

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC163914

1 of 44 Page:

FCC Radio Test Report FCC ID: 2ASB5-CCB007AA

Original Grant

Report No. TB-FCC163914

CAMELLIA LABS. INC **Applicant**

Equipment Under Test (EUT)

EUT Name The Chai Brewer

Model No. CCB007AA

Serial Model No. N/A

Chime **Brand Name**

Receipt Date 2019-01-10

2019-01-10 to 2019-01-21 **Test Date**

Issue Date 2019-01-22

: FCC Part 15: 2018, Subpart C(15.247) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Jason xu Engineer Jason Xu

Engineer

Supervisor Ivan Su

LVAN SU fuglio. **Engineer Manager** Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Report No.: TB-FCC163914
Page: 2 of 44

Contents

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Da5ta	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	17
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	19
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21

Page: 3 of 44

	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	22
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	23
	10.3 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
ATT	ACHMENT D BANDWIDTH TEST DATA	39
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	41
ATT	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	43

Page: 4 of 44

Revision History

Report No.	Version	Description	Issued Date
TB-RF163914	Rev.01	Initial issue of report	2019-01-22
	10	The state of the s	
	TODAY		
a Milian	War Mark	4033	Cons
De la Villago	3	CON TO	OD A
THE	33 6	OBS TOTAL	TO THE REAL PROPERTY.
	(UB)	The same of the sa	
400			J (103)
000	1000		The same of
a going		CODE CODE	The state of the s
	1 m	COLUMN TO A	
Con Con	00	TODAY TODAY	THE COURSE

Page: 5 of 44

1. General Information about EUT

1.1 Client Information

Applicant		CAMELLIA LABS. INC	
Address :		155,BOVET RD,SUITE 302,SAN MATEO,CA USA-94402	
Manufacturer		Shenzhen Sun Cupid Industries Ltd. Longgang Branch	
Address		No. 7, Gao Ke Blvd., Bao Long Sub-district, Long Gang District, Shen Zhen, Guang Dong, China.	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	The Chai Brewer		
Models No.		CCB007AA		
Model Difference		V/A		
Marie Control	1	Operation Frequency:	Bluetooth (BLE): 2402MHz~2480MHz	
		Number of Channel:	Bluetooth (BLE): 40 channels see note(3)	
Product		RF Output Power:	-0.285 dBm Conducted Power	
Description	:	Antenna Gain:	2.81dBi PCB Antenna	
		Modulation Type:	GFSK	
		Bit Rate of Transmitter:	1Mbps(GFSK)	
Power Rating	:	AC 120V/60 Hz		
Software Version	1	N/A	N/A	
Hardware Version	:	N/A		
Connecting I/O Port(S)	(V	Please refer to the User's Manual		

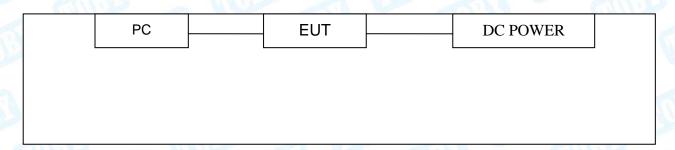
Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01v05.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.

(3) Channel List:

Channel	Frequency	Channel	Frequency	Channel	Frequency
---------	-----------	---------	-----------	---------	-----------



Page: 6 of 44

	(MHz)		(MHz)		(MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
80	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

Equipment Information						
Name	Model	FCC ID/VOC	Manufacturer	Used "√"		
Notebook	T430		Thinkpad	1		
	- TILL			(AA)		
Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note		
41 D						

Page: 7 of 44

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	Supply electricity + TX Mode			

For Radiated Test			
Final Test Mode	Description		
Mode 2	Supply electricity + TX Mode		
Made 2	Supply electricity + TX Mode		
Mode 3	(Channel 00/20/39)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 44

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	400	ISRT.exe	
Frequency	2402 MHz	2442MHz	2480 MHz
GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.60 db
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Effission	30MHz to 1000 MHz	±4.40 db
Radiated Emission	Level Accuracy:	.4.20 dB
Radiated Emission	Above 1000MHz	±4.20 dB

Page: 9 of 44

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 44

2. Test Summary

Standard Section		Took Mana	Thursday, a cont	
FCC	IC	Test Item	Judgment	Remark
15.203		Antenna Requirement	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A

Note: N/A is an abbreviation for Not Applicable.

