

FCC Part 15E

Measurement and Test Report

For

CHINA NATIONAL HUACHEN ENERGY GROUP CO.,LTD.

**3/F, Sangpu Building, No.10, Dayangfang, Beiyuan Road, Chaoyang District,
Beijing,100012,China**

FCC ID: 2AS9KR1168G

FCC Rule(s):	<u>FCC Part 15.407</u>
Product Description:	<u>Notebook</u>
Tested Model:	<u>R1168G</u>
Report No.:	<u>WTX19X05032915W-1</u>
Sample Receipt Date:	<u>2019-05-23</u>
Tested Date:	<u>2019-05-23 to 2019-05-31</u>
Issued Date:	<u>2019-05-31</u>
Tested By:	<u>Jason Su/ Engineer</u>
Reviewed By:	<u>Silin Chen / EMC Manager</u>
Approved & Authorized By:	<u>Jandy So / PSQ Manager</u>
Prepared By:	<p>Shenzhen SEM Test Technology Co., Ltd. 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. (518101)</p>
Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn	

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permission by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
1.2 TEST STANDARDS.....	4
1.3 TEST METHODOLOGY	4
1.4 TABLE FOR PARAMETERS OF TEST SOFTWARE SETTING	4
1.5 EUT OPERATING DURING TEST	5
1.6 TEST FACILITY	5
1.7 EUT SETUP AND TEST MODE	6
1.8 MEASUREMENT UNCERTAINTY	7
1.9 TEST EQUIPMENT LIST AND DETAILS	8
2. SUMMARY OF TEST RESULTS	10
3. RF EXPOSURE	11
3.1 STANDARD APPLICABLE.....	11
3.2 TEST RESULT.....	11
4. ANTENNA REQUIREMENT	12
4.1 STANDARD APPLICABLE.....	12
4.2 EVALUATION INFORMATION	12
5. CONDUCTED EMISSIONS	13
5.1 TEST PROCEDURE.....	13
5.2 BASIC TEST SETUP BLOCK DIAGRAM.....	13
5.3 TEST RECEIVER SETUP	13
5.4 SUMMARY OF TEST RESULTS/PLOTS	13
6. POWER SPECTRAL DENSITY	16
6.1 STANDARD APPLICABLE.....	16
6.2 TEST PROCEDURE.....	16
6.3 SUMMARY OF TEST RESULTS/PLOTS	17
7. EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH.....	22
7.1 STANDARD APPLICABLE.....	22
7.2 TEST PROCEDURE.....	22
7.3 SUMMARY OF TEST RESULTS/PLOTS	24
8. MAXIMUM CONDUCTED OUTPUT POWER.....	29
8.1 STANDARD APPLICABLE.....	29
8.2 TEST PROCEDURE.....	29
8.3 SUMMARY OF TEST RESULTS/PLOTS	30
9. RADIATED SPURIOUS EMISSIONS.....	35
9.1 STANDARD APPLICABLE.....	35
9.2 TEST PROCEDURE.....	35
9.3 TEST RECEIVER SETUP	37
9.4 CORRECTED AMPLITUDE & MARGIN CALCULATION.....	37
9.5 SUMMARY OF TEST RESULTS/PLOTS	37
10. FREQUENCY STABILITY	50
10.1 STANDARD APPLICABLE.....	50
10.2 TEST PROCEDURE.....	50
10.3 SUMMARY OF TEST RESULTS/PLOTS	50

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: CHINA NATIONAL HUACHEN ENERGY GROUP CO.,LTD.
Address of applicant: 3/F, Sangpu Building, No.10, Dayangfang, Beiyuan Road,
Chaoyang District, Beijing,100012,China

Manufacturer: CHINA NATIONAL HUACHEN ENERGY GROUP CO.,LTD.
Address of manufacturer: 3/F, Sangpu Building, No.10, Dayangfang, Beiyuan Road,
Chaoyang District, Beijing,100012,China

General Description of EUT	
Product Name:	Notebook
Brand Name:	Blueing
Model No.:	R1168G
Adding Model(s):	/
Rated Voltage:	DC7.6V
Battery Capacity:	6000mAh
Power Adapter:	K-Q90123000M Input:AC100-240V 50/60Hz 1.2A MAX Output: DC12V,3000mA
<i>Note: The test data is gathered from a production sample, provided by the manufacturer.</i>	

Technical Characteristics of EUT	
Support Standards:	802.11a, 802.11n(HT20) , 802.11n-HT40, 802.11ac-VH80
Frequency Range:	5745-5825MHz
RF Output Power:	6.39dBm (Conducted)
Type of Modulation:	BPSK, QPSK,16QAM,64QAM, 256QAM
Data Rate:	6-54Mbps, up to 200Mbps
Type of Antenna:	Integral Antenna
Antenna Gain:	2.24dBi

1.2 Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.407: General technical requirements.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

KDB789033 D02 v02r01: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, KDB789033 D02 v02r01. The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Table for parameters of Test Software setting

Connect to the computer via USB and open the REALTEK 11ac 8821CU USB WLAN MP Version 0.0002.01.20171012 software on the computer to test. During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Mode	Test Frequency (MHz)												
	NCB: 20MHz												
	5180	5200	5240	5260	5300	5320	5500	5580	5700	5720	5745	5785	5825
802.11a 6Mbps	/	/	/	/	/	/	/	/	/	/	43	42	42
802.11n-HT20 MCS0	/	/	/	/	/	/	/	/	/	/	43	43	43
Mode	NCB: 40MHz												
	5190	5230	5270	5310	5510	5550	5670	5710	5755	5795			
802.11n-HT40 MCS0	/	/	/	/	/	/	/	/	/	42	41		
Mode	NCB: 80MHz												
	5210		5290		5530		5610		5690		5775		
802.11ac-VH80 MCS0/Nss2	/		/		/		/		/		41		

1.5 EUT Operating during test

EUT was programmed to be in continuously transmitting mode. During the test, EUT operation to normal function and programs under Android were executed.

1.6 Test Facility

FCC – Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.7 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	802.11a	5745MHz, 5785MHz, 5825MHz
TM2	802.11n-HT20	5745MHz, 5785MHz, 5825MHz
TM3	802.11n-HT40	5 5755MHz, 5795MHz
TM4	802.11ac-VH80	5775 MHz

Note: All test modes (different data rate and different modulation) are performed, but only the worst case is recorded in this report.

Test Conditions	
Temperature:	22~25 °C
Relative Humidity:	50~55 %.
ATM Pressure:	1019 mbar

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
DC Cable	1.5	Unshielded	Without Ferrite
AC Cable	1.2	Unshielded	Without Ferrite

Special Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
Earphone Cable	1.2	Unshielded	Without Ferrite
HDMI	1.0	Shielded	Without Ferrite

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
/	/	/	/

1.8 Measurement Uncertainty

Measurement uncertainty		
Parameter	Conditions	Uncertainty
RF Output Power	Conducted	$\pm 0.42\text{dB}$
Occupied Bandwidth	Conducted	$\pm 1.5\%$
Power Spectral Density	Conducted	$\pm 1.8\text{dB}$
Conducted Spurious Emission	Conducted	$\pm 2.17\text{dB}$
Conducted Emissions	Conducted	9-150kHz $\pm 3.74\text{dB}$
		0.15-30MHz $\pm 3.34\text{dB}$
Transmitter Spurious Emissions	Radiated	30-200MHz $\pm 4.52\text{dB}$
		0.2-1GHz $\pm 5.56\text{dB}$
		1-6GHz $\pm 3.84\text{dB}$
		6-18GHz $\pm 3.92\text{dB}$

1.9 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2019-04-30	2020-04-29
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/035	2019-04-30	2020-04-29
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2019-04-30	2020-04-29
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2019-04-30	2020-04-29
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2019-04-30	2020-04-29
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2019-05-05	2021-05-04
SEMT-1042	Horn Antenna	ETS	3117	00086197	2019-05-05	2021-05-04
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2019-05-05	2021-05-04
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2019-05-05	2021-05-04
SEMT-1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2019-04-30	2020-04-29
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2019-04-30	2020-04-29
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2019-04-30	2020-04-29
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2019-04-30	2020-04-29
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2019-04-30	2020-04-29
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2019-04-30	2020-04-29
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2019-05-05	2021-05-04
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2019-04-30	2020-04-29
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2019-04-30	2020-04-29
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2019-04-30	2020-04-29
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2019-03-18	2020-03-17
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2019-03-18	2020-03-17
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2019-03-18	2020-03-17
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2019-03-18	2020-03-17
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17

Software List			
Description	Manufacturer	Model	Version
EMI Test Software (Radiated Emission)*	CCS	EZ-EMC	V1.0
EMI Test Software (Conducted Emission)*	CCS	EZ-EMC	V1.0

*Remark: indicates software version used in the compliance certification testing

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§15.203; §15.405	Antenna Requirement	Compliant
§15.207; §15.407(b)(6)	Conducted Emission	Compliant
§15.407(a)(1),(2)	Power Spectral Density	Compliant
§15.407(e)	Emission Bandwidth and Occupied Bandwidth	Compliant
§15.407(a)(1),(2)	Maximum Conducted Output Power	Compliant
§15.407(b)(1),(2),(3),(4)	Undesirable emission	Compliant
§15.205; §15.407(b)(1),(2),(3)	Radiated Emission	Compliant
§15.407(g)	Frequency Stability	Compliant
§15.407(h)	Dynamic Frequency Selection (DFS)	Compliant

N/A: not applicable

3. RF Exposure

3.1 Standard Applicable

According to §1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the MPE Report.

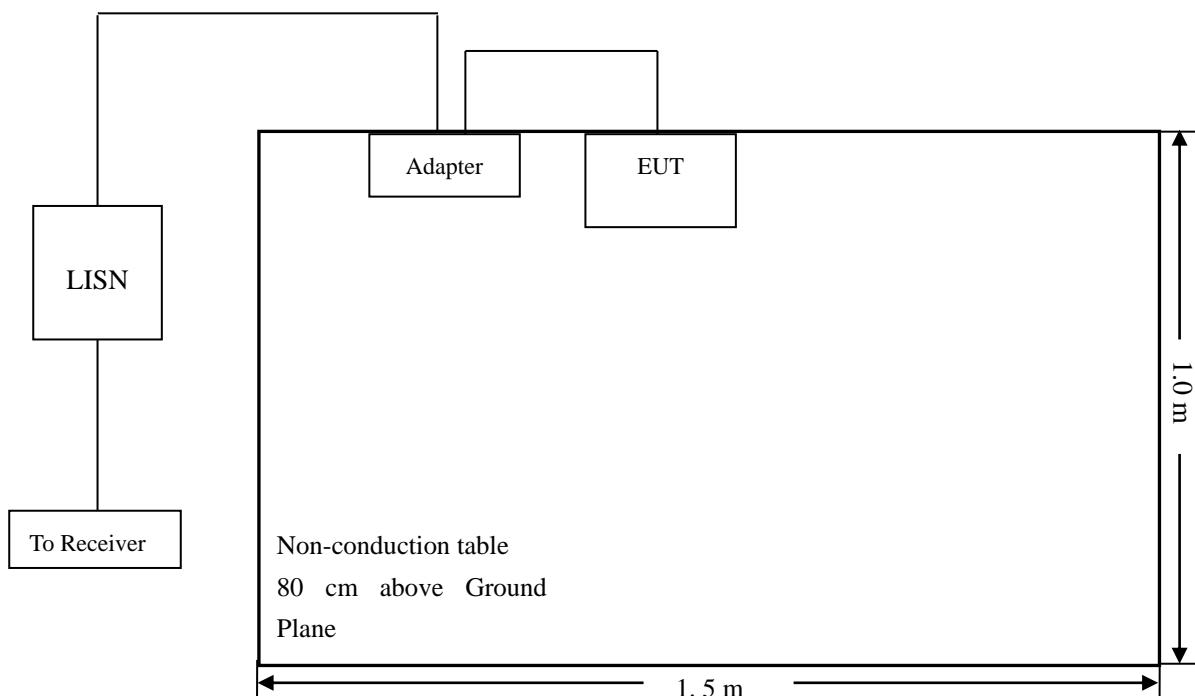
4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has an integral antenna, fulfill the requirement of this section.

