

RADIO TEST REPORT

FCC ID

: 2ARXK-VHC25

Equipment

: Wireless Edge Server

Brand Name

: VeeaHub

Model Name

: VHC25,VHC20

Applicant

: Veea Inc.

164 E 83rd Street, NEW YORK, United States, 10028

Manufacturer

: Veea Inc.

164 E 83rd Street, NEW YORK, United States, 10028

Standard

: 47 CFR FCC Part 15.247

The product was received on Aug. 09, 2021, and testing was started from Aug. 11, 2021 and completed on Sep. 18, 2021. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Page Number

: 1 of 33

Issued Date

: Jan. 13, 2022

Report Version : 01

Table of Contents

Histo	listory of this test report3			
Sum	mary of Test Result	4		
1	General Description	5		
1.1	Information	5		
1.2	Applicable Standards	9		
1.3	Testing Location Information	9		
1.4	Measurement Uncertainty	10		
2	Test Configuration of EUT	11		
2.1	Test Channel Mode	11		
2.2	The Worst Case Measurement Configuration	12		
2.3	EUT Operation during Test	13		
2.4	Accessories	14		
2.5	Support Equipment	14		
2.6	Test Setup Diagram	15		
3	Transmitter Test Result	18		
3.1	AC Power-line Conducted Emissions	18		
3.2	DTS Bandwidth	20		
3.3	Maximum Conducted Output Power	21		
3.4	Power Spectral Density	24		
3.5	Emissions in Non-restricted Frequency Bands	26		
3.6	Emissions in Restricted Frequency Bands	27		
4	Test Equipment and Calibration Data	31		
	endix A. Test Results of AC Power-line Conducted Emissions			
• •	endix B. Test Results of DTS Bandwidth			
	endix C. Test Results of Maximum Conducted Output Power			
	endix D. Test Results of Power Spectral Density			
	endix E. Test Results of Emissions in Non-restricted Frequency Bands			
	endix F. Test Results of Emissions in Restricted Frequency Bands			
Appe	endix G. Test Results of Radiated Emission Co-location			

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Appendix H. Test Photos Photographs of EUT v01

Page Number : 2 of 33

Issued Date : Jan. 13, 2022

Report No.: FR172726AD

Report Version : 01

History of this test report

Report No.: FR172726AD

Report No.	Version	Description	Issued Date
FR172726AD	01	Initial issue of report	Jan. 13, 2022

TEL: 886-3-656-9065 Page Number : 3 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

Summary of Test Result

Report No.: FR172726AD

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

- The test configuration, test mode and test software were written in this test report are declared by the manufacturer.
- 2. The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen Report Producer: Wendy Pan

TEL: 886-3-656-9065 Page Number : 4 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	IEEE Std.	Ch. Frequency (MHz)	Channel Number
2400-2483.5	802.15.4	2405-2480	11-26 [26]

Report No.: FR172726AD

For Radio 4

TOT RUGIO T			
Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.15.4	5	1

Note:

- 802.15.4 uses a O-QPSK (250kbps) modulation.
- BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number: 5 of 33
FAX: 886-3-656-9085 Issued Date: Jan. 13, 2022

1.1.2 Antenna Information

Ant.	Brand Name	Model Name	Antenna Type	Connector	Gain (dBi)
1	WNC	VHC25	PIFA	I-PEX	
2	WNC	VHC25	PIFA	I-PEX	Note 1
3	WNC	VHC25	PIFA	I-PEX	Note 1
4	WNC	VHC25	PIFA	I-PEX	

Report No.: FR172726AD

Note 1:

	Port							Gain (d	Bi)	
Ant.	WLAN 2.4GHz	WLAN 5GHz UNII-3	WLAN 5GHz UNII-1	Bluetooth BR/EDR	Bluetooth LE or IEEE802. 15.4	WLAN 2.4GHz	WLAN 5GHz UNII-3	WLAN 5GHz UNII-1	Bluetooth BR/EDR	Bluetooth LE or IEEE802. 15.4
1	-	-	2	1	-	-	-	3.6	2.3	-
2	1	2	-	-	-	2.2	3.3	-	-	-
3	-	-	1	-	1	-	-	3.5	-	1.9
4	2	1	-	-	-	1.8	3.4	-	-	-

Note 2: The above information was declared by manufacturer.

Note 3: Directional gain information

TEL: 886-3-656-9065 Page Number : 6 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

Type	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{sat}} \left\{ \sum_{k=1}^{N_{sat}} \mathbf{g}_{j,k} \right\}^{2}}{N_{sat}} \right]$
BF	Directiona lGain = $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{2S}} \left\{ \sum_{k=1}^{N_{2SS}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$	$Directional Gain = 10 \cdot \log \left[\frac{\sum_{t=1}^{N_{st}} \left\{ \sum_{k=1}^{N_{str}} \mathbf{g}_{t,k} \right\}^{2}}{N_{ANT}} \right]$

Ex.