Page: 11 of 44

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul.18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul.18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul.18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul.18, 2018	Jul. 17, 2019
Radiation Emission	on Test			-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul.18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul.18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 15, 2018	Jul. 14, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conduct	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul.18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul.18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

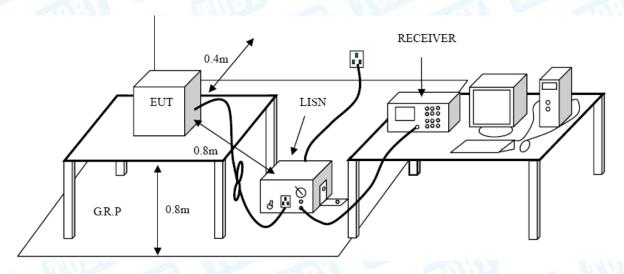
Page: 12 of 44

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Tues and the second	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 44

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Da5ta

Please refer to the Attachment A.

Page: 14 of 44

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247(d)

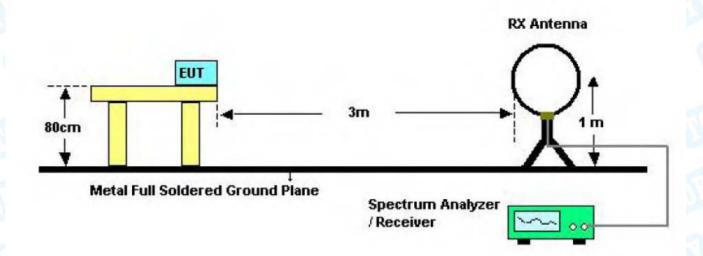
5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

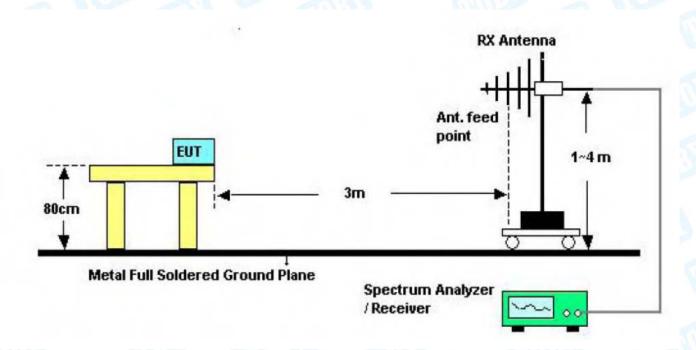
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)		
(MHz)	Peak (dBuV/m)	Average (dBuV/m)	
Above 1000	74	54	

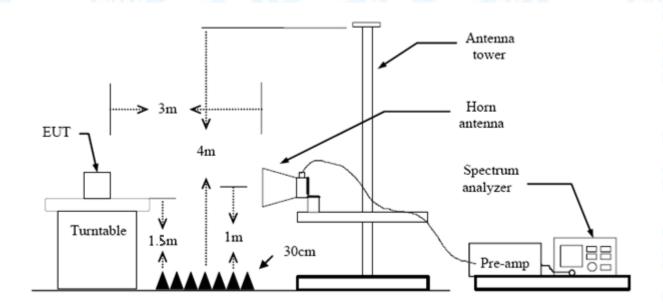

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 15 of 44

5.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 44

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 44

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

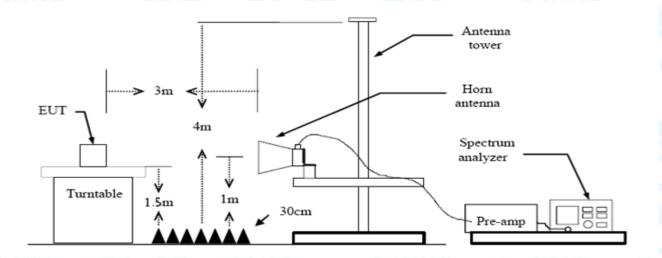
5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 44

6. Restricted Bands Requirement


6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)			
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

Page: 19 of 44

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

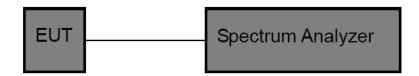
6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 44

7. Bandwidth Test


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC	FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Limit	Frequency Range(MHz)					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5					

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

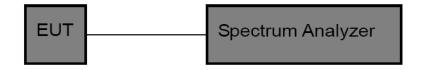
The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 44

8. Peak Output Power Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)(3)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247					
Test Item	Limit	Frequency Range(MHz)			
Peak Output Power	1 Watt or 30 dBm	2400~2483.5			

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

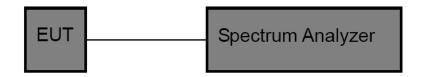
The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 44

9. Power Spectral Density Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)					
Test Item	Limit	Frequency Range(MHz)			
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5			