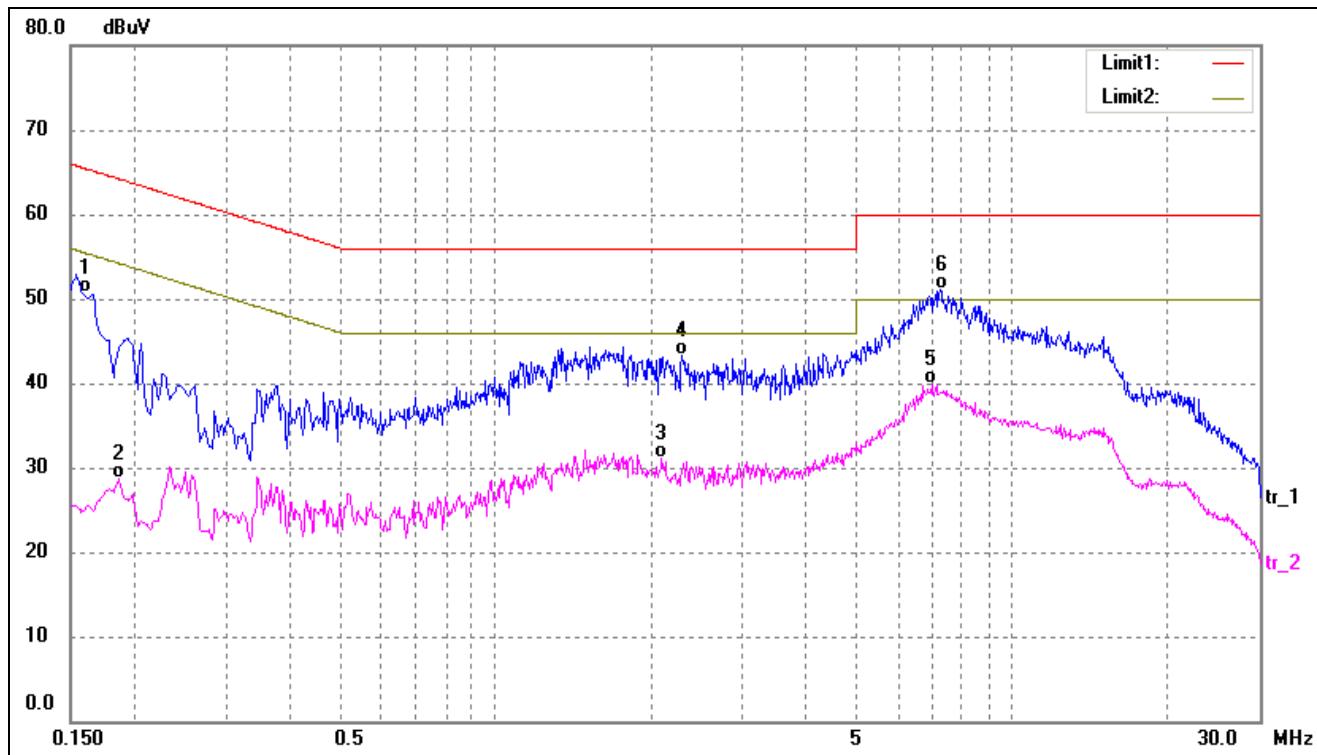

5. Conducted Emissions

5.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

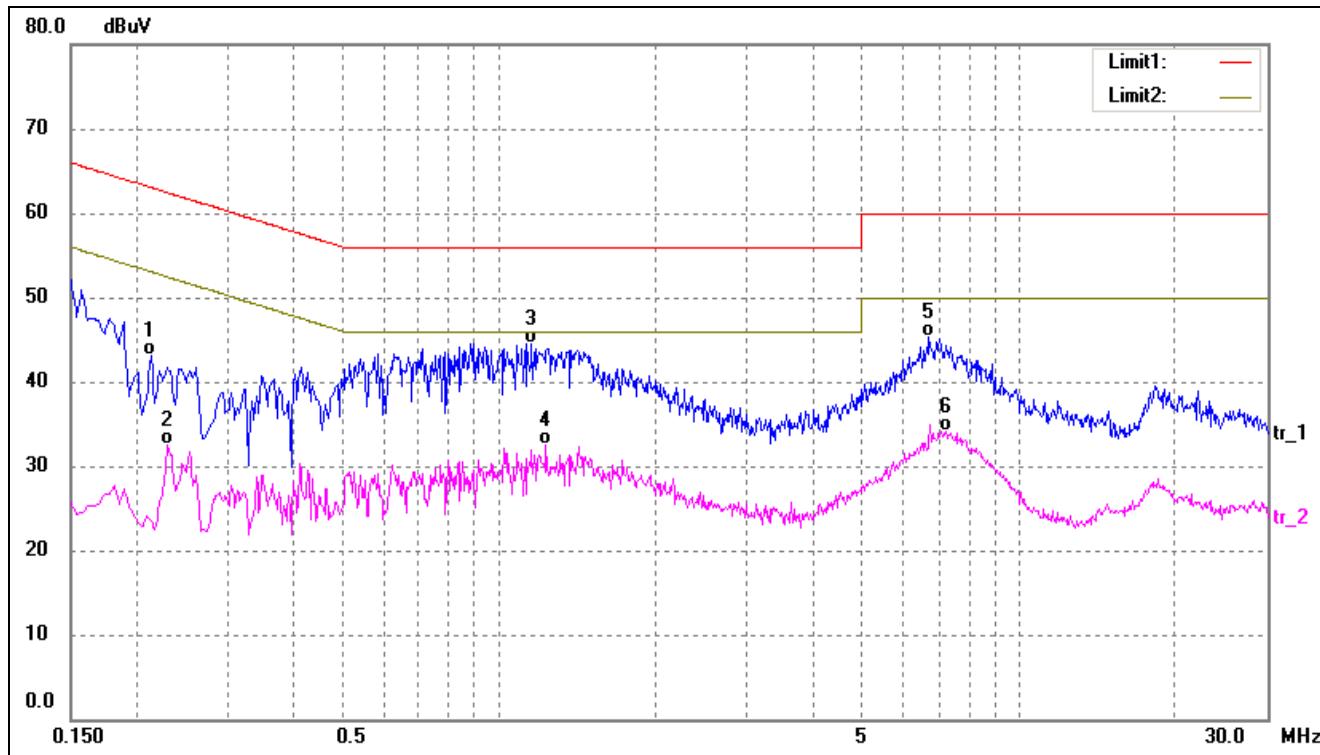
The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

5.2 Basic Test Setup Block Diagram


5.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth.....	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal


5.4 Summary of Test Results/Plots

Test Mode	Communication	AC120V 60Hz	Polarity:	Neutral
-----------	---------------	-------------	-----------	---------

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1582	40.60	10.10	50.70	65.55	-14.85	QP
2	0.1860	18.56	10.11	28.67	54.21	-25.54	AVG
3	2.0940	20.39	10.62	31.01	46.00	-14.99	AVG
4	2.2900	32.63	10.63	43.26	56.00	-12.74	QP
5	6.9700	28.99	10.84	39.83	50.00	-10.17	AVG
6*	7.2380	40.30	10.85	51.15	60.00	-8.85	QP

Test Mode	Communication	AC120V 60Hz	Polarity:	Line
-----------	---------------	-------------	-----------	------

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.2140	33.07	10.13	43.20	63.04	-19.84	QP
2	0.2300	22.28	10.14	32.42	52.45	-20.03	AVG
3*	1.1539	34.07	10.52	44.59	56.00	-11.41	QP
4	1.2340	22.04	10.53	32.57	46.00	-13.43	AVG
5	6.7260	34.55	10.83	45.38	60.00	-14.62	QP
6	7.2420	23.24	10.85	34.09	50.00	-15.91	AVG

6. Power Spectral Density

6.1 Standard Applicable

Section 15.407(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

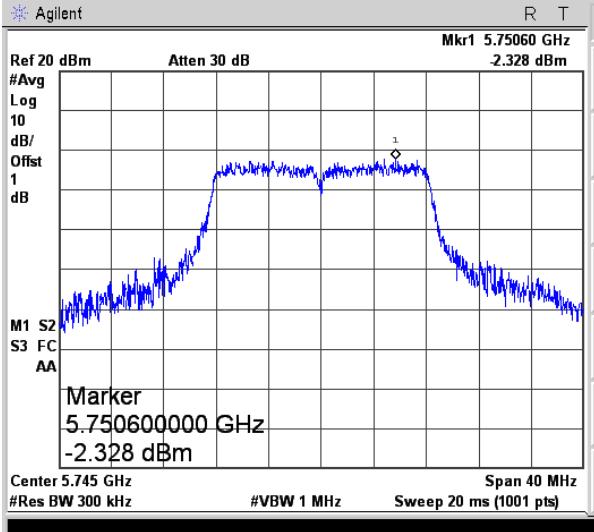
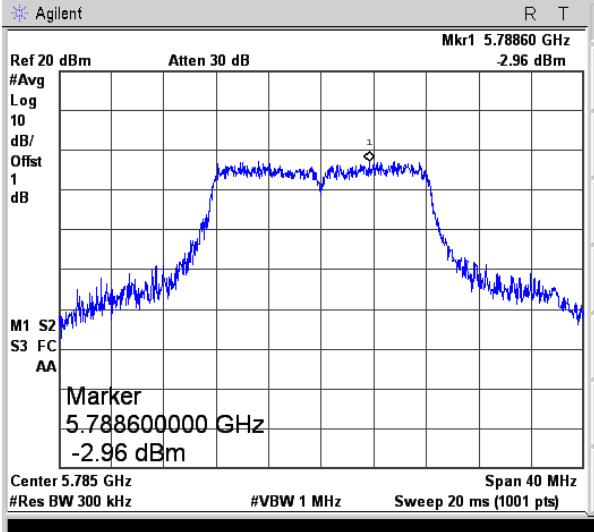
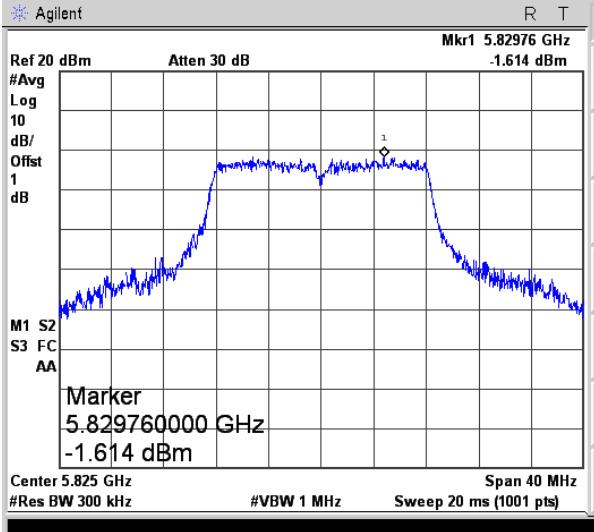
(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

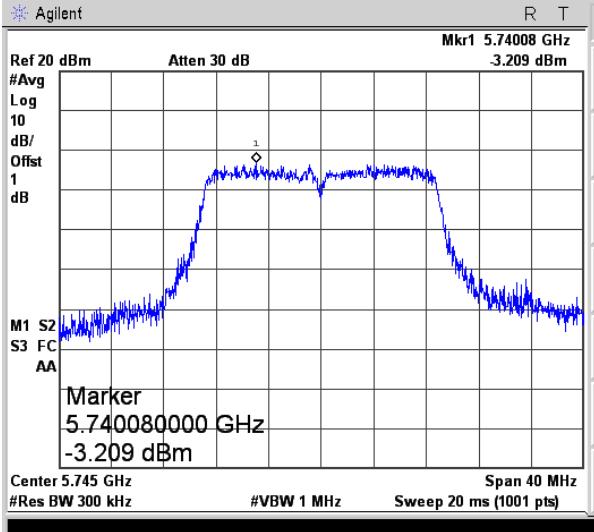
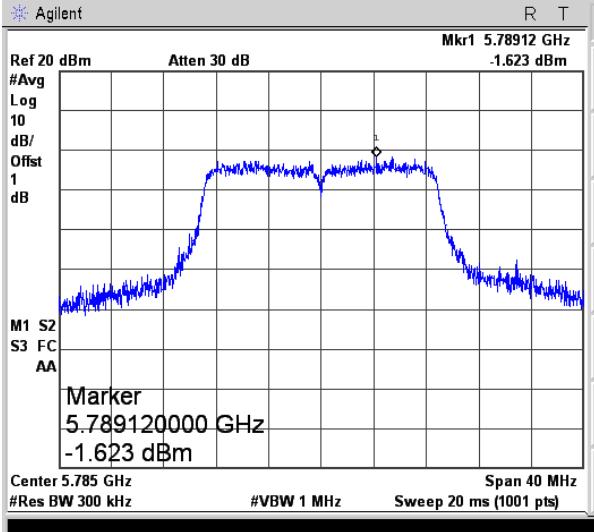
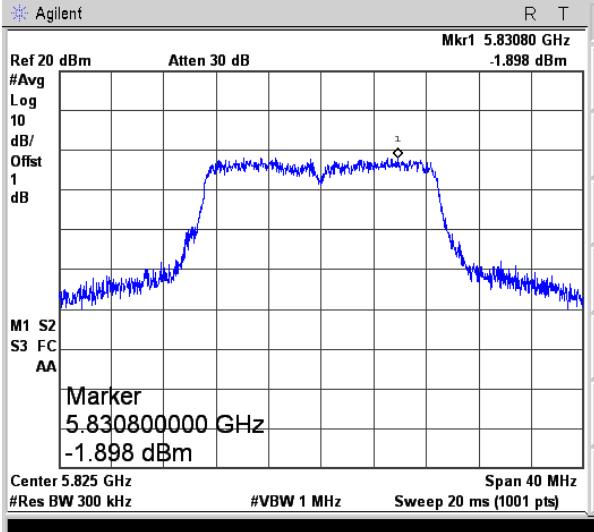
6.2 Test Procedure

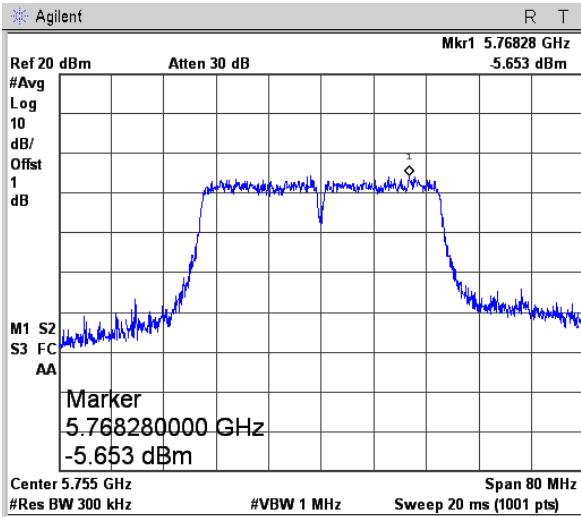
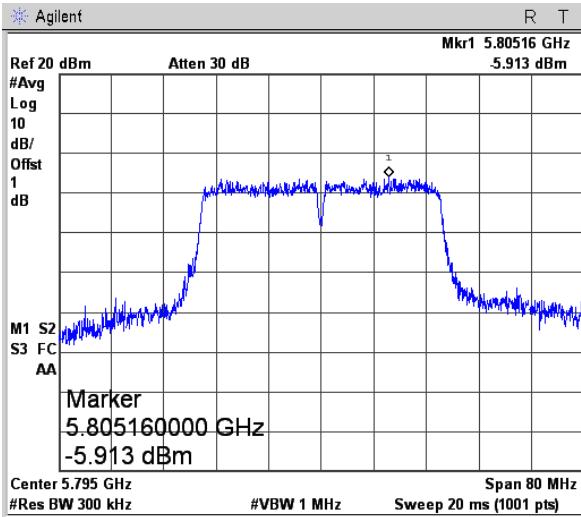
According to 789033 D02 v02r01 General UNII Test Procedures New Rules v02, the following is the measurement procedure.