$$\begin{split} & \text{NSS1}(\text{g1,1}) = \ 10^{\text{G1/20}} \ ; \text{NSS1}(\text{g1,2}) = \ 10^{\text{G2/20}} \ ; \text{NSS1}(\text{g1,2}) = \ 10^{\text{G3/20}}; \text{NSS1}(\text{g1,2}) = \ 10^{\text{G4/20}}; \\ & \text{gj,k} = & (\text{Nss1}(\text{g1,1}) \ + \ \text{Nss1}(\text{g1,2}) \ + \ \text{Nss1}(\text{g1,3}) + \ \text{Nss1}(\text{g1,4}) \)^2 \\ & \text{DG} = \ 10 \ \log[(\text{Nss1}(\text{g1,1}) \ + \ \text{Nss1}(\text{g1,2}) \ + \ \text{Nss1}(\text{g1,3}) + \ \text{Nss1}(\text{g1,4}))^2 \ / \ N_{\text{ANT}}] \Rightarrow 10 \\ & \log[(10^{\text{G1/20}} \ + \ 10^{\text{G2/20}} + \ 10^{\text{G3/20}} + \ 10^{\text{G4/20}} \)^2 \ / \ N_{\text{ANT}}] \end{split}$$
 Where ;

G1 = Ant 1 Gain; G2 = Ant 2 Gain; G3 = Ant 3 Gain; G4 = Ant 4 Gain;

5 GHz U-NII-1 DG = 6.56 dBi 5 GHz U-NII-3 DG = 6.36 dBi

For 2.4GHz:

For IEEE 802.11b/g/n/VHT/ax mode (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For 5GHz UNII-1 / UNII-3:

For IEEE 802.11a/n/ac/ax mode (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

Bluetooth / IEEE802.15.4 (1TX/1RX):

Only Port 1 can be used as transmitting/receiving antenna.

TEL: 886-3-656-9065 Page Number: 7 of 33
FAX: 886-3-656-9085 Issued Date: Jan. 13, 2022

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
802.15.4	1	0	n/a (DC>=0.98)	n/a (DC>=0.98)

Report No.: FR172726AD

N	\sim	١t	\sim	•
11	4.	w	7	ı

- DC is Duty Cycle.
- DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	From adapter				
	☑ With beamforming ☐ Without beamforming				
Beamforming Function	The product has beamforming function for n/VHT/ax in 2.4GHz and n/ac/ax in 5GHz.				
Function	☑ Point-to-multipoint ☐ Point-to-point				
Test Software Version	DOS [ver 6.1.7601]				

Note: The above information was declared by manufacturer.

1.1.5 Table for Multiple Listing

Model Name	Description
VHC25	All the model names are identical, the difference
VHC20	model names served as marketing strategy.

Note1: From the above models, model: VHC25 was selected as representative model for the test and its data was recorded in this report.

Note 2: The above information was declared by manufacturer.

1.1.6 Table for EUT Operation Information

		Description
		WLAN 2.4GHz + 5GHz Low Band + 5GHz High Band + Bluetooth BR/EDR + IEEE 802.15.4
		WLAN 2.4GHz + 5GHz Low Band + 5GHz High Band + Bluetooth BR/EDR + Bluetooth LE

Note: The above information was declared by manufacturer.

1.1.7 Table for EUT support function

Function
AP
Mesh

Note1: AP mode was selected as representative mode for AC power-line conducted emissions and Emissions in Restricted Frequency Bands below 1GHz test and its data was recorded in this report.

Note2: The above information was declared by manufacturer.

TEL: 886-3-656-9065 Page Number : 8 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR172726AD

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 662911 D01 v02r01
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information

Test Lab. : Sporton International Inc. Hsinchu Laboratory

Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

(TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085

Test site Designation No. TW3787 with FCC.

Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH01-CB	Caster Chang	23.2~24.2 / 53~55	Aug. 13, 2021 ~ Sep. 18, 2021
Radiated<1GHz	10CH01-CB	Peter Wu	23~24 / 58~59	Aug. 30, 2021 ~ Dec. 03, 2021
Radiated>1GHz	03CH03-CB	RJ Huang	23.5-24.6 / 55-59	Aug. 11, 2021 ~ Sep. 09, 2021
Radiated Co-Location	03CH06-CB	RJ Huang	25.8-28.2 / 56-59	Aug. 11, 2021 ~ Sep. 09, 2021
AC Conduction	CO01-CB	Ryo Fan	22~23 / 65~67	Aug. 27, 2021

TEL: 886-3-656-9065 Page Number : 9 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a powerpre factor (k. 2))

Report No.: FR172726AD

confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	2.0 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	1.6 dB	Confidence levels of 95%
Radiated Emissions below 1GHz	4.2 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.2 dB	Confidence levels of 95%
Conducted Emission	2.5 dB	Confidence levels of 95%
Output Power Measurement	1.3 dB	Confidence levels of 95%
Power Density Measurement	2.5 dB	Confidence levels of 95%
Bandwidth Measurement	0.9%	Confidence levels of 95%

TEL: 886-3-656-9065 Page Number: 10 of 33
FAX: 886-3-656-9085 Issued Date: Jan. 13, 2022

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
802.15.4	-
2405MHz	20
2440MHz	20
2475MHz	20
2480MHz	17

Report No.: FR172726AD

TEL: 886-3-656-9065 Page Number : 11 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item AC power-line conducted emissions			
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode Normal Link			
Normal Link – AP mode (WLAN 2.4GHz + 5GHz Low Band + 5GH CTX (Bluetooth BR/EDR + IEEE 802.15.4) + Adapter			
Normal Link – AP mode (WLAN 2.4GHz + 5GHz Low Band + 5GHz H CTX (Bluetooth BR/EDR + Bluetooth LE) + Adapter			
For operating mode 1 is the worst case and it was record in this test report.			