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 44

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

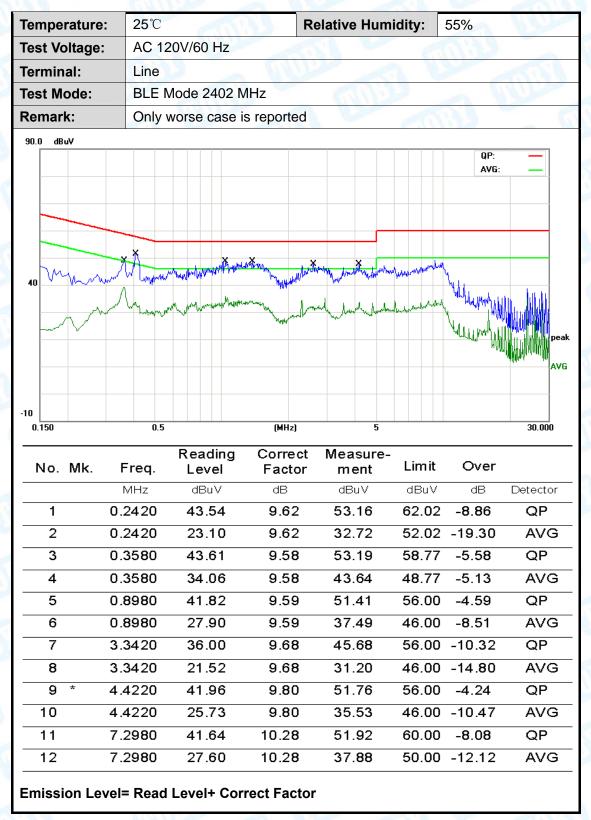
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

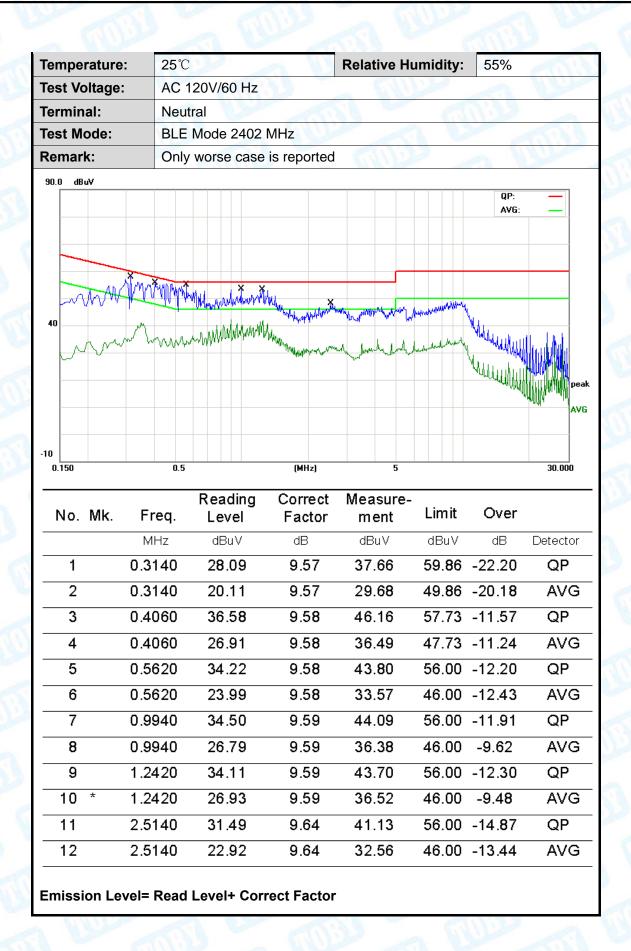
The gains of the antenna used for transmitting is 2.81dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.


Antenna Type				
⊠Permanent attached antenna				
Unique connector antenna	Was a second			
Professional installation antenna	THE REAL PROPERTY.			