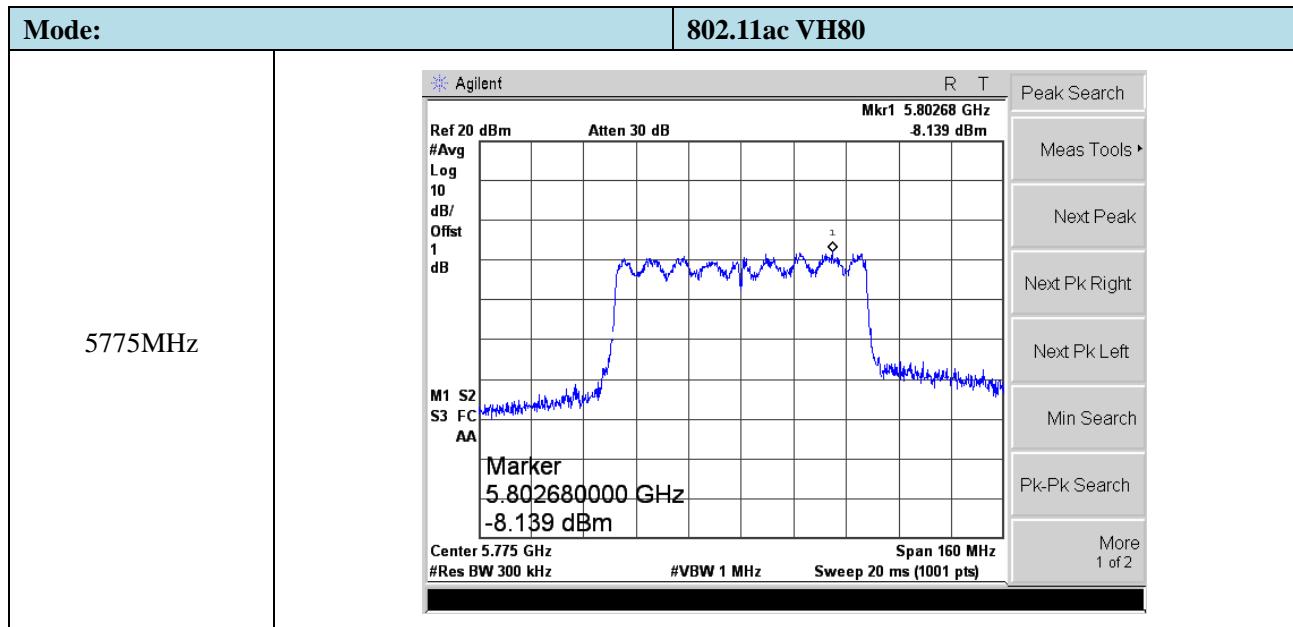
For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, “provided that the measured power is integrated over the full reference bandwidth” to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500kHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW $\geq 1/T$, where T is defined in section II.B.1.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10\log(500\text{kHz}/\text{RBW})$ to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add $10\log(1\text{MHz}/\text{RBW})$ to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.




Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW=100 kHz is available on nearly all spectrum analyzers.




6.3 Summary of Test Results/Plots



U-NII-3: 5725-5850MHz					
Operating mode	Test Channel	Power Spectral Density dBm/300kHz	Factor	Power Spectral Density* dBm/500kHz	Limit dBm/500kHz
802.11a	5745	-2.328	2.22	-0.108	30
	5785	-2.960	2.22	-0.740	30
	5825	-1.614	2.22	0.606	30
802.11n-HT20	5745	-3.209	2.22	-0.989	30
	5785	-1.623	2.22	0.597	30
	5825	-1.898	2.22	0.322	30
802.11n HT40	5755	-5.653	2.22	-3.433	30
	5795	-5.913	2.22	-3.693	30
802.11ac VH80	5775	-8.139	2.22	-5.919	30


*Note: Maximum PSD=PSD(dBm/300kHz)+10log(500kHz/300kHz)=2.22

➤ 5725-5850MHz

Mode:	802.11a
5745MHz	<p>Agilent R T</p> <p>Ref 20 dBm Atten 30 dB Mkr1 5.75060 GHz -2.328 dBm</p> <p>#Avg Log 10 dB/Offst 1 dB</p> <p>M1 S2 S3 FC AA</p> <p>Marker 5.750600000 GHz -2.328 dBm</p> <p>Center 5.745 GHz Span 40 MHz</p> <p>#Res BW 300 kHz #VBW 1 MHz Sweep 20 ms (1001 pts)</p> <p>Peak Search</p> <p>Meas Tools ▾</p> <p>Next Peak</p> <p>Next Pk Right</p> <p>Next Pk Left</p> <p>Min Search</p> <p>Pk-Pk Search</p> <p>More 1 of 2</p>
5785MHz	<p>Agilent R T</p> <p>Ref 20 dBm Atten 30 dB Mkr1 5.78860 GHz -2.96 dBm</p> <p>#Avg Log 10 dB/Offst 1 dB</p> <p>M1 S2 S3 FC AA</p> <p>Marker 5.788600000 GHz -2.96 dBm</p> <p>Center 5.785 GHz Span 40 MHz</p> <p>#Res BW 300 kHz #VBW 1 MHz Sweep 20 ms (1001 pts)</p> <p>Peak Search</p> <p>Meas Tools ▾</p> <p>Next Peak</p> <p>Next Pk Right</p> <p>Next Pk Left</p> <p>Min Search</p> <p>Pk-Pk Search</p> <p>More 1 of 2</p>
5825MHz	<p>Agilent R T</p> <p>Ref 20 dBm Atten 30 dB Mkr1 5.82976 GHz -1.614 dBm</p> <p>#Avg Log 10 dB/Offst 1 dB</p> <p>M1 S2 S3 FC AA</p> <p>Marker 5.829760000 GHz -1.614 dBm</p> <p>Center 5.825 GHz Span 40 MHz</p> <p>#Res BW 300 kHz #VBW 1 MHz Sweep 20 ms (1001 pts)</p> <p>Peak Search</p> <p>Meas Tools ▾</p> <p>Next Peak</p> <p>Next Pk Right</p> <p>Next Pk Left</p> <p>Min Search</p> <p>Pk-Pk Search</p> <p>More 1 of 2</p>

Mode:		802.11n-HT20	
	5745MHz	<p>Agilent R T</p> <p>Ref 20 dBm Atten 30 dB Mkr1 5.74008 GHz -3.209 dBm</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>M1 S2 S3 FC AA</p> <p>Marker 5.740080000 GHz -3.209 dBm</p> <p>Center 5.745 GHz Span 40 MHz</p> <p>#Res BW 300 kHz #VBW 1 MHz Sweep 20 ms (1001 pts)</p>	Peak Search Meas Tools ▾ Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search More 1 of 2
	5785MHz	<p>Agilent R T</p> <p>Ref 20 dBm Atten 30 dB Mkr1 5.78912 GHz -1.623 dBm</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>M1 S2 S3 FC AA</p> <p>Marker 5.789120000 GHz -1.623 dBm</p> <p>Center 5.785 GHz Span 40 MHz</p> <p>#Res BW 300 kHz #VBW 1 MHz Sweep 20 ms (1001 pts)</p>	Peak Search Meas Tools ▾ Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search More 1 of 2
	5825MHz	<p>Agilent R T</p> <p>Ref 20 dBm Atten 30 dB Mkr1 5.83080 GHz -1.898 dBm</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>M1 S2 S3 FC AA</p> <p>Marker 5.830800000 GHz -1.898 dBm</p> <p>Center 5.825 GHz Span 40 MHz</p> <p>#Res BW 300 kHz #VBW 1 MHz Sweep 20 ms (1001 pts)</p>	Peak Search Meas Tools ▾ Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search More 1 of 2

Mode:	802.11n-HT40	
5755MHz	<p>Agilent</p> <p>Ref 20 dBm Atten 30 dB Mkr1 5.76828 GHz #Avg 10 5.653 dBm Log 10 dB/Offset 1 dB</p> <p>M1 S2 S3 FC AA</p> <p>Marker 5.768280000 GHz -5.653 dBm</p> <p>Center 5.755 GHz Span 80 MHz #Res BW 300 kHz #VBW 1 MHz Sweep 20 ms (1001 pts)</p>	Peak Search Meas Tools ▾ Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search More 1 of 2
5795MHz	<p>Agilent</p> <p>Ref 20 dBm Atten 30 dB Mkr1 5.80516 GHz #Avg 10 dB/Offset 1 dB Log 10 dB/Offset 1 dB</p> <p>M1 S2 S3 FC AA</p> <p>Marker 5.805160000 GHz -5.913 dBm</p> <p>Center 5.795 GHz Span 80 MHz #Res BW 300 kHz #VBW 1 MHz Sweep 20 ms (1001 pts)</p>	Peak Search Meas Tools ▾ Next Peak Next Pk Right Next Pk Left Min Search Pk-Pk Search More 1 of 2

7. Emission Bandwidth and Occupied Bandwidth

7.1 Standard Applicable

According to 15.407(a) and (e):

- (1) For the band 5.15-5.25 GHz.
 - (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

7.2 Test Procedure

According to 789033 D02 v02r0r section C&D, the following is the measurement procedure.

1. Emission Bandwidth (EBW)
 - a) Set RBW = approximately 1% of the emission bandwidth.
 - b) Set the VBW $>$ RBW.
 - c) Detector = Peak.
 - d) Trace mode = max hold.
 - e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare

this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

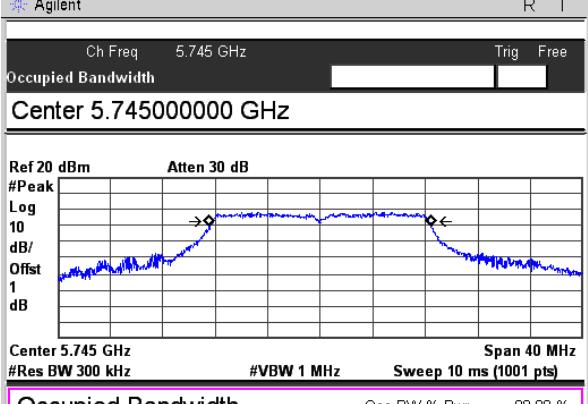
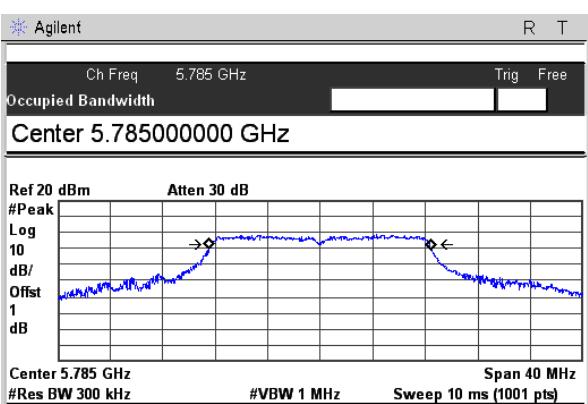
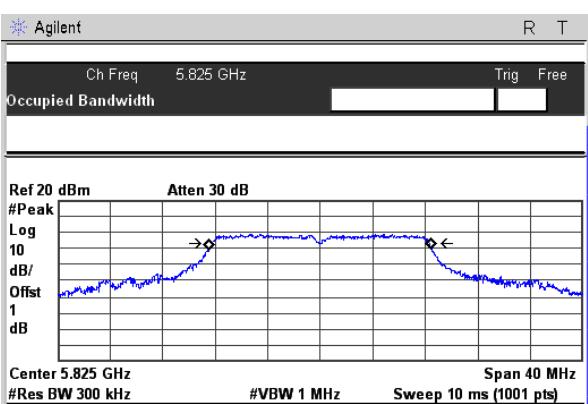
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