Report No.: FR172726AD

The Worst Case Mode for Following Conformance Tests		
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands	
Test Condition Conducted measurement at transmit chains		

Th	e Worst Case Mode for Following Conformance Tests		
Tests Item	Emissions in Restricted Frequency Bands		
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.		
Operating Mode < 1GHz	Normal Link		
EUT in Z axis Normal Link – AP mode (WLAN 2.4GHz + 5GHz Low Bar 5GHz High Band) + CTX (Bluetooth BR/EDR + IEEE 802.15.4) + Adapter			
EUT in Z axis Normal Link – AP mode (WLAN 2.4GHz + 5GHz Low Ban 5GHz High Band) + CTX (Bluetooth BR/EDR + Bluetooth LE) + Adapter			
Mode 1 has been evaluate follow this same test mode	ed to be the worst case among Mode 1~2, thus measurement for Mode 3 ~ 4 will $^{\circ}$		
3	EUT in Y axis Normal Link – AP mode (WLAN 2.4GHz + 5GHz Low Band + 5GHz High Band) + CTX (Bluetooth BR/EDR + IEEE 802.15.4) + Adapter		
4 EUT in X axis Normal Link – AP mode (WLAN 2.4GHz + 5GHz Low 5GHz High Band) + CTX (Bluetooth BR/EDR + IEEE 802.15.4) + Adapte			
For operating mode 1 is th	e worst case and it was record in this test report.		
Operating Mode > 1GHz The EUT was performed at X axis, Y axis and Z axis position t, and the case was found at Z axis. So the measurement will follow this sar configuration.			
	EUT in Z axis CTX		

TEL: 886-3-656-9065 Page Number : 12 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

The Worst Case Mode for Following Conformance Tests			
Tests Item	Simultaneous Transmission Analysis - Radiated Emission Co-location		
Test Condition	Radiated measurement		
	Normal Link		
Operating Mode	The EUT was performed at X axis, Y axis and Z axis position t, and the worst case was found at Z axis. So the measurement will follow this same test configuration.		
1	EUT in Z axis Normal Link – AP mode (WLAN 2.4GHz + 5GHz Low Band + 5GHz High Band) + CTX (Bluetooth BR/EDR + IEEE 802.15.4) + Adapter		
2	EUT in Z axis Normal Link – AP mode (WLAN 2.4GHz + 5GHz Low Band + 5GHz High Band) + CTX (Bluetooth BR/EDR + Bluetooth LE) + Adapter		
Refer to Appendix G for Radiated Emission Co-location.			

The Worst Case Mode for Following Conformance Tests			
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Eval			
Operating Mode			
1	WLAN 2.4GHz + 5GHz Low Band + 5GHz High Band + Bluetooth BR/EDR + IEEE 802.15.4		
2	WLAN 2.4GHz + 5GHz Low Band + 5GHz High Band + Bluetooth BR/EDR + Bluetooth LE		
Refer to Sporton Test Report No.: FA172726 for Co-location RF Exposure Evaluation.			

Note: The EUT can only be used in Z axis position.

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link:

During the test, the EUT operation to normal function.

TEL: 886-3-656-9065 Page Number : 13 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

2.4 Accessories

Accessories				
Equipment Name	Brand Name	Model Name	Rating	
Adapter	Veea	VHC25-30A	Input: 100-240V~50/60Hz, 1.0A Max Output: 12V, 2.5A	
Other				
RJ-45 cable*1: Non-shielded, 1.8m				