Page: 24 of 44


Attachment A-- Conducted Emission Test Data

Page: 25 of 44

Page: 26 of 44

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

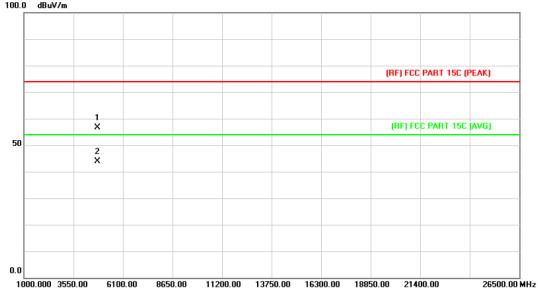
Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25℃	- CHILL	Relative Humi	dity:	55%			
Test Voltage:	AC 120V/6	60 Hz			CATA.			
Ant. Pol.	Horizontal		Comment of	133	889	671		
Test Mode:	BLE TX 24	BLE TX 2402 Mode						
Remark:	Only worse	e case is reported	d	_ 6				
80.0 dBuV/m								
				FCC 15B	3M Radiation			
		_	5		Margin -6 c	IB		
		123 4 XXX X	Ž Š), }				
30			Manha Man	ny .				
	, Ma	May 11 4 A	was radilling	"W/_	manne	lha		
w.	MANGAA	MINIAL,						
WANTED THE STATE OF THE STATE O	UL ANY							
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	v.√M							
20								
30.000 40 50	60 70	(MHz)	300	400 500	600 700	1000.000		
	Re	ading Correc						
No. Mk. F	req. Le	evel Facto	r ment	Limit	O∨er			
N	1Hz d	BuV dB/m	dBuV/m	dBuV/m	dB	Detecto		
1 ! 134	.5592 60	0.28 -22.46	37.82	43.50	-5.68	QP		
2 ! 140	.3421 6	1.04 -22.45	38.59	43.50	-4.91	QP		
			39.36	43.50	-4.14	QP		
3 ! 146	.3735 6	1.17 -21.81	39.30	10.00	-4.14			
		1.17 -21.81 0.41 -20.86		43.50	-3.95	QP		
4 * 160	.3456 60		39.55			QP QP		
4 * 160. 5 ! 234.	.3456 60 .1684 59	0.41 -20.86	39.55 41.89	43.50	-3.95			
4 * 160. 5 ! 234.	.3456 60 .1684 59	0.41 -20.86 9.95 -18.06	39.55 41.89	43.50 46.00	-3.95 -4.11	QP		

Page: 27 of 44


emperature:	25℃		R	elative Humi	dity:	55%	
est Voltage:	AC 120	V/60 Hz	13	- CALL			Mark Control
Ant. Pol.	Vertical	1 Property		18	6711	177	
est Mode:	BLE TX 2402 Mode						
Remark:	Only wo	orse case is	reported	CHILD'S	2	a W	A Land
80.0 dBuV/m							
					FCC 1	5B 3M Radiation	
						Margin -6	#B
			1 X a	- 4 - 3 Å	_ 6		
30			2 MAN.	X/ \	5 X		
Who was the formation of	and .	h a	my "	4	~~ \ \	munum	mhar
A. Machiner A	~~\\\\	May May May	t .	***			
30.000 4 0 50	60 70 1	80	(MHz)	300	400 500	600 700	1000.000
		Dooding	Correct	Manaura			
No. Mk. Fr	eq.	Reading Level	Correct Factor	Measure- m ent	Limit	O∨er	
	Hz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 128.	1130	57.07	-22.41	34.66	43.50	-8.84	QP
2 184.4							
2 104.	4898	49.72	-20.02	29.70	43.50	-13.80	QP
3 212.2		49.72 52.19	-20.02 -19.28	29.70 32.91	43.50 43.50	-13.80 -10.59	QP QP
3 212.2	2695	52.19		32.91	43.50	-10.59	
3 212.2 4 * 232.9			-19.28				QP
3 212.2 4 * 232.5 5 437.	2695 5318	52.19 57.00	-19.28 -18.15	32.91 38.85	43.50 46.00	-10.59 -7.15	QP QP

Page: 28 of 44

Above 1GHz

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz	3 10	
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2402 MHz		COLLINS TO
Remark:	No report for the emission was prescribed limit.	hich more than 10 dB	below the
100.0 dBuV/m			

N	o. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4805.500	42.09	14.44	56.53	74.00	-17.47	peak
2	*	4805.500	29.53	14.44	43.97	54.00	-10.03	AVG

Page: 29 of 44

CIII	perature:	25℃			Relat	ive Hur	nidity:	55%			
est	Voltage:	AC 120	V/60 Hz	30		047		-	ABA		
nt.	Pol.	Vertical	100		D'AT		61	TIS S			
est	Mode:	BLE Mo	BLE Mode TX 2402 MHz								
em	ark:		No report for the emission which more than 10 dB below the prescribed limit.								
00.0	dBuV/m										
-							(RF) FCC I	PART 15C (PEAK	.]		
	2 X										
	×						(RF) FC	PART 15C (AVG	i)		
50	1 X										
-											
-											
-											
0.0	00.000 3550.00 6	S100.00 865	0.00 112	00.00 13750	.00 16300	0.00 1885	0.00 2140	2.00	26500.00 MHz		

١	No. M	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4802.500	29.21	14.42	43.63	54.00	-10.37	AVG
2		4803.046	43.44	14.42	57.86	74.00	-16.14	peak