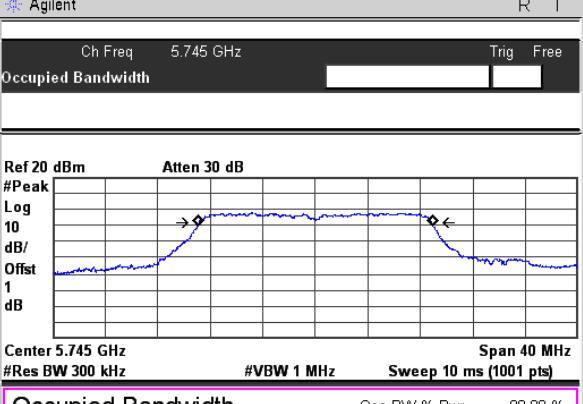
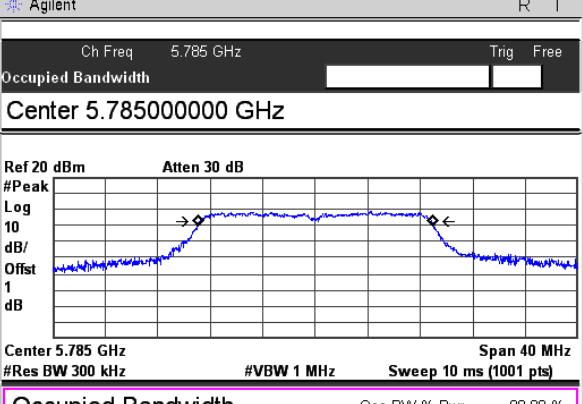
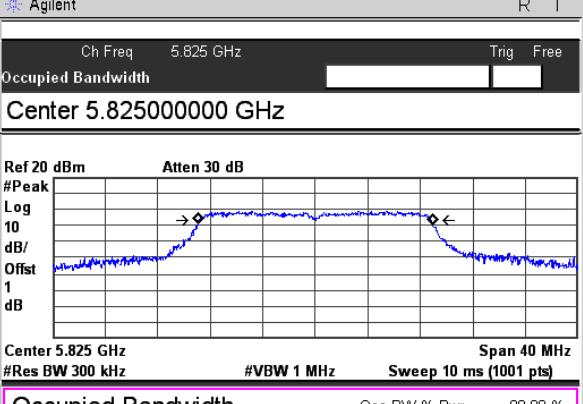
Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

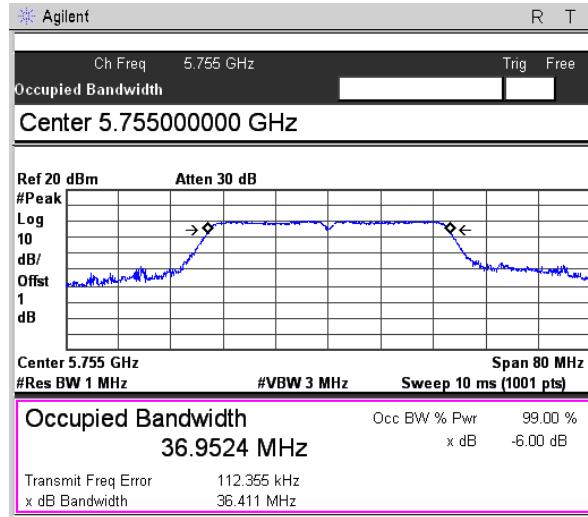
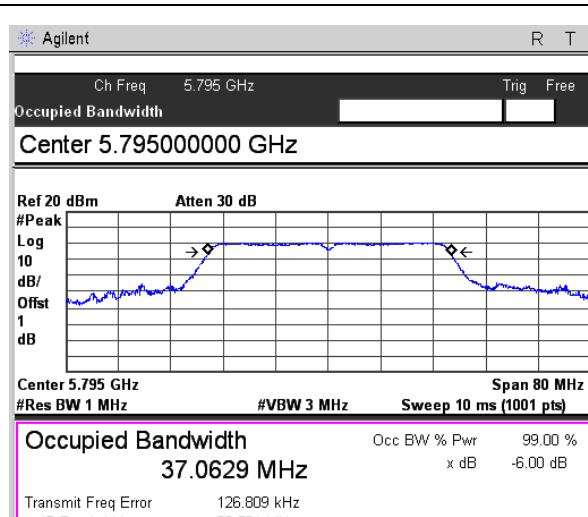
D. 99 Percent Occupied Bandwidth

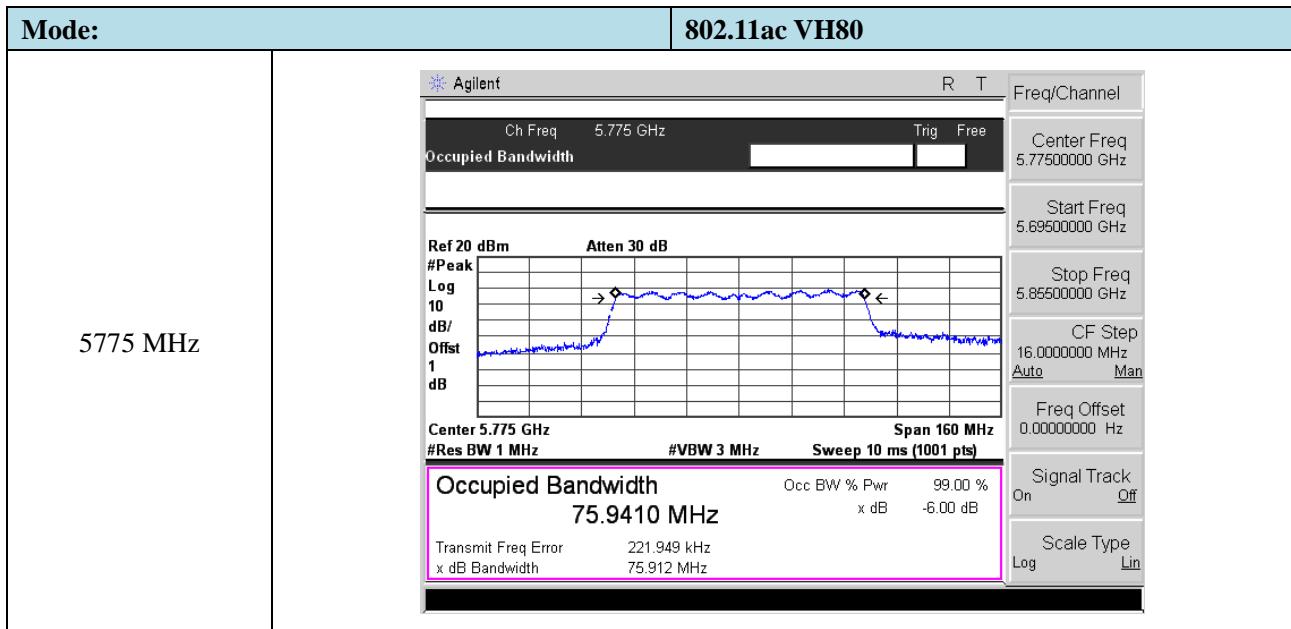
The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission.

Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to 789033 D02 v02r01 General UNII Test Procedures New Rules v01 define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).




The following procedure shall be used for measuring (99 %) power bandwidth:




1. Set center frequency to the nominal EUT channel center frequency.
2. Set span = 1.5 times to 5.0 times the OBW.
3. Set RBW = 1 % to 5 % of the OBW
4. Set VBW $\geq 3 *$ RBW
5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
6. Use the 99 % power bandwidth function of the instrument (if available).
7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.



7.3 Summary of Test Results/Plots


U-NII-3: 5725-5850MHz				
Test Mode	Test Channel MHz	6 dB Bandwidth MHz	99% Bandwidth MHz	Limit MHz
802.11a	5745	16.418	16.8772	≥500
	5785	16.498	16.9247	≥500
	5825	16.506	16.9643	≥500
802.11n-HT20	5745	17.701	17.9110	≥500
	5785	17.616	17.9288	≥500
	5825	17.663	17.9251	≥500
802.11n-HT40	5755	36.411	36.9524	≥500
	5795	36.521	37.0629	≥500
802.11ac VH80	5775	75.912	75.9410	≥500

➤ 5725-5850MHz

Mode:	802.11a
5745MHz	<p>Agilent</p> <p>Ch Freq 5.745 GHz Trig Free</p> <p>Occupied Bandwidth</p> <p>Center 5.745000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>Log 10 dB/Offset 1 dB</p> <p>Center 5.745 GHz #VBW 1 MHz Sweep 10 ms (1001 pts)</p> <p>Span 40 MHz</p> <p>Occupied Bandwidth 16.8772 MHz</p> <p>Transmit Freq Error -30.324 kHz</p> <p>x dB Bandwidth 16.418 MHz</p> <p>Occ BW % Pwr 99.00 % x dB -6.00 dB</p> <p>R T Freq/Channel</p> <p>Center Freq 5.745000000 GHz</p> <p>Start Freq 5.725000000 GHz</p> <p>Stop Freq 5.765000000 GHz</p> <p>CF Step 4.000000000 MHz Auto Man</p> <p>Freq Offset 0.000000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5785MHz	<p>Agilent</p> <p>Ch Freq 5.785 GHz Trig Free</p> <p>Occupied Bandwidth</p> <p>Center 5.785000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>Log 10 dB/Offset 1 dB</p> <p>Center 5.785 GHz #VBW 1 MHz Sweep 10 ms (1001 pts)</p> <p>Span 40 MHz</p> <p>Occupied Bandwidth 16.9247 MHz</p> <p>Transmit Freq Error -23.522 kHz</p> <p>x dB Bandwidth 16.498 MHz</p> <p>Occ BW % Pwr 99.00 % x dB -6.00 dB</p> <p>R T Freq/Channel</p> <p>Center Freq 5.785000000 GHz</p> <p>Start Freq 5.765000000 GHz</p> <p>Stop Freq 5.805000000 GHz</p> <p>CF Step 4.000000000 MHz Auto Man</p> <p>Freq Offset 0.000000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5825MHz	<p>Agilent</p> <p>Ch Freq 5.825 GHz Trig Free</p> <p>Occupied Bandwidth</p> <p>Center 5.825000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>Log 10 dB/Offset 1 dB</p> <p>Center 5.825 GHz #VBW 1 MHz Sweep 10 ms (1001 pts)</p> <p>Span 40 MHz</p> <p>Occupied Bandwidth 16.9643 MHz</p> <p>Transmit Freq Error -56.781 kHz</p> <p>x dB Bandwidth 16.506 MHz</p> <p>Occ BW % Pwr 99.00 % x dB -6.00 dB</p> <p>R T Trace/View</p> <p>1 Trace</p> <p>2</p> <p>3</p> <p>Clear Write</p> <p>Max Hold</p> <p>Min Hold</p> <p>View</p> <p>Blank</p> <p>More 1 of 2</p>

Mode:		802.11n-HT20	
5745MHz		<p>Agilent</p> <p>Ch Freq 5.745 GHz Trig Free</p> <p>Occupied Bandwidth</p> <p>Ref 20 dBm Atten 30 dB</p> <p>Log 10 dB/Offset 1 dB</p> <p>Center 5.745 GHz #Res BW 300 kHz #VBW 1 MHz Sweep 10 ms (1001 pts)</p> <p>Occupied Bandwidth 17.9110 MHz</p> <p>Transmit Freq Error -20.403 kHz</p> <p>x dB Bandwidth 17.701 MHz</p> <p>Occ BW % Pwr 99.00 % x dB -6.00 dB</p>	<p>R T</p> <p>Freq/Channel</p> <p>Center Freq 5.7450000 GHz</p> <p>Start Freq 5.7250000 GHz</p> <p>Stop Freq 5.7650000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5785MHz		<p>Agilent</p> <p>Ch Freq 5.785 GHz Trig Free</p> <p>Occupied Bandwidth</p> <p>Center 5.785000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>Log 10 dB/Offset 1 dB</p> <p>Center 5.785 GHz #Res BW 300 kHz #VBW 1 MHz Sweep 10 ms (1001 pts)</p> <p>Occupied Bandwidth 17.9288 MHz</p> <p>Transmit Freq Error 7.393 kHz</p> <p>x dB Bandwidth 17.616 MHz</p> <p>Occ BW % Pwr 99.00 % x dB -6.00 dB</p>	<p>R T</p> <p>Freq/Channel</p> <p>Center Freq 5.7850000 GHz</p> <p>Start Freq 5.7650000 GHz</p> <p>Stop Freq 5.8050000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5825MHz		<p>Agilent</p> <p>Ch Freq 5.825 GHz Trig Free</p> <p>Occupied Bandwidth</p> <p>Center 5.825000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>Log 10 dB/Offset 1 dB</p> <p>Center 5.825 GHz #Res BW 300 kHz #VBW 1 MHz Sweep 10 ms (1001 pts)</p> <p>Occupied Bandwidth 17.9251 MHz</p> <p>Transmit Freq Error -8.591 kHz</p> <p>x dB Bandwidth 17.663 MHz</p> <p>Occ BW % Pwr 99.00 % x dB -6.00 dB</p>	<p>R T</p> <p>Freq/Channel</p> <p>Center Freq 5.8250000 GHz</p> <p>Start Freq 5.8050000 GHz</p> <p>Stop Freq 5.8450000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>

Mode:	802.11n-HT40	
5755 MHz	<p>Agilent</p> <p>Ch Freq 5.755 GHz Trig Free</p> <p>Occupied Bandwidth</p> <p>Center 5.755000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Peak</p> <p>Log 10 dB/</p> <p>Offset 1 dB</p> <p>Center 5.755 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 10 ms (1001 pts)</p> <p>Span 80 MHz</p> <p>Occupied Bandwidth 36.9524 MHz</p> <p>Transmit Freq Error 112.355 kHz</p> <p>x dB Bandwidth 36.411 MHz</p> <p>Occ BW % Pwr 99.00 %</p> <p>x dB -6.00 dB</p>	<p>R T</p> <p>Freq/Channel</p> <p>Center Freq 5.7550000 GHz</p> <p>Start Freq 5.7150000 GHz</p> <p>Stop Freq 5.7950000 GHz</p> <p>CF Step 8.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5795 MHz	<p>Agilent</p> <p>Ch Freq 5.795 GHz Trig Free</p> <p>Occupied Bandwidth</p> <p>Center 5.795000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Peak</p> <p>Log 10 dB/</p> <p>Offset 1 dB</p> <p>Center 5.795 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 10 ms (1001 pts)</p> <p>Span 80 MHz</p> <p>Occupied Bandwidth 37.0629 MHz</p> <p>Transmit Freq Error 126.809 kHz</p> <p>x dB Bandwidth 36.521 MHz</p> <p>Occ BW % Pwr 99.00 %</p> <p>x dB -6.00 dB</p>	<p>R T</p> <p>Freq/Channel</p> <p>Center Freq 5.7950000 GHz</p> <p>Start Freq 5.7550000 GHz</p> <p>Stop Freq 5.8350000 GHz</p> <p>CF Step 8.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>

8. Maximum Conducted Output Power

8.1 Standard Applicable

Section 15.407(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

8.2 Test Procedure

According to KDB789033 D02 v02r01 section E, the following is the measurement procedure.