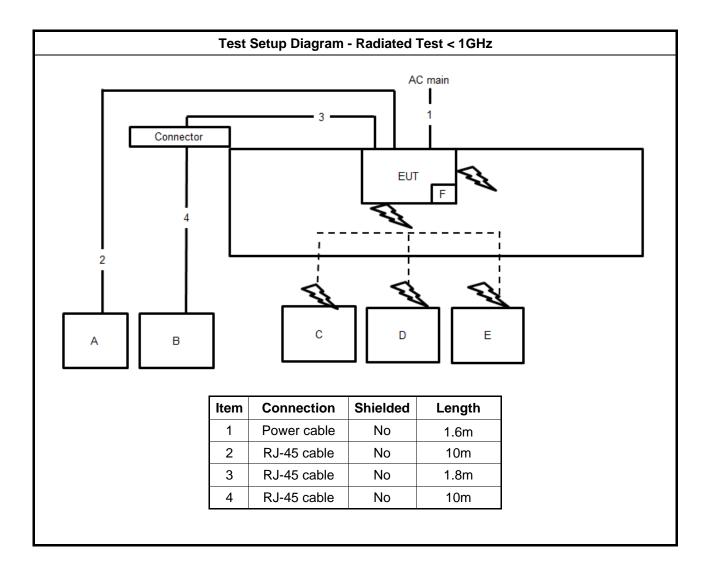
Report No.: FR172726AD

2.5 Support Equipment

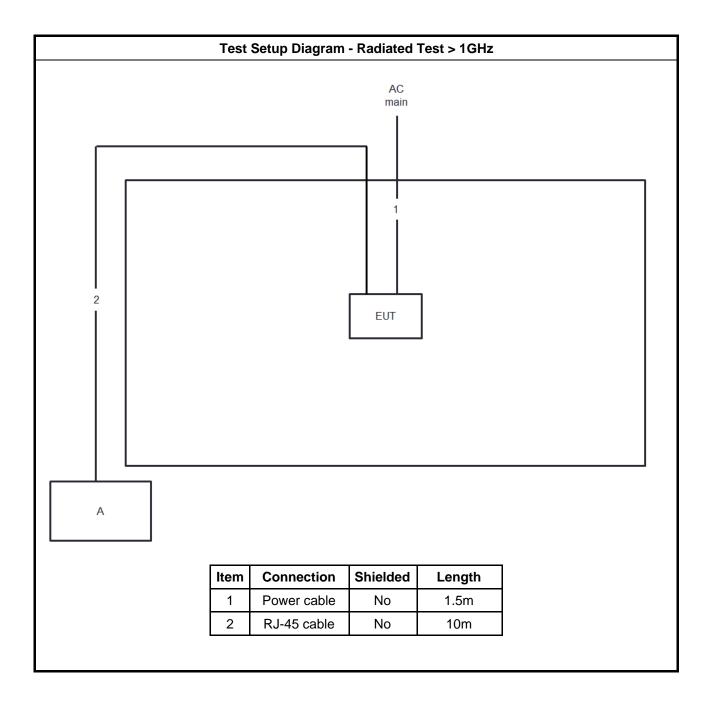
For AC Conduction and Radiated (below 1GHz):


Support Equipment						
No.	Equipment	Brand Name	Model Name	FCC ID		
Α	LAN NB	DELL	E6430	N/A		
В	WAN NB	DELL	E6430	N/A		
С	2.4G NB	DELL	E6430	N/A		
D	5GL NB	DELL	E6430	N/A		
Е	5GH NB	DELL	E6431	N/A		
F	Micro SD Card	Transcend	TS16GUSDHC10	N/A		

For Radiated (above 1GHz) and RF Conducted:


	Support Equipment					
No. Equipment		Brand Name	Model Name	FCC ID		
Α	Notebook	DELL	E4300	N/A		

TEL: 886-3-656-9065 Page Number : 14 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022


2.6 Test Setup Diagram

TEL: 886-3-656-9065 Page Number : 15 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

TEL: 886-3-656-9065 Page Number : 16 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

TEL: 886-3-656-9065 Page Number : 17 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

3 Transmitter Test Result

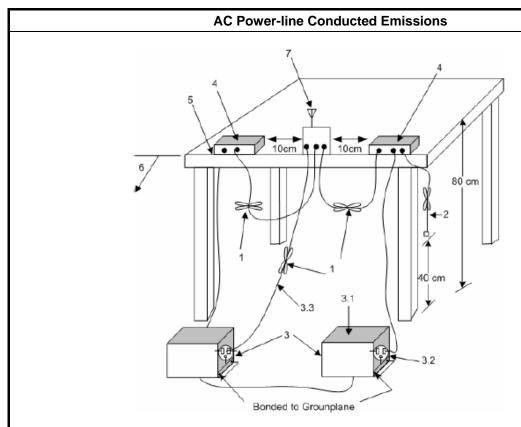
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30	60	50			
Note 1: * Decreases with the logarithm of the frequency.					

Report No.: FR172726AD

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method
Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

TEL: 886-3-656-9065 Page Number : 18 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

3.1.4 **Test Setup**

1—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

Report No.: FR172726AD

- The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.
- 3.1—All other equipment powered from additional LISN(s).
- 3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment. 3.3—LISN at least 80 cm from nearest part of EUT chassis.
- 4—Non-EUT components of EUT system being tested.
- -Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.
- -Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.
- —Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

Measurement Results Calculation

The measured Level is calculated using:

- Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- Margin = -Limit + Level

Test Result of AC Power-line Conducted Emissions 3.1.6

Refer as Appendix A

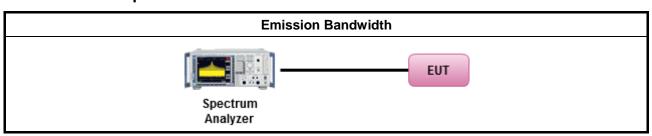
Page Number : 19 of 33 TEL: 886-3-656-9065 FAX: 886-3-656-9085 : Jan. 13, 2022 Issued Date

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit				
Systems using digital modulation techniques:				
■ 6 dB bandwidth ≥ 500 kHz.				