Page: 30 of 44

em	perature:	25℃		Relat	ive Humidity:	55%				
est	Voltage:	AC 12	0V/60 Hz		ON COLUMN	A W				
nt.	Pol.	Horizo	ontal	1500	(a)	1133				
est	Mode:	BLE N	Node TX 2442 N	ЛНz		-				
Rem	nark:		oort for the emi	ssion which m	more than 10 dB below the					
100.0	dBuV/m									
-					(RF) FCC PA	RT 15C (PEAK)				
	,	ı								
	,	<			(RF) FCC P	ART 15C (AVG)				
50	5	2 K								
-										
-										
-										
0.0										

N	o. N	۱k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		48	385.332	44.22	14.93	59.15	74.00	-14.85	peak
2	*	48	385.356	30.30	14.93	45.23	54.00	-8.77	AVG

Page: 31 of 44

empera	ture:	25℃		Relat	ive Humidity:	55%				
est Volt	age:	AC 120V/6	60 HZ	*	MILLER	A W				
nt. Pol.		Vertical		11000	(a)	11:12				
est Mod	le:	BLE Mode	TX 2442 M	Hz						
Remark:	No report for the emiss prescribed limit.			sion which m	vhich more than 10 dB below the					
100.0 dBu\	//m									
					(RF) FCC PA	ART 15C (PEAK)				
	1 X				(RF) FCC I	PART 15C (AVG)				
50	2 X									
0.0										

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4883.892	43.56	14.92	58.48	54.00	4.48	AVG
2			4883.892	29.99	14.92	44.91	54.00	-9.09	AVG

1000.000 3550.00

6100.00

8650.00

11200.00

Report No.: TB-FCC163914

26500.00 MHz

Page: 32 of 44

Tem	perature:		25 ℃			Relative	e Humidity:	55%				
Test	t Voltage:		AC 120)V/60 HZ	30		MILL STATE	- N				
۱nt.	Pol.		Horizon	ntal		0.16	GU	11:32				
est	t Mode:		BLE M	LE Mode TX 2480 MHz								
Ren	nark:			ort for the	emission	which mor	hich more than 10 dB below the					
100.0	dBuV/m											
							(RF) FCC PA	RT 15C (PEAK)				
		1 X										
		Х					(RF) FCC F	ART 15C (AVG)				
50		2 X										
0.0												

	No.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4960.150	44.34	15.39	59.73	74.00	-14.27	peak
2		*	4960.150	30.25	15.39	45.64	54.00	-8.36	AVG