(i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

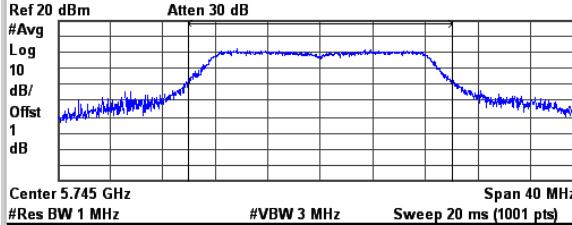
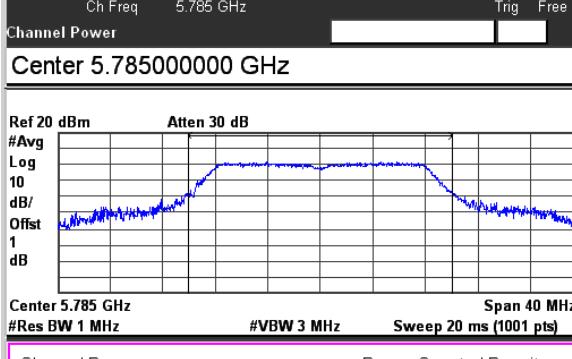
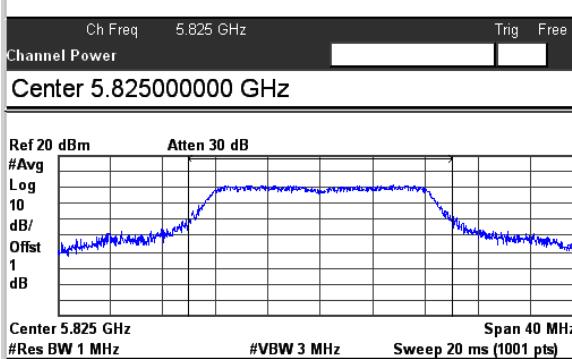
(iii) Set VBW \geq 3 MHz.

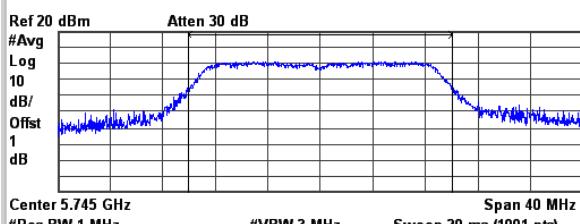
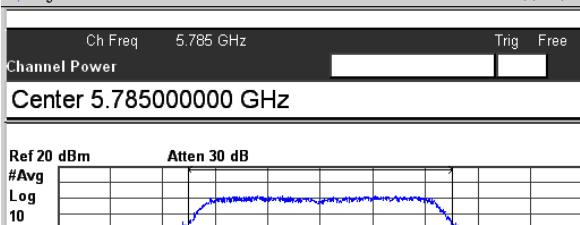
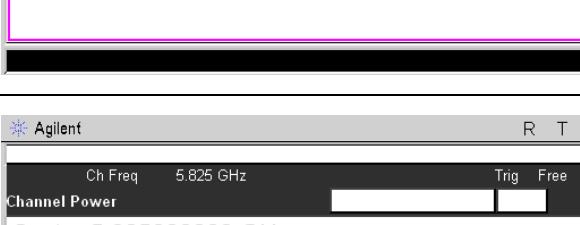
(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

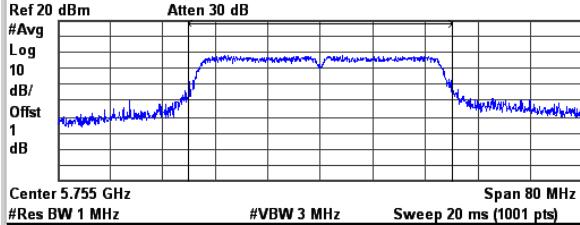
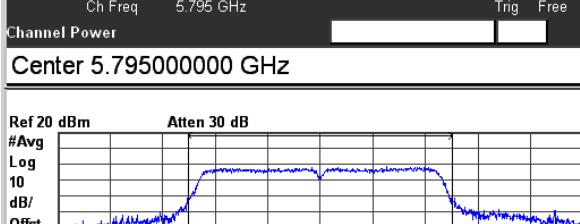
(v) Sweep time = auto.

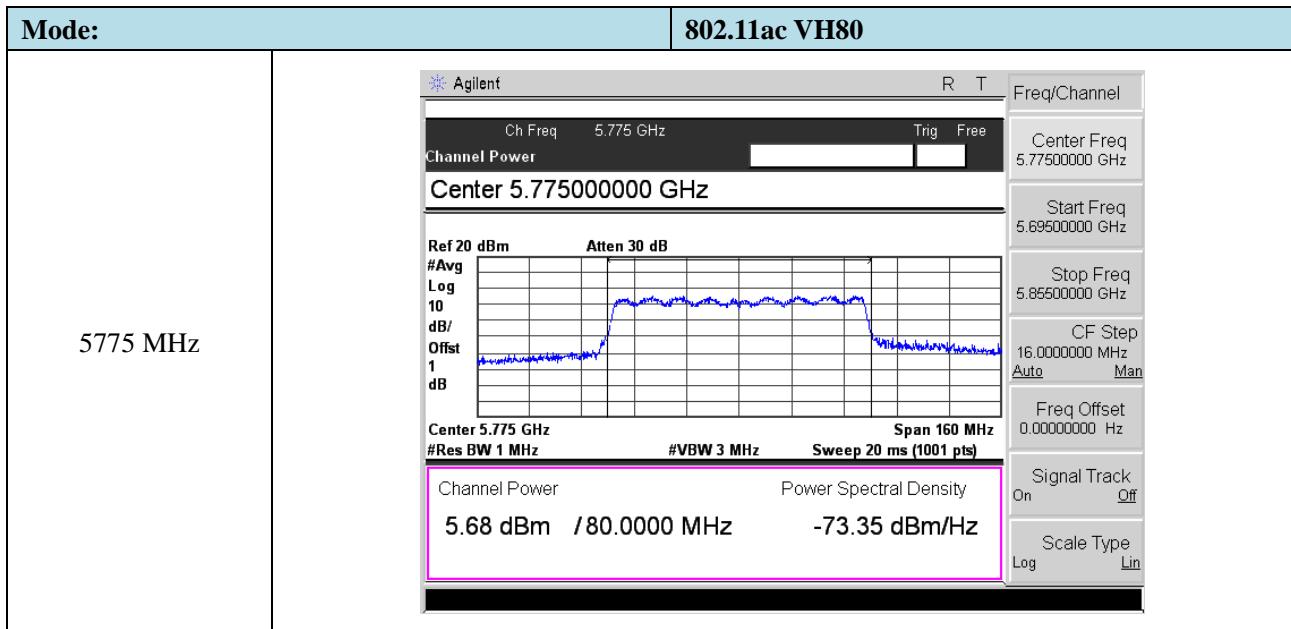
(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to “free run”.




(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.




(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument’s band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.



8.3 Summary of Test Results/Plots


U-NII-3: 5725-5850MHz				
Test mode	Frequency MHz	Output Power dBm	Output Power mW	Limit mW
802.11a	5745	6.24	4.207	1000
	5785	6.10	4.074	1000
	5825	6.39	4.355	1000
802.11n-HT20	5745	5.93	3.917	1000
	5785	5.75	3.758	1000
	5825	6.11	4.083	1000
802.11n-HT40	5755	5.89	3.882	1000
	5795	5.57	3.606	1000
802.11ac VH80	5775	5.68	3.698	1000

➤ 5725-5850MHz

Mode:	802.11a
5745MHz	<p>Agilent</p> <p>Ch Freq 5.745 GHz Trig Free</p> <p>Channel Power</p> <p>Center 5.745000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>Center 5.745 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)</p> <p>Channel Power Power Spectral Density</p> <p>6.24 dBm / 20.0000 MHz -66.77 dBm/Hz</p> <p>Freq/Channel</p> <p>Center Freq 5.7450000 GHz</p> <p>Start Freq 5.7250000 GHz</p> <p>Stop Freq 5.7650000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5785MHz	<p>Agilent</p> <p>Ch Freq 5.785 GHz Trig Free</p> <p>Channel Power</p> <p>Center 5.785000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>Center 5.785 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)</p> <p>Channel Power Power Spectral Density</p> <p>6.10 dBm / 20.0000 MHz -66.91 dBm/Hz</p> <p>Freq/Channel</p> <p>Center Freq 5.7850000 GHz</p> <p>Start Freq 5.7650000 GHz</p> <p>Stop Freq 5.8050000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5825MHz	<p>Agilent</p> <p>Ch Freq 5.825 GHz Trig Free</p> <p>Channel Power</p> <p>Center 5.825000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>Center 5.825 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)</p> <p>Channel Power Power Spectral Density</p> <p>6.39 dBm / 20.0000 MHz -66.62 dBm/Hz</p> <p>Freq/Channel</p> <p>Center Freq 5.8250000 GHz</p> <p>Start Freq 5.8050000 GHz</p> <p>Stop Freq 5.8450000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>

Mode:		802.11n-HT20	
5745MHz		<p>Agilent</p> <p>Ch Freq 5.745 GHz Trig Free</p> <p>Channel Power</p> <p>Center 5.745000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>Center 5.745 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)</p> <p>Channel Power Power Spectral Density</p> <p>5.93 dBm / 20.0000 MHz -67.08 dBm/Hz</p>	<p>R T Freq/Channel</p> <p>Center Freq 5.7450000 GHz</p> <p>Start Freq 5.7250000 GHz</p> <p>Stop Freq 5.7650000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5785MHz		<p>Agilent</p> <p>Ch Freq 5.785 GHz Trig Free</p> <p>Channel Power</p> <p>Center 5.785000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>Center 5.785 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)</p> <p>Channel Power Power Spectral Density</p> <p>5.75 dBm / 20.0000 MHz -67.26 dBm/Hz</p>	<p>R T Freq/Channel</p> <p>Center Freq 5.7850000 GHz</p> <p>Start Freq 5.7650000 GHz</p> <p>Stop Freq 5.8050000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5825MHz		<p>Agilent</p> <p>Ch Freq 5.825 GHz Trig Free</p> <p>Channel Power</p> <p>Center 5.825000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Avg Log 10 dB/Offset 1 dB</p> <p>Center 5.825 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)</p> <p>Channel Power Power Spectral Density</p> <p>6.11 dBm / 20.0000 MHz -66.90 dBm/Hz</p>	<p>R T Freq/Channel</p> <p>Center Freq 5.8250000 GHz</p> <p>Start Freq 5.8050000 GHz</p> <p>Stop Freq 5.8450000 GHz</p> <p>CF Step 4.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>

Mode:	802.11n-HT40
5755 MHz	<p>Agilent</p> <p>Ch Freq 5.755 GHz Trig Free</p> <p>Channel Power</p> <p>Center 5.755000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Avg Log 10 dB/Offst 1 dB</p> <p>Center 5.755 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)</p> <p>Channel Power Power Spectral Density</p> <p>5.89 dBm / 40.0000 MHz -70.13 dBm/Hz</p> <p>Freq/Channel</p> <p>Center Freq 5.7550000 GHz</p> <p>Start Freq 5.7150000 GHz</p> <p>Stop Freq 5.7950000 GHz</p> <p>CF Step 8.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>
5795 MHz	<p>Agilent</p> <p>Ch Freq 5.795 GHz Trig Free</p> <p>Channel Power</p> <p>Center 5.795000000 GHz</p> <p>Ref 20 dBm Atten 30 dB</p> <p>#Avg Log 10 dB/Offst 1 dB</p> <p>Center 5.795 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 20 ms (1001 pts)</p> <p>Channel Power Power Spectral Density</p> <p>5.57 dBm / 40.0000 MHz -70.45 dBm/Hz</p> <p>Freq/Channel</p> <p>Center Freq 5.7950000 GHz</p> <p>Start Freq 5.7550000 GHz</p> <p>Stop Freq 5.8350000 GHz</p> <p>CF Step 8.0000000 MHz Auto Man</p> <p>Freq Offset 0.0000000 Hz</p> <p>Signal Track On Off</p> <p>Scale Type Log Lin</p>

9. Radiated Spurious Emissions

9.1 Standard Applicable

According to §15.407(b), undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

