 \pm 10 %		2.16 \pm 10 %	
3000	52.0 \pm 10 %		2.73 \pm 10 %	
3300	51.6 \pm 10 %		3.08 \pm 10 %	
3500	51.3 \pm 10 %		3.31 \pm 10 %	
3700	51.0 \pm 10 %		3.55 \pm 10 %	
3900	50.8 \pm 10 %		3.78 \pm 10 %	
4200	50.4 \pm 10 %		4.13 \pm 10 %	
4600	49.8 \pm 10 %		4.60 \pm 10 %	
4900	49.4 \pm 10 %		4.95 \pm 10 %	
5200	49.0 \pm 10 %		5.30 \pm 10 %	
5300	48.9 \pm 10 %		5.42 \pm 10 %	
5400	48.7 \pm 10 %		5.53 \pm 10 %	
5500	48.6 \pm 10 %		5.65 \pm 10 %	
5600	48.5 \pm 10 %		5.77 \pm 10 %	
5800	48.2 \pm 10 %		6.00 \pm 10 %	

Page: 11/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.4.21.MVGB.A

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: $\epsilon_s^* : 55.3$ sigma : 1.49
Distance between dipole center and liquid	10.0 mm
Area scan resolution	$dx=8\text{mm}/dy=8\text{mm}$
Zoon Scan Resolution	$dx=8\text{mm}/dy=8\text{mm}/dz=5\text{mm}$
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1800	37.30 (3.73)	19.55 (1.96)

Page: 12/13

Template_ACR.DDD.N.YY.MVGB ISSUE SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 77.4.21.MV.GB.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44220687	05/2020	05/2023

Page: 13/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

F.5 1900 MHz Dipole

SAR Reference Dipole Calibration Report

Ref : ACR.77.5.21.MVGB.A

**KUNSHAN BALUN COMMUNICATIONS
TECHNOLOGY CO.,LTD.**
ROOM 101, BUILDING 5, NO. 1689, ZIZHU ROAD
YUSHAN TOWN, KUNSHAN, JIANGSU, CHINA
MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ

SERIAL NO.: SN 08/21 DIP1G900-450

Calibrated at MVG MVG

Z.I. de la pointe du diable

**Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE**

Calibration date: 03/18/2021

Accreditations #2-6789 and #2-6814
Scope available on www.cofrac.fr

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.77.5.21.MVGB.A

	Name	Function	Date	Signature
Prepared by:	Jérôme Le Gall	Measurement Responsible	3/18/2021	
Checked by:	Jérôme Luc	Technical Manager	3/18/2021	
Approved by:	Yann Toutain	Laboratory Director	3/18/2021	

2021.03.18
13:38:47
+01'00'

	Customer Name
Distribution:	KUNSHAN BALUN COMMUNICATIO NS TECHNOLOGY Co.,Ltd.

Issue	Name	Date	Modifications
A	Jérôme Luc	3/18/2021	Initial release

Page: 2/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.