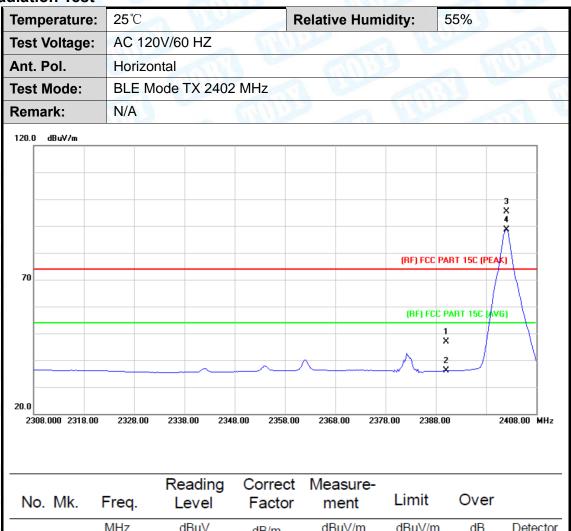
13750.00

16300.00

18850.00

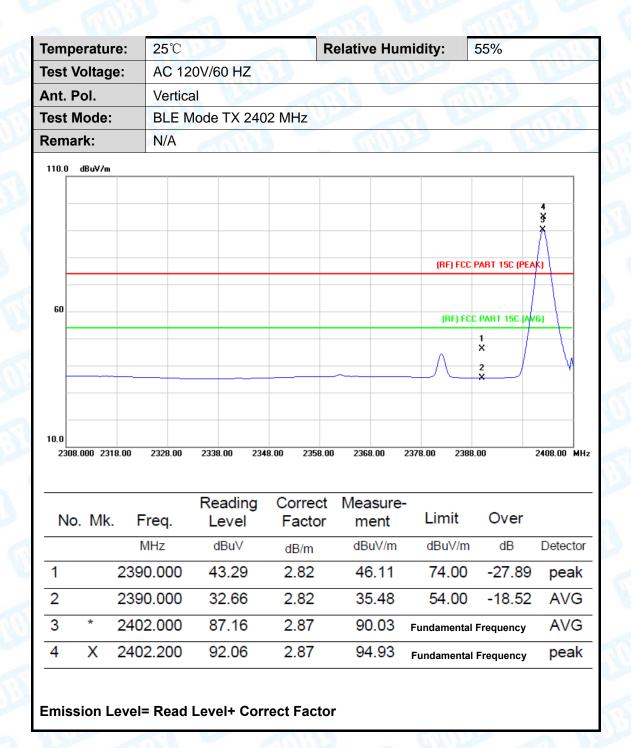
Page: 33 of 44

em	perature:	25℃		Relative H	lumidity:	55%			
est	Voltage:	AC 120)V/60 HZ	CHI)	J. Jan	A W			
nt.	Pol.	Vertica	1	THE PARTY OF	(FILE)	11:32			
est	: Mode:	BLE M	ode TX 2480 M	Hz	A W				
Rem	nark:		ort for the emiss	ssion which more than 10 dB below the					
100.0) dBuV/m								
					(RF) FCC PA	RT 15C (PEAK)			
		ı							
	,	<			(RF) FCC P	ART 15C (AVG)			
50	3	ζ							
0.0									


No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.808	44.21	15.39	59.60	74.00	-14.40	peak
2	*	4960.474	30.64	15.40	46.04	54.00	-7.96	AVG

Page: 34 of 44

Attachment C-- Restricted Bands Requirement Test Data

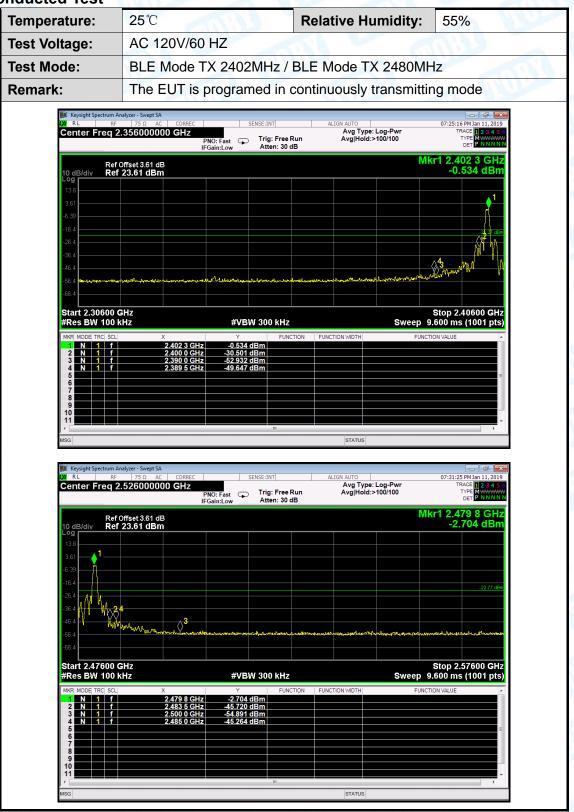

(1) Radiation Test

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	44.08	2.82	46.90	74.00	-27.10	peak
2		2390.000	33.29	2.82	36.11	54.00	-17.89	AVG
3	Χ	2402.000	92.50	2.87	95.37	Fundamental I	Frequency	peak
4	*	2402.000	85.78	2.87	88.65	Fundamental I	Frequency	AVG

Page: 35 of 44

Page: 36 of 44

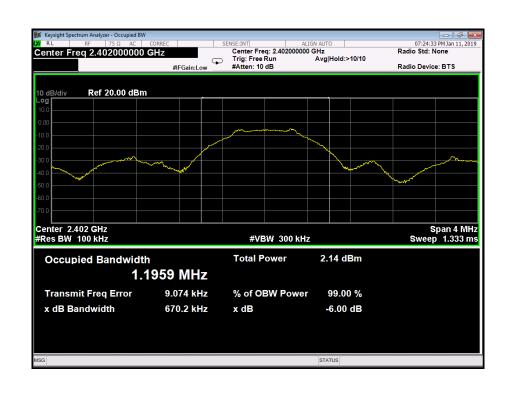
Temperature:			25℃	100		Relative Humidity: 55%						
Test	Volta	ge:	AC 1	AC 120V/60 HZ								
Ant.	Pol.		Horiz	Horizontal								
Test	Mode	:	BLE	BLE Mode TX 2480 MHz								
Rem	nark:		N/A	1100	3			3 1	A Barre			
120.0) dBuV/n	n										
70	1 X 2 X	3 X X X						PART 15C (PEA				
20.0 24	74.000 24	184.00	2494.00	2504.00 2	2514.00 2524.00	D 2534.00	2544.00 2554.	00	2574.00 MH			
No	o. Mk.	. Fre	eq.	Reading Level	Correct Factor	Measure ment	- Limit	Over				
		MH	łz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detecto			
1	Χ	2479.	800	95.32	3.38	98.70	Fundamental	Frequency	peak			
2	*	2480.	000	88.58	3.38	91.96	Fundamental	Frequency	AVG			
3		2483.	500	59.59	3.41	63.00	74.00	-11.00	peak			
9		2483.		48.24	3.41	51.65	54.00	-2.35	AVG			