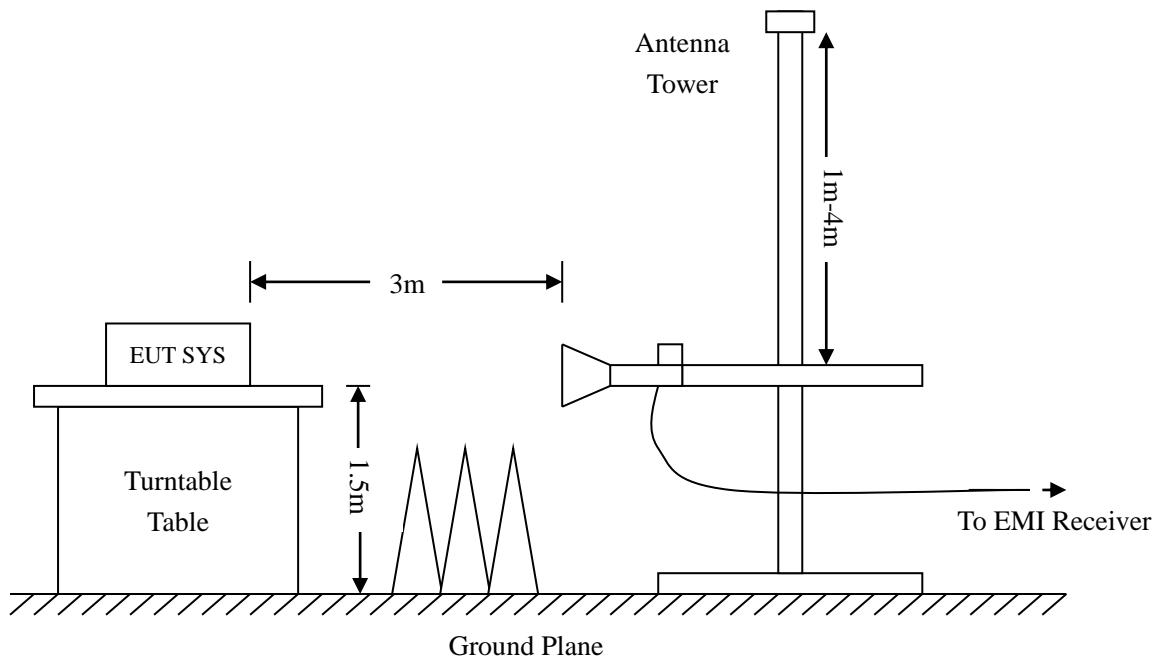
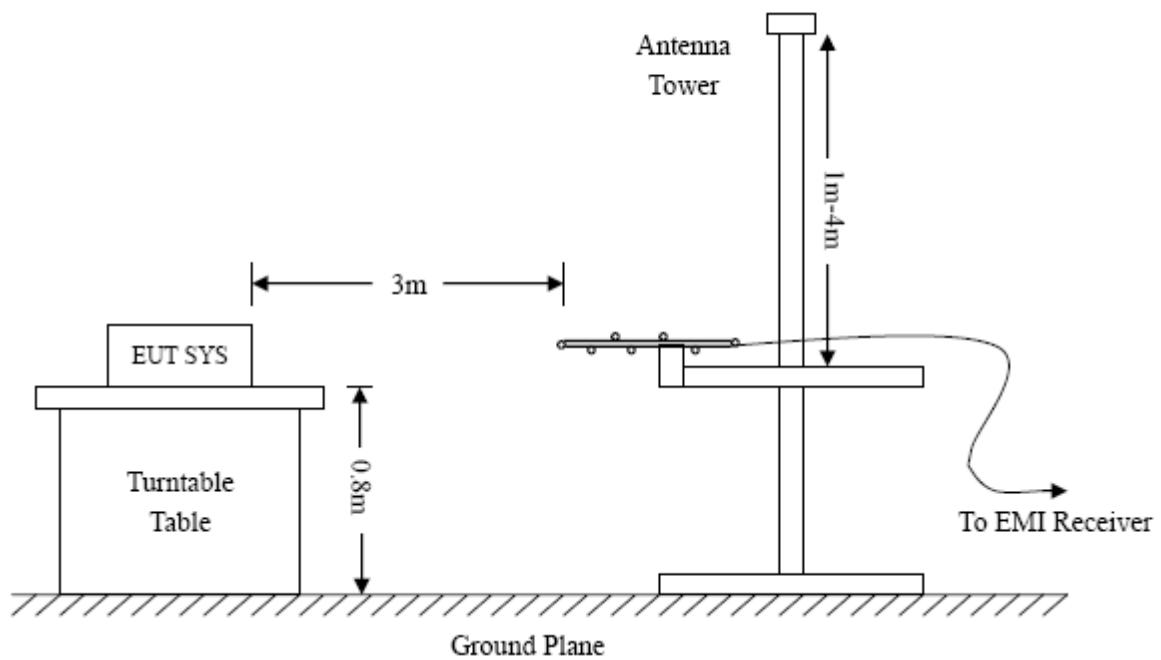
According to §15.407(b)(6), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

According to §15.407(b)(7), The provisions of §15.205 apply to intentional radiators operating under this section.
789033 D02 v02r01 General UNII Test Procedures New Rules v01

If radiated measurements are performed, field strength is then converted to EIRP as follows:

$$\text{EIRP} = ((E^*d)^2) / 30$$

where:



- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.

9.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.407(b)(6) and FCC Part 15.209 Limit..

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

9.3 Test Receiver Setup

During the radiated emission test for above 1GHz, the test receiver was set with the following configurations:

For peak detector:

RBW = 1000kHz, VBW = 3000kHz, Sweep Time = Auto

For average detector:

RBW = 1000kHz, VBW = 10Hz, Sweep Time = Auto

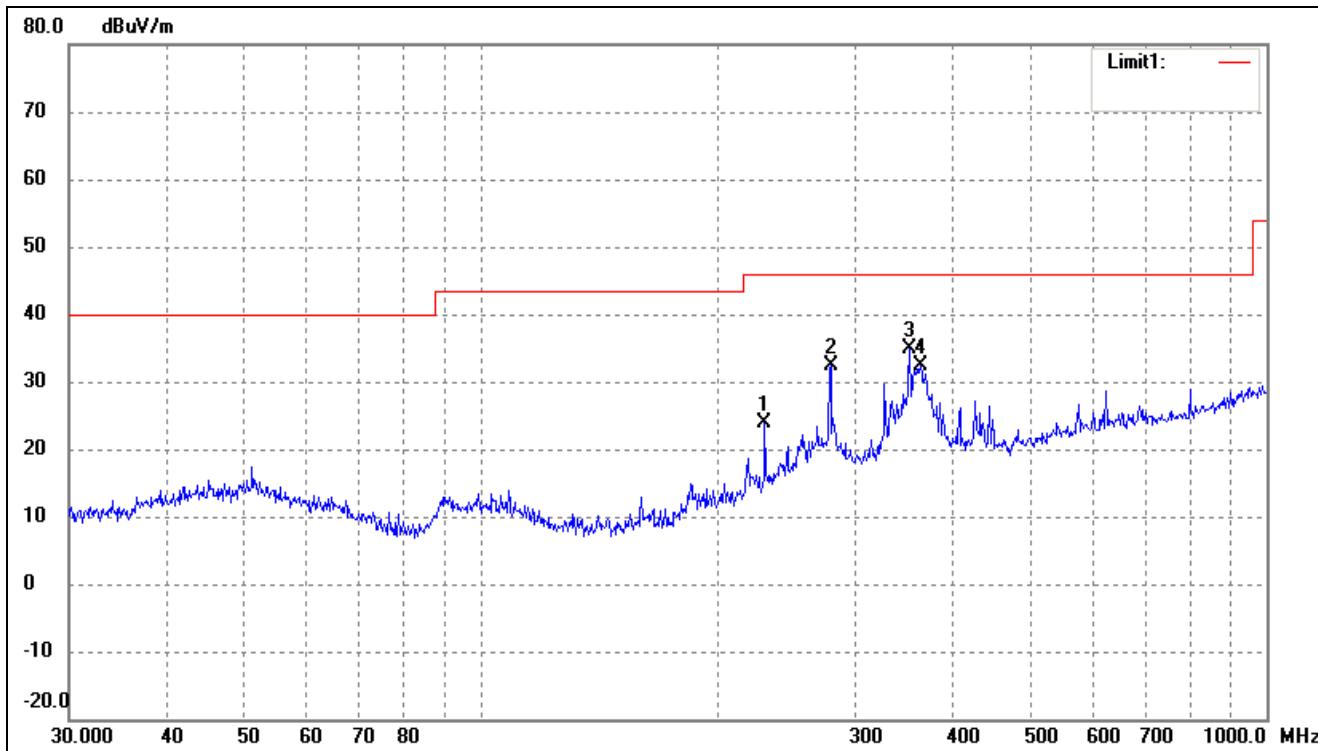
9.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Ant. Factor} + \text{Cable Loss} - \text{Ampl. Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -6dB μ V means the emission is 6dB μ V below the maximum limit for Class B. The equation for margin calculation is as follows:

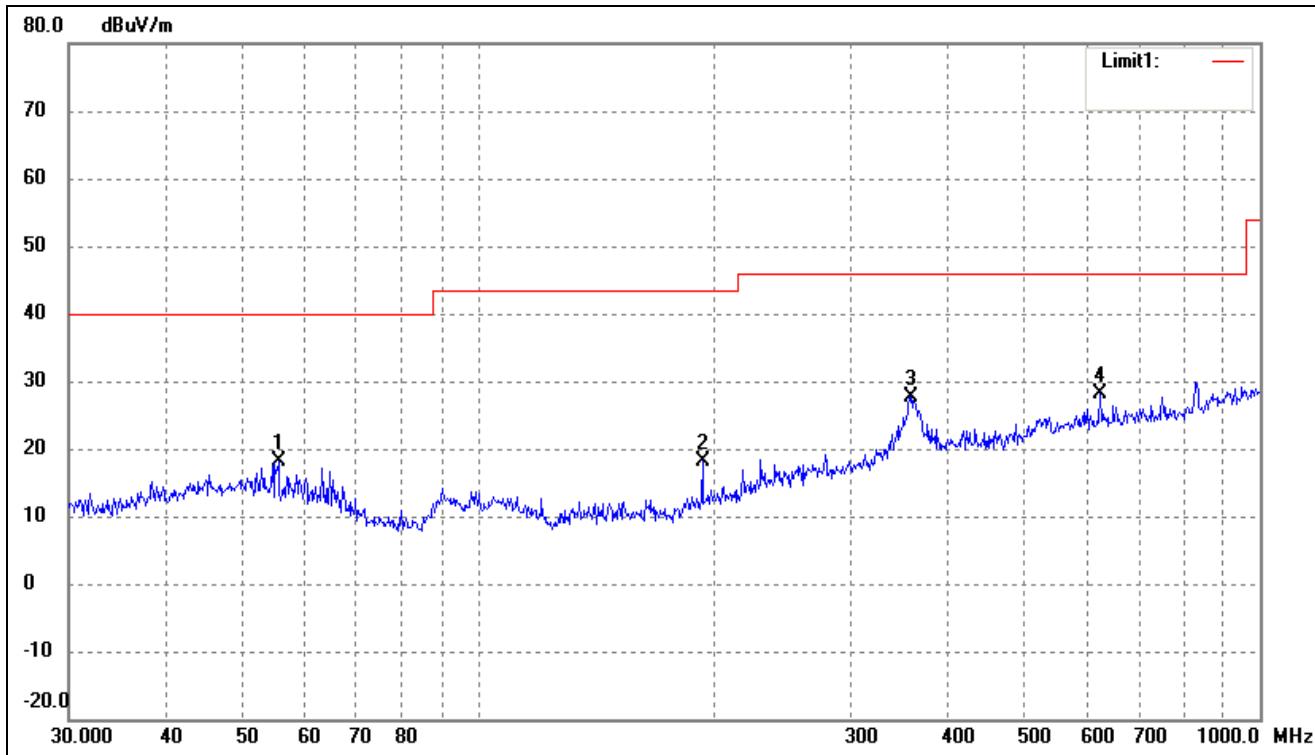
$$\text{Margin} = \text{Corr. Ampl.} - \text{FCC Part 15 Limit}$$


9.5 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

- Spurious Emission From 30 MHz to 1 GHz
- 5725-5850MHz

802.11a

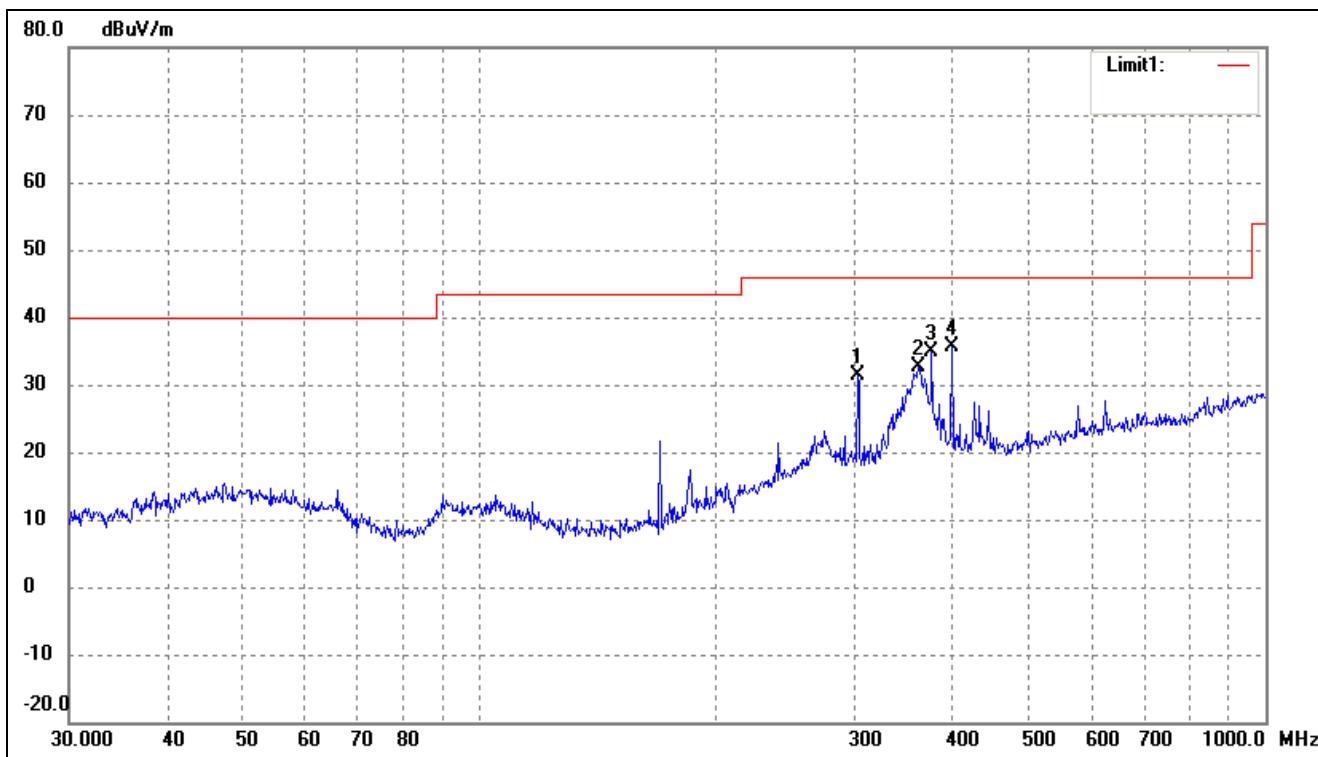

Test Channel	5745MHz(worst case)	Polarity:	Horizontal
--------------	---------------------	-----------	------------