Report No.: FR172726AD


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method							
•	For the emission bandwidth shall be measured using one of the options below:							
	\boxtimes	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidth measurement.						
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.						
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

TEL: 886-3-656-9065 Page Number : 20 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

- If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
- Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)$ dBm
- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3 + 8$ dB dBm

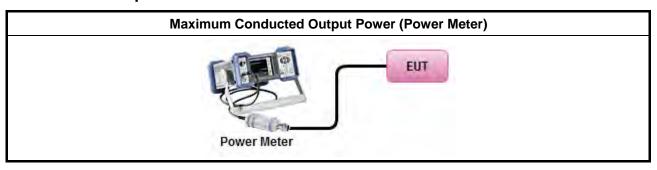
Report No.: FR172726AD

 \mathbf{P}_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, \mathbf{G}_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 21 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022


3.3.3 Test Procedures

	Test Method					
•	Max	imum Peak Conducted Output Power				
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).				
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).				
•	Max	imum Conducted Output Power				
_	[duty	cycle ≥ 98% or external video / power trigger]				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)				
	duty	cycle < 98% and average over on/off periods with duty factor				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3				
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)				
	Measurement using a power meter (PM)					
		Refer as FCC KDB 558074, clause $8.3.2.3$ & C63.10 clause $11.9.2.3.1$ Method AVGPM (using an RF average power meter).				
		Refer as FCC KDB 558074, clause $8.3.2.3 \& C63.10$ clause $11.9.2.3.2$ Method AVGPM-G (using an gate RF average power meter).				
•	For	conducted measurement.				
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.				
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + \ldots + P_n \\ \text{(calculated in linear unit [mW] and transfer to log unit [dBm])} \\ \text{EIRP}_{total} = P_{total} + DG$				

Report No.: FR172726AD

TEL: 886-3-656-9065 Page Number : 22 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

3.3.4 Test Setup

Report No.: FR172726AD

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

TEL: 886-3-656-9065 Page Number : 23 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

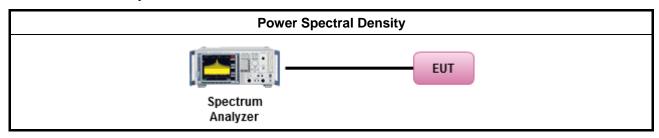
3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit ■ Power Spectral Density (PSD) ≤ 8 dBm/3kHz

Report No.: FR172726AD

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

			Test Method		
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).				
		Refer as FCC KDB 558074,	clause 8.4 & C63.10 clause 11.10 Method Max. PSD.		
•	For	onducted measurement.			
	•	f The EUT supports multiple	e transmit chains using options given below:		
		In-band power spectra spectrum analyzer for summing can be perfor first spectral bin of outp NTX output to obtain the	d sum the spectra across the outputs. Refer as FCC KDB 662911, all density (PSD). Sample all transmit ports simultaneously using a each transmit port. Where the trace bin-by-bin of each transmit port med. (i.e., in the first spectral bin of output 1 is summed with that in the but 2 and that from the first spectral bin of output 3, and so on up to the e value for the first frequency bin of the summed spectrum.). Add up values for the different transmit chains and use this as the new data		
		are measured at each maximum value (peak) summed mathematicall	sum spectral maxima across the outputs. With this technique, spectral houtput of the device at the required resolution bandwidth. The of each spectrum is determined. These maximum values are then by in linear power units across the outputs. These operations shall be over frequency spans that have different out-of-band or spurious		
		FCC KDB 662911, In-b and each transmit chair	add 10 log(N) dB, where N is the number of transmit chains. Refer as and power spectral density (PSD). Performed at each transmit chains ns shall be compared with the limit have been reduced with 10 log(N). It is shall be add 10 log(N) to compared with the limit.		

TEL: 886-3-656-9065 Page Number : 24 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

3.4.4 Test Setup

Report No.: FR172726AD

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

TEL: 886-3-656-9065 Page Number : 25 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

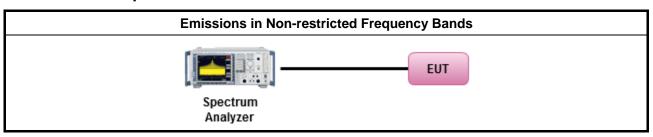
3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit				
RF output power procedure	Limit (dBc)			
Peak output power procedure	20			
Average output power procedure	30			

Report No.: FR172726AD

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
•	Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-656-9065 Page Number : 26 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490 2400/F(kHz)		48.5 - 13.8	300			
0.490~1.705 24000/F(kHz)		33.8 - 23	30			
1.705~30.0 30		29	30			
30~88	100	40	3			
88~216 150		43.5	3			
216~960 200		46	3			
Above 960	500	54	3			