Page: 37 of 44

Temperature:			25℃	LIE			R	elativ	e Hu	midity		55%	
Test Voltage:			AC 1	20V/6	0 HZ				01	11.75			Ann
Ant.	Pol.		Vertic	cal					100		CALL	133	
Test	Mode:		BLE	Mode	TX 2	480 MI	Hz				63		ANI.
Rem	ark:		N/A		The state of	33		-				a W	
110.0	dBuV/m	1											
10.0	1 X2 X	3 X						~			(RF) FC	PART 15C (PE	VG)
24	74.000 24	84.00	2494.00	2504	1.00	2514.00	2524.00	253	4.00	2544.00	2554	.00	2574.00 M
No	o. Mk		req.	Le	ading evel		rrect	m	asure ent	Lir	nit	Over	
			ИHz		BuV		B/m		uV/m	dB	uV/m	dB	Detecto
1	X	2479	9.800	93	3.37	3	.38	96	3.75	Funda	mental	Frequency	peal
	*	2480	0.000	87	7.17	3	.38	90	0.55	Funda	mental	Frequency	AVG
2							11	60	0.44	74	1.00	-13.56	peal
		2483	3.500	5	7.03	3	.41	O	J. TT	- 1	1.00	10.00	Podi

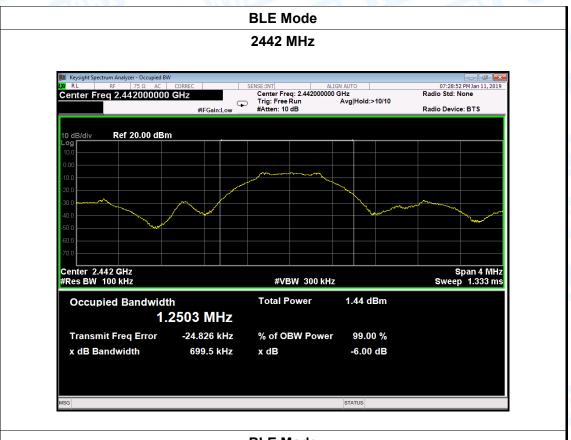
Page: 38 of 44

(2) Conducted Test



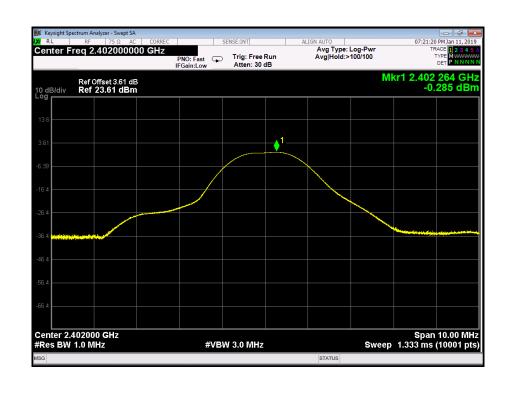
Page: 39 of 44

Attachment D-- Bandwidth Test Data

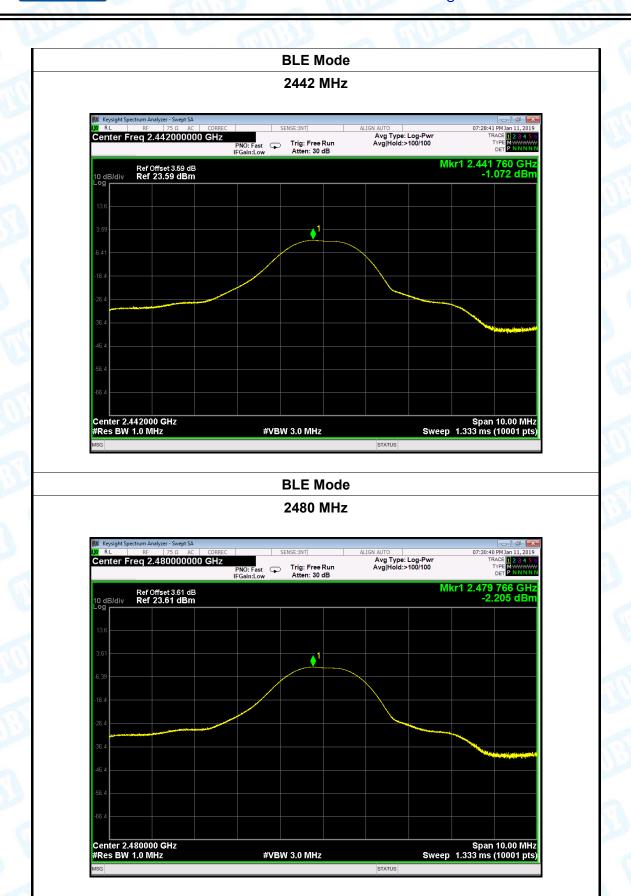

Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	AC 1	20V/60 HZ		