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree ()	Height (cm)	Remark
1	230.0985	34.94	-11.06	23.88	46.00	-22.12	230	100	peak
2	279.0436	41.20	-8.87	32.33	46.00	-13.67	98	100	peak
3	351.7079	41.75	-6.92	34.83	46.00	-11.17	225	100	peak
4	362.9845	39.64	-7.23	32.41	46.00	-13.59	111	100	peak

802.11a

Test Channel	5745MHz(worst case)	Polarity:	Vertical
--------------	---------------------	-----------	----------

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree ()	Height (cm)	Remark
1	55.6094	30.43	-12.26	18.17	40.00	-21.83	270	100	peak
2	193.7728	32.07	-13.91	18.16	43.50	-25.34	93	100	peak
3	357.9287	34.81	-7.09	27.72	46.00	-18.28	241	100	peak
4	625.0780	30.94	-2.89	28.05	46.00	-17.95	109	100	peak


802.11n-HT20

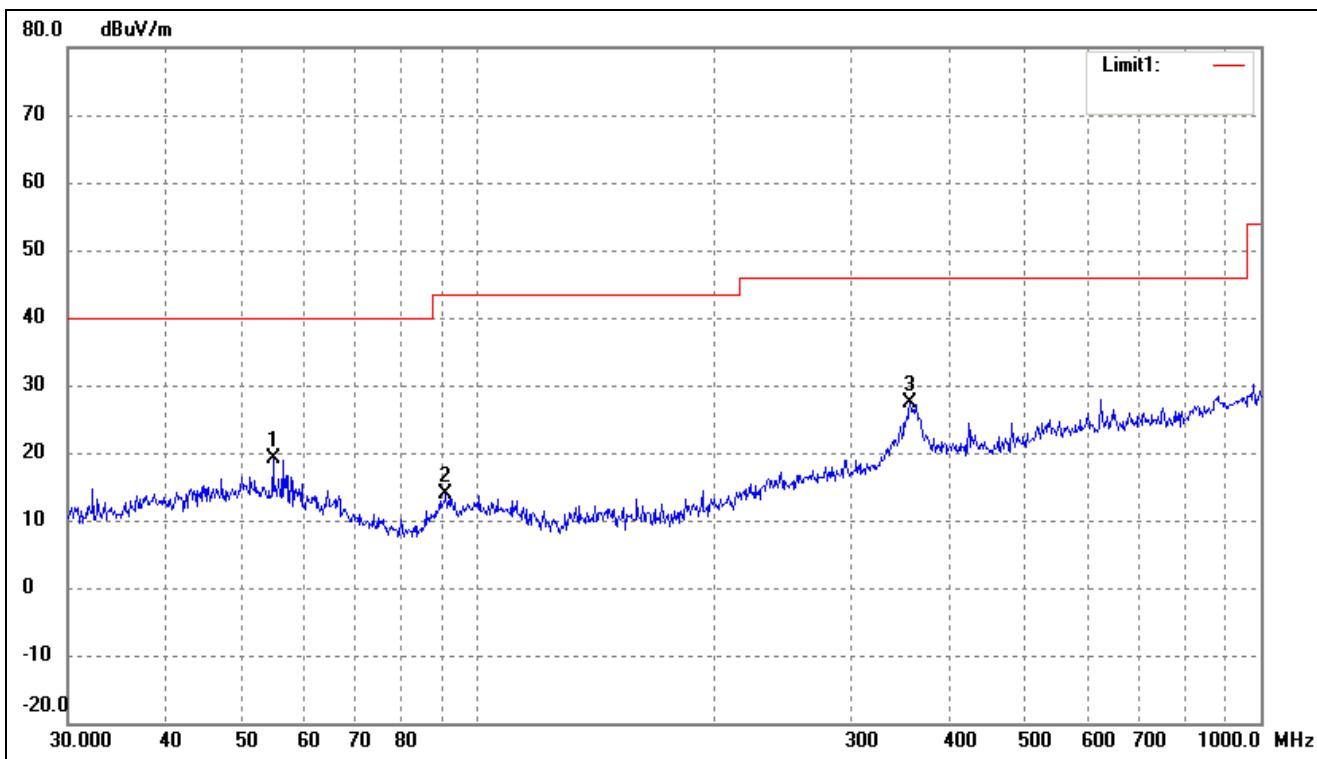
Test Channel

5745MHz(worst case)

Polarity:

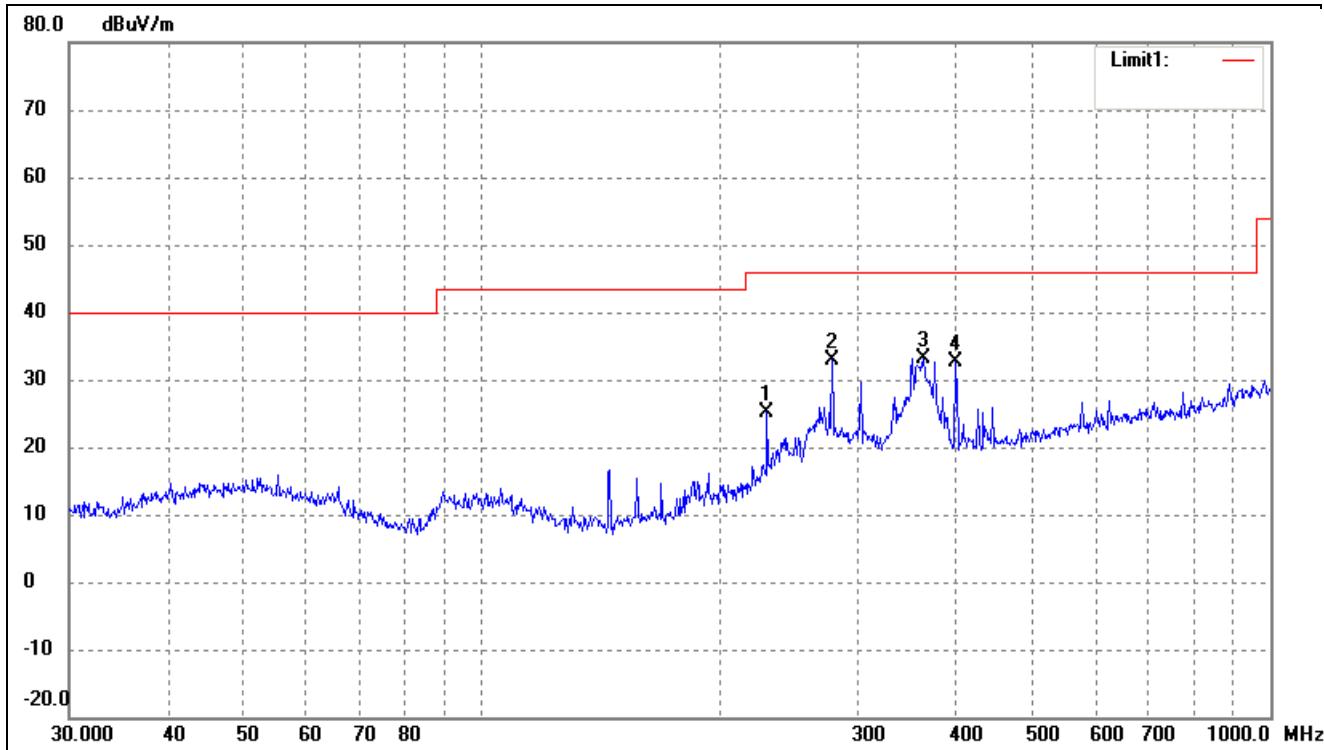
Horizontal

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree	Height (cm)	Remark
1	302.4812	39.55	-8.19	31.36	46.00	-14.64	119	100	peak
2	361.7139	39.77	-7.19	32.58	46.00	-13.42	161	100	peak
3	375.9385	41.87	-7.11	34.76	46.00	-11.24	90	100	peak
4	399.0302	42.36	-6.79	35.57	46.00	-10.43	263	100	peak


802.11n-HT20

Test Channel

5745MHz(worst case)

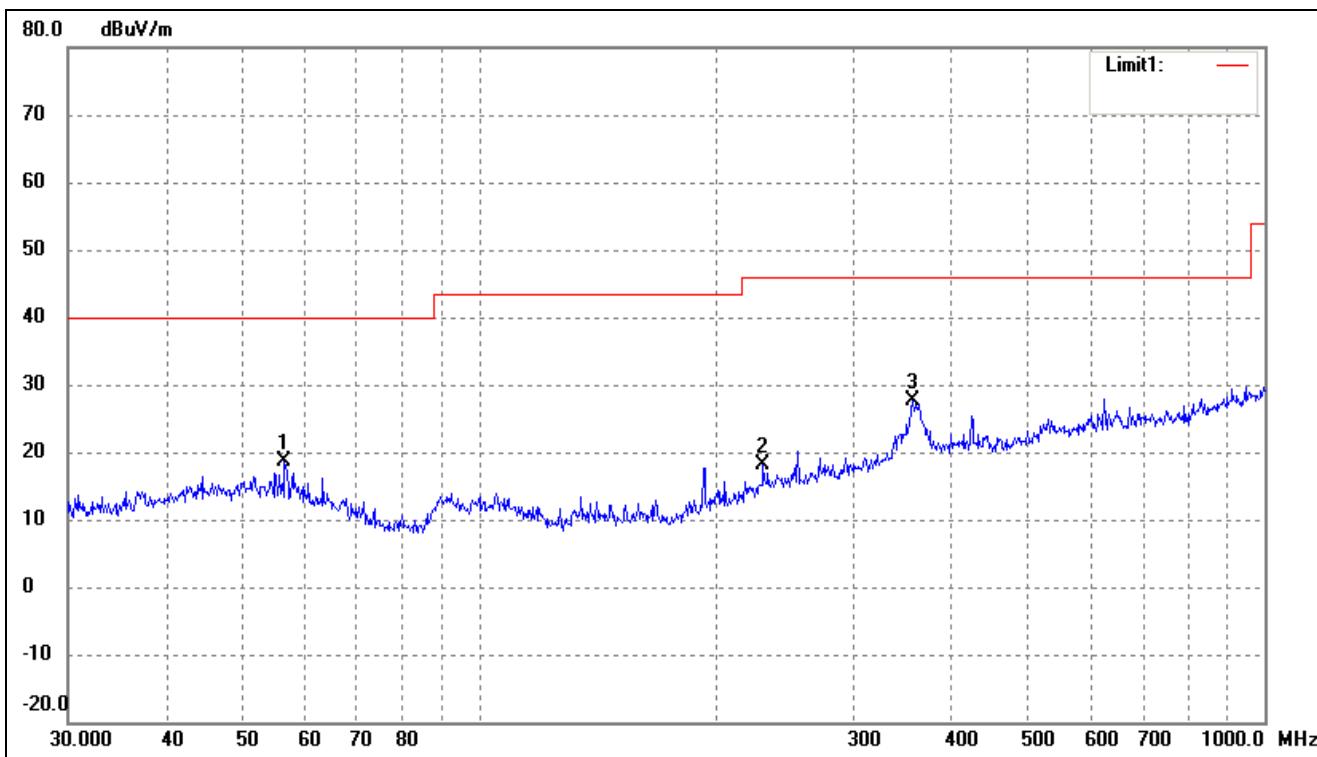

Polarity:

Vertical

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree	Height (cm)	Remark
1	54.8348	31.13	-12.08	19.05	40.00	-20.95	226	100	peak
2	91.1746	27.51	-13.63	13.88	43.50	-29.62	315	100	peak
3	356.6758	34.32	-7.06	27.26	46.00	-18.74	75	100	peak