Report No.: FR172726AD

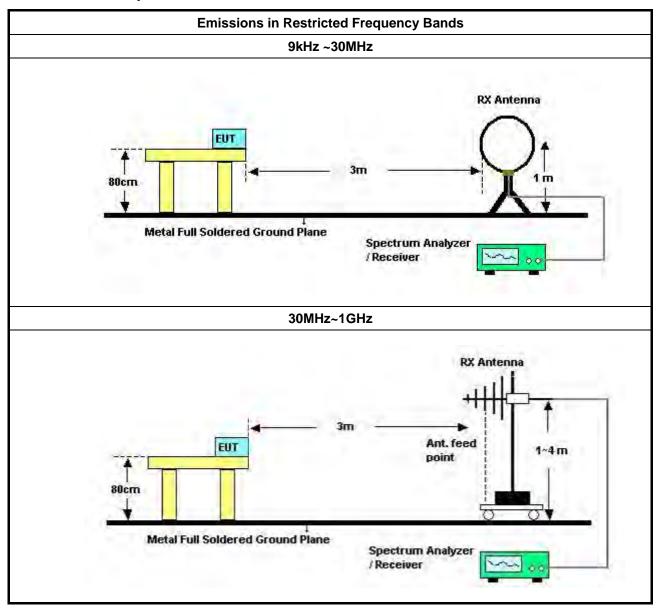
- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the ELIT
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 27 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

3.6.3 Test Procedures


	Test Method						
•	The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].						
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.						
•	For	For the transmitter unwanted emissions shall be measured using following options below:					
	•	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands. 					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).					
		Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time.					
		Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.					
•	For	or the transmitter band-edge emissions shall be measured using following options below:					
	•	Refer as FCC KDB 558074 clause 8.7 & c63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.					
	•	Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements.					
	•	Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).					
	•	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB					
	•	For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.					

Report No.: FR172726AD

TEL: 886-3-656-9065 Page Number : 28 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

Test Setup 3.6.4

Report No.: FR172726AD

TEL: 886-3-656-9065 Page Number : 29 of 33 FAX: 886-3-656-9085 : Jan. 13, 2022 **Issued Date**

Above 1GHz

Spectrum Analyzer

Above 1GHz

AMAX 30cm

Spectrum Analyzer

Report No.: FR172726AD

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

TEL: 886-3-656-9065 Page Number : 30 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.4GHz	Mar. 03, 2021	Mar. 02, 2022	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Jan. 06, 2021	Jan. 05, 2022	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Mar. 07, 2021	Mar. 06, 2022	Conduction (CO01-CB)
Pulse Limiter	Rohde&Schwa rz	ESH3-Z2	100430	9kHz ~ 30MHz	Jan. 30, 2021	Jan. 29, 2022	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	May 19, 2021	May 18, 2022	Conduction (CO01-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
10m Semi Anechoic Chamber NSA	TDK	SAC-10M	10CH01-CB	30MHz~1GHz 10m,3m	Jan. 28, 2021	Jan. 27, 2022	Radiation (10CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10783	9kHz ~ 1.3GHz	Mar. 11, 2021	Mar. 10, 2022	Radiation (10CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10784	9kHz ~ 1.3GHz	Mar. 11, 2021	Mar. 10, 2022	Radiation (10CH01-CB)
Low Cable	Woken	SUCOFLEX 104	low cable-01	25MHz ~ 1GHz	Oct. 20, 2020	Oct. 19, 2021	Radiation (10CH01-CB)
Low Cable	Woken	SUCOFLEX 104	low cable-01	25MHz ~ 1GHz	Oct. 19, 2021	Oct. 18, 2022	Radiation (10CH01-CB)
High Cable	Woken	SUCOFLEX 104	low cable-02	25MHz ~ 1GHz	Oct. 20, 2020	Oct. 19, 2021	Radiation (10CH01-CB)
High Cable	Woken	SUCOFLEX 104	low cable-02	25MHz ~ 1GHz	Oct. 19, 2021	Oct. 18, 2022	Radiation (10CH01-CB)
Bilog Antenna with 6dB Attenuator	Chase & EMCI	CBL6111A &N-6-06	1543 &AT-N0609	30MHz ~ 1GHz	Jul. 01, 2021	Jun. 30, 2022	Radiation (10CH01-CB)
EMI Test Receiver	Rohde&Schwa rz	ESCI	100186	9kHz ~ 3GHz	Jul. 12, 2021	Jul. 11, 2022	Radiation (10CH01-CB)
Spectrum Analyzer	Rohde&Schwa rz	FSV30	101026	9kHz ~ 30GHz	Mar. 08, 2021	Mar. 07, 2022	Radiation (10CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Apr. 14, 2021	Apr. 13, 2022	Radiation (10CH01-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (10CH01-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH03-CB	1GHz ~18GHz 3m	May 06, 2021	May 05, 2022	Radiation (03CH03-CB)
Horn Antenna	ETS • Lindgren	3115	6821	750MHz~18GHz	Jan. 26, 2021	Jan. 25, 2022	Radiation (03CH03-CB)
Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170507	15GHz ~ 40GHz	Jun. 18, 2021	Jun. 17, 2022	Radiation (03CH03-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Page Number : 31 of 33 Issued Date : Jan. 13, 2022