Test Mode:	BLE	TX Mode		
Channel freque	ncy	6dB Bandwidth	99% Bandwidth	Limit
(MHz)		(kHz)	(kHz)	(kHz)
2402		670.2	1195.9	
2442		699.5	1250.3	>=500
2480		674.1	1172.2	
1				

BLE Mode

Page: 40 of 44



41 of 44 Page:


Attachment E-- Peak Output Power Test Data

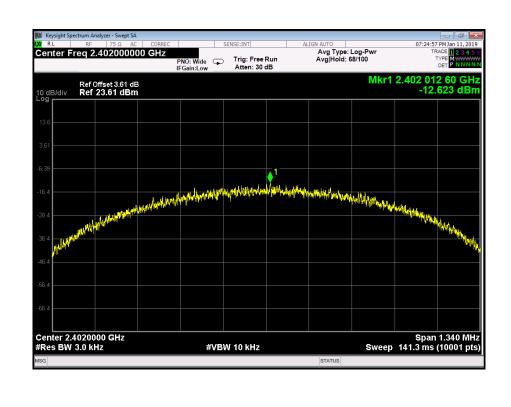
Temperature:	25℃	Relative Humidi		/ : 55%		
Test Voltage:	AC 120V/	60 HZ				
Test Mode:	BLE TX M	lode l		The same		
Channel frequen	cy (MHz)	Test Res	ult (dBm)	Limit (dBm)		
2402		-0.2	285			
2442		-1.0	072	30		
2480		-2.2				
		BLE	Mode			

Page: 42 of 44

Temperature:

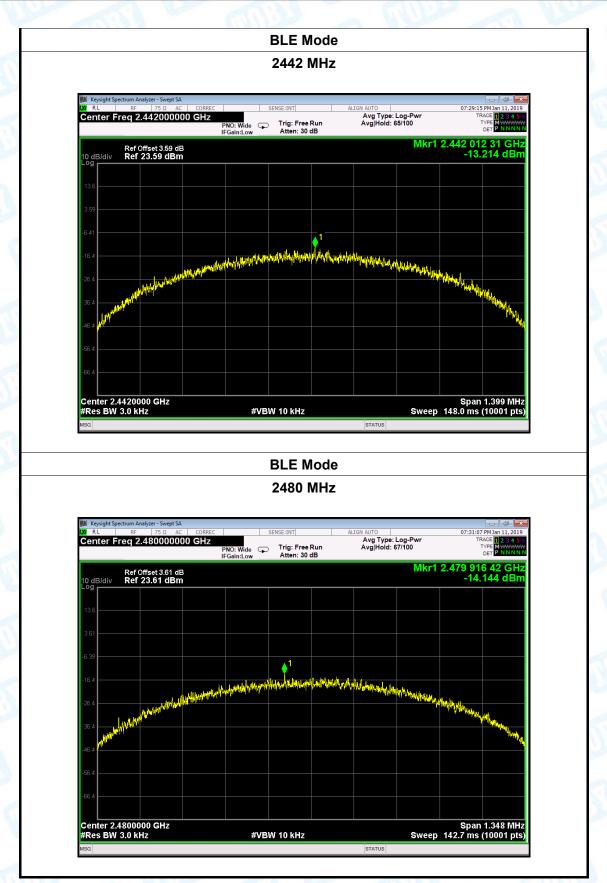
Report No.: TB-FCC163914

Page: 43 of 44


Attachment F-- Power Spectral Density Test Data

25℃

Test Voltage:	AC 120V/	60 HZ			
Test Mode:	BLE TX N	lode	a U	100	
Channel Freq	uency	Power Density	Limit	Result	
(MHz)		(dBm/3KHz)	(dBm/3KHz)		
2402		-12.623			
2442		-13.214	8	PASS	
2480		-14.144			
		BI E Mode			


Relative Humidity:

BLE Mode

Page: 44 of 44

----END OF REPORT-----