802.11n-HT40			
Test Channel	5755MHz(worst case)	Polarity:	Horizontal

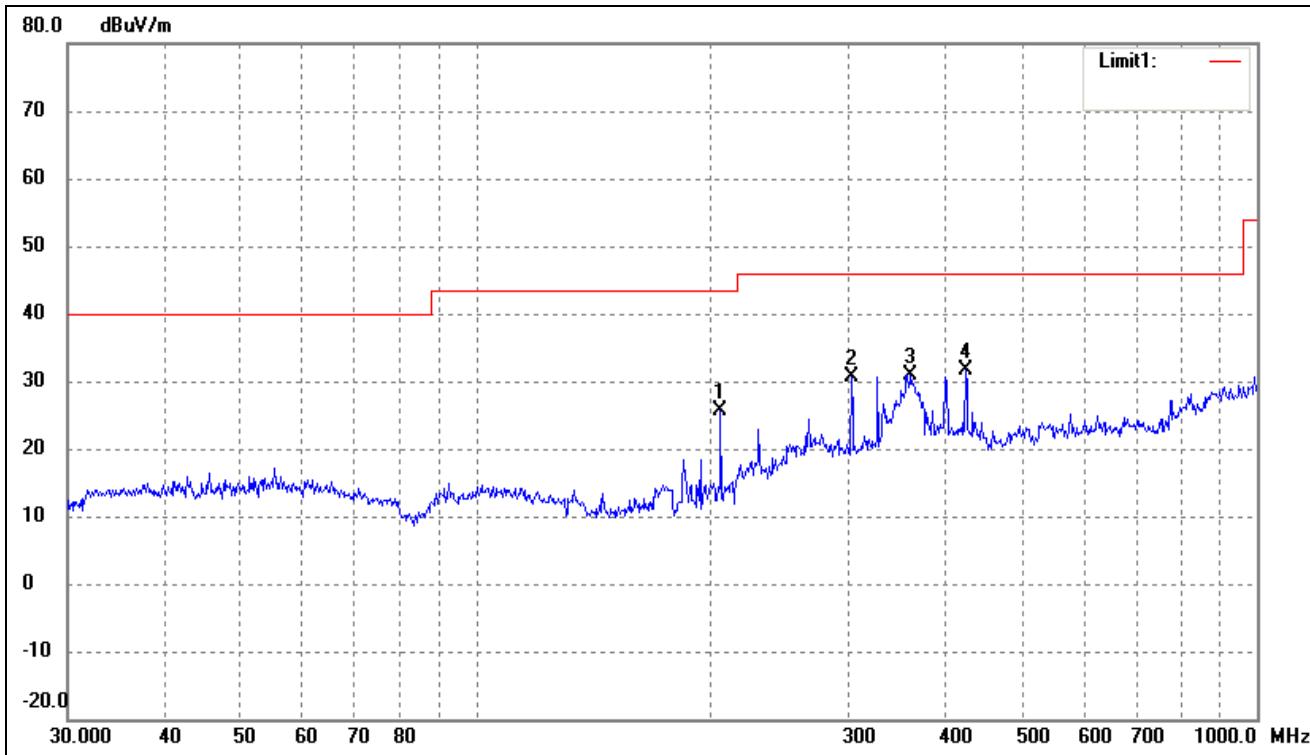
No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree ()	Height (cm)	Remark
1	230.0985	36.25	-11.06	25.19	46.00	-20.81	108	100	peak
2	278.0669	41.75	-8.90	32.85	46.00	-13.15	146	100	peak
3	362.9845	40.35	-7.23	33.12	46.00	-12.88	118	100	peak
4	399.0302	39.46	-6.79	32.67	46.00	-13.33	116	100	peak


802.11n-HT40

Test Channel

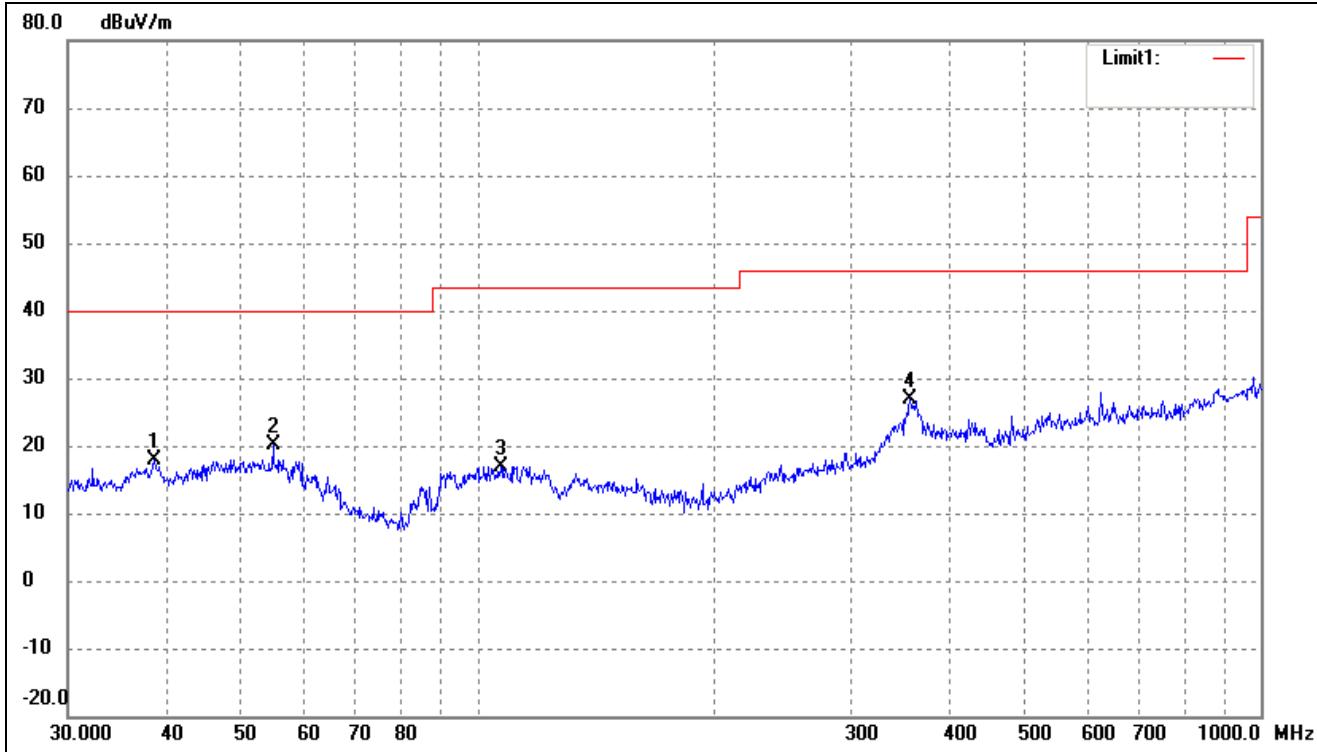
5755MHz(worst case)

Polarity:


Vertical

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree	Height (cm)	Remark
1	56.5929	31.21	-12.60	18.61	40.00	-21.39	80	100	peak
2	230.0985	29.20	-11.06	18.14	46.00	-27.86	93	100	peak
3	356.6758	34.63	-7.06	27.57	46.00	-18.43	75	100	peak

802.11ac-HT80


Test Channel	5775MHz(worst case)	Polarity:	Horizontal
--------------	---------------------	-----------	------------

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree	Height (cm)	Remark
1	205.6750	38.80	-13.07	25.73	43.50	-17.77	196	100	peak
2	302.4812	38.80	-8.19	30.61	46.00	-15.39	170	100	peak
3	360.4476	38.02	-7.16	30.86	46.00	-15.14	150	100	peak
4	423.5403	37.75	-6.23	31.52	46.00	-14.48	128	100	peak

802.11ac-HT80

Test Channel	5775MHz(worst case)	Polarity:	Vertical
--------------	---------------------	-----------	----------

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree	Height (cm)	Remark
1	38.7518	30.98	-12.99	17.99	40.00	-22.01	64	100	peak
2	54.8348	32.13	-12.08	20.05	40.00	-19.95	138	100	peak
3	107.1337	30.51	-13.58	16.93	43.50	-26.57	58	100	peak
4	356.6757	33.82	-7.06	26.76	46.00	-19.24	90	100	peak

Note: The Restricted Bandedge was tested in Horizontal /Vertical and the worst case position data was reported.

- For the frequency band 5.725-5.850GHz (802.11a)
- Harmonics And Spurious Emissions

Frequency (MHz)	Reading (dBuV/m)	Correct dB	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polar	Detector
Low Channel (5745MHz)							
11490	51.35	9.02	60.37	74	-13.63	H	PK
11490	36.52	9.02	45.54	54	-8.46	H	AV
11490	52.87	9.02	61.89	74	-12.11	V	PK
11490	35.98	9.02	45.00	54	-9.00	V	AV
Middle Channel (5785MHz)							
11570	52.69	8.98	61.67	74	-12.33	H	PK
11570	34.25	8.98	43.23	54	-10.77	H	AV
11570	53.31	8.98	62.29	74	-11.71	V	PK
11570	37.21	8.98	46.19	54	-7.81	V	AV
High Channel (5825MHz)							
11650	53.21	8.94	62.15	74	-11.85	H	PK
11650	34.98	8.94	43.92	54	-10.08	H	AV
11650	55.65	8.94	64.59	74	-9.41	V	PK
11650	35.14	8.94	44.08	54	-9.92	V	AV

- Out of Band edge for 5725-5850MHz

Test CH.	Test Segment	Result dBm/MHz	Limit dBm/MHz
	MHz		
Lowest	Below 5715	-38.25	-27
	5715 to 5725	-42.31	-17
Highest	5850 to 5860	-39.55	-17
	Above 5860	-42.65	-27

Note: the data just list the worst cases

- For the frequency band 5.725-5.850GHz (802.11n HT20)
- Harmonics And Spurious Emissions

Frequency (MHz)	Reading (dBuV/m)	Correct dB	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polar	Detector
Low Channel (5745MHz)							
11490	52.14	9.02	61.16	74	-12.84	H	PK
11490	34.87	9.02	43.89	54	-10.11	H	AV
11490	53.02	9.02	62.04	74	-11.96	V	PK
11490	35.35	9.02	44.37	54	-9.63	V	AV
Middle Channel (5785MHz)							
11570	54.21	8.98	63.19	74	-10.81	H	PK
11570	35.54	8.98	44.52	54	-9.48	H	AV
11570	51.87	8.98	60.85	74	-13.15	V	PK
11570	37.21	8.98	46.19	54	-7.81	V	AV
High Channel (5825MHz)							
11650	52.32	8.94	61.26	74	-12.74	H	PK
11650	35.11	8.94	44.05	54	-9.95	H	AV
11650	50.25	8.94	59.19	74	-14.81	V	PK
11650	35.65	8.94	44.59	54	-9.41	V	AV

- Out of Band edge for 5725-5850MHz

Test CH.	Test Segment		Result	Limit
	MHz		dBm/MHz	dBm/MHz
Lowest	Below 5715		-39.41	-27
	5715 to 5725		-42.32	-17
Highest	5850 to 5860		-41.02	-17
	Above 5860		-37.47	-27

Note: the data just list the worst cases

Note: this EUT was tested in the low, high channel and the worst case position data was reported.

- For the frequency band 5.725-5.850GHz (802.11n HT40)
- Harmonics And Spurious Emissions

Frequency (MHz)	Reading (dBuV/m)	Correct dB	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polar	Detector
Low Channel (5755MHz)							
11510	52.12	9.04	61.16	74	-12.84	H	PK
11510	34.38	9.04	43.42	54	-10.58	H	AV
11510	55.12	9.04	64.16	74	-9.84	V	PK
11510	35.07	9.04	44.11	54	-9.89	V	AV
High Channel (5795MHz)							
11590	52.57	8.96	61.53	74	-12.47	H	PK
11590	35.29	8.96	44.25	54	-9.75	H	AV
11590	53.34	8.96	62.30	74	-11.7	V	PK
11590	34.11	8.96	43.07	54	-10.93	V	AV

- Out of Band edge for 5725-5850MHz

Test CH.	Test Segment		Result	Limit
	MHz		dBm/MHz	dBm/MHz
Lowest	Below 5715		-42.65	-27
	5715 to 5725		-38.65	-17
Highest	5850 to 5860		-42.11	-17
	Above 5860		-37.44	-27
Note: the data just list the worst cases				

- For the frequency band 5.725-5.850GHz (802.11ac VH80)
- Harmonics And Spurious Emissions

Frequency (MHz)	Reading (dBuV/m)	Correct dB	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polar H/V	Detector
5775MHz							
11550	54.25	8.96	63.21	74	-10.79	H	PK
11550	35.31	8.96	44.27	54	-9.73	H	AV
11550	52.57	8.96	61.53	74	-12.47	V	PK
11550	34.55	8.96	43.51	54	-10.49	V	AV

- Out of Band edge for 5725-5850MHz

Test CH.	Test Segment		Result	Limit
	MHz		dBm/MHz	dBm/MHz
Lowest	Below 5715		-39.55	-27
	5715 to 5725		-37.21	-17
Highest	5850 to 5860		-36.11	-17
	Above 5860		-40.28	-27

Note: the data just list the worst cases

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

10. Frequency Stability

10.1 Standard Applicable

According to §15.407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

10.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode.

10.3 Summary of Test Results/Plots

U-NII-1:5725-5850MHz worst case at 802.11a middle channel				
Voltage(%)	Power(VDC)	TEMP(°C)	Freq.Dev(Hz)	Deviation
100%	7.6	-30	132	0.0228
100%		-20	102	0.0176
100%		-10	151	0.0261
100%		0	128	0.0221
100%		+10	136	0.0235
100%		+20	125	0.0216
100%		+30	118	0.0204
100%		+40	122	0.0211
100%		+50	112	0.0194
Low Battery power	6.8	+20	131	0.0226
High Battery power	8.4	+20	138	0.0239

***** END OF REPORT *****