Report No.: FR172726AD

Report Version : 01

Instrument	Brand	Model No.	Serial No.	Characteristics Calibration Date		Calibration Due Date	Remark
Pre-Amplifier	Agilent	8449B	3008A02097	1GHz ~ 26.5GHz Jul. 02, 2021		Jul. 01, 2022	Radiation (03CH03-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	z ~ 40GHz Jul. 13, 2021		Radiation (03CH03-CB)
Spectrum Analyzer	R&S	FSP40	100019	9kHz ~ 40GHz	Jun. 04, 2021	Jun. 03, 2022	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-20+29	1GHz ~ 18GHz	Aug. 20, 2021	Aug. 19, 2022	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-29	1GHz ~ 18GHz	Aug. 20, 2021	Aug. 19, 2022	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-40G#1	18GHz ~ 40 GHz	Jul. 15, 2021	Jul. 14, 2022	Radiation (03CH04-CB)
RF Cable-high	Woken	RG402	High Cable-40G#2	18GHz ~ 40 GHz	Jul. 15, 2021	Jul. 14, 2022	Radiation (03CH04-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH03-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH06-CB	1GHz ~18GHz 3m	Oct. 02, 2020	Oct. 01, 2021	Radiation (03CH06-CB)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	BBHA 9120 D 1370	1GHz~18GHz	Sep. 21, 2020	Sep. 20, 2021	Radiation (03CH06-CB)
Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170507	15GHz ~ 40GHz	Jun. 18, 2021	Jun. 17, 2022	Radiation (03CH06-CB)
Pre-Amplifier	Agilent	83017A	MY53270064	0.5GHz ~ 26.5GHz	May 06 2021 I		Radiation (03CH06-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz Jul. 13, 2021		Jul. 12, 2022	Radiation (03CH06-CB)
Spectrum analyzer	R&S	FSP40	100080	9kHz~40GHz	Dec. 15, 2020	Dec. 14, 2021	Radiation (03CH06-CB)
RF Cable-high	Woken	RG402	High Cable-05	1GHz~18GHz	Oct. 05, 2020	Oct. 04, 2021	Radiation (03CH06-CB)
RF Cable-high	Woken	RG402	High Cable-05+24	1GHz~18GHz	Oct. 05, 2020	Oct. 04, 2021	Radiation (03CH06-CB)
RF Cable-high	Woken	RG402	High Cable-40G#1	18GHz ~ 40 GHz	18GHz ~ 40 GHz Jul. 15, 2021		Radiation (03CH06-CB)
RF Cable-high	Woken	RG402	High Cable-40G#2	18GHz ~ 40 GHz Jul. 15, 2021		Jul. 14, 2022	Radiation (03CH06-CB)
Test Software	SPORTON	SENSE	V5.10	- N.C.R.		N.C.R.	Radiation (03CH06-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz May 21, 2021		May 20, 2022	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 26.5 GHz Oct. 05, 2020		Oct. 04, 2021	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz –26.5 GHz Oct. 05, 2020		Oct. 04, 2021	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz –26.5 GHz	Oct. 05, 2020	Oct. 04, 2021	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz –26.5 GHz	Oct. 05, 2020	Oct. 04, 2021	Conducted (TH01-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Page Number : 32 of 33 Issued Date : Jan. 13, 2022

Report No.: FR172726AD

Report Version : 01

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-10	1 GHz –26.5 GHz	Oct. 05, 2020	Oct. 04, 2021	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-30	1 GHz –26.5 GHz	Oct. 05, 2020	Oct. 04, 2021	Conducted (TH01-CB)
Power Sensor	Agilent	E9327A	US40442088	50MHz~18GHz	Feb. 23, 2021	Feb. 22, 2022	Conducted (TH01-CB)
Power Meter	Agilent	E4416A	GB41291199	50MHz~18GHz	Feb. 23, 2021	Feb. 22, 2022	Conducted (TH01-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conducted (TH01-CB)

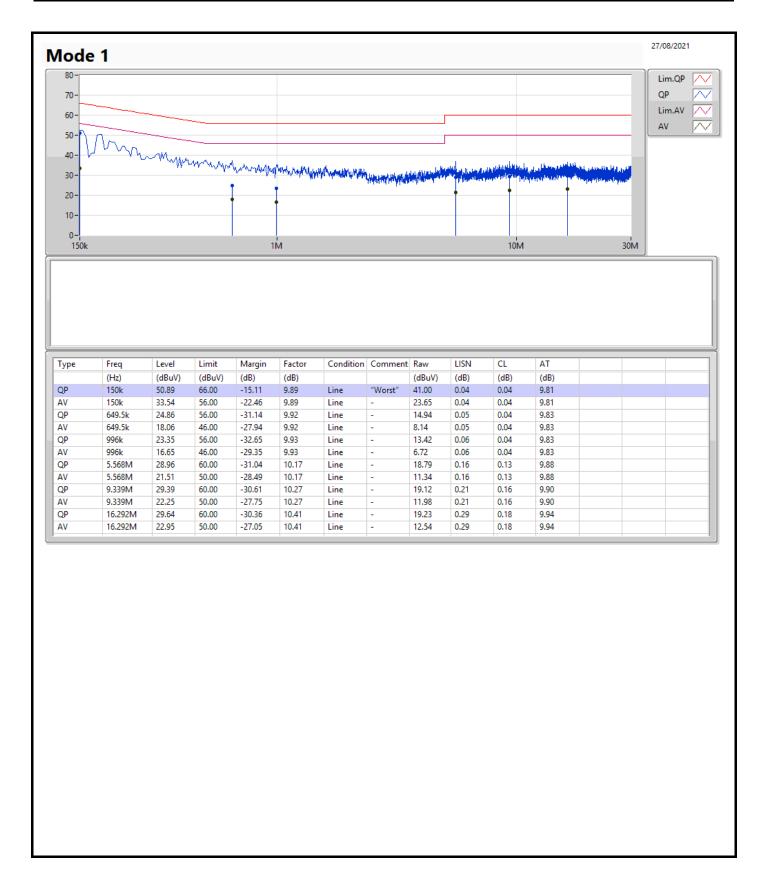
Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

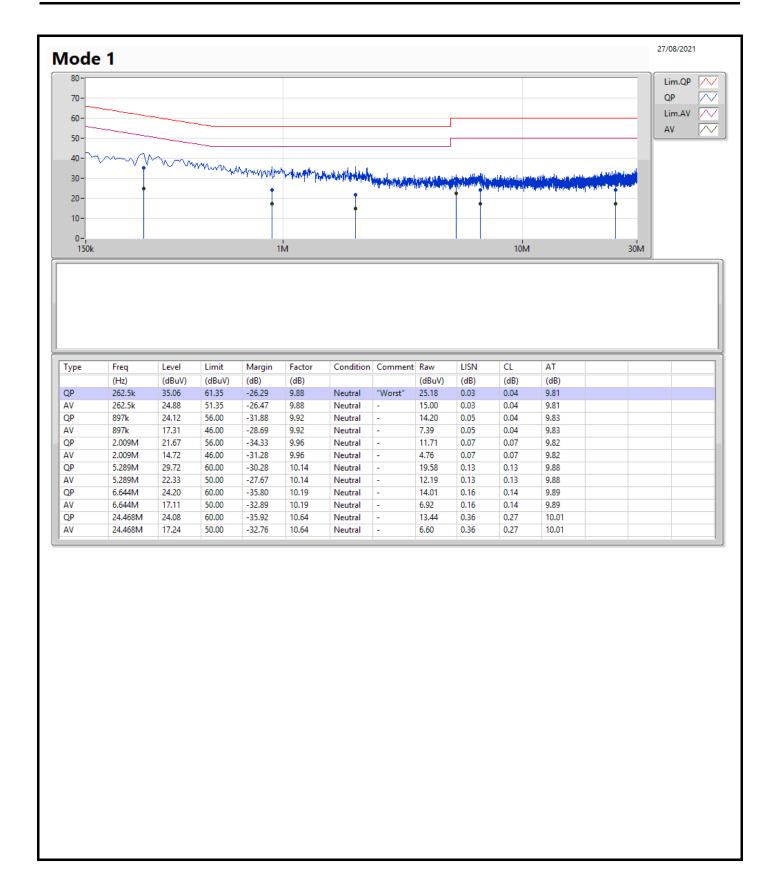
TEL: 886-3-656-9065 Page Number : 33 of 33
FAX: 886-3-656-9085 Issued Date : Jan. 13, 2022

Conducted Emissions at Powerline

Appendix A


Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Condition
Mode 1	Pass	QP	150k	50.89	66.00	-15.11	Line


Sporton International Inc. Hsinchu Laboratory Page No. Report No.

: 1 of 3 : FR172726AD

Page No. : 2 of 3
Report No. : FR172726AD

Page No. : 3 of 3
Report No. : FR172726AD

Summary

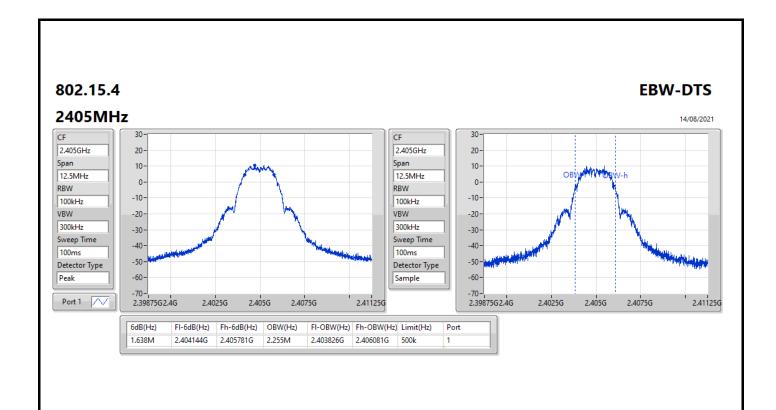
Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
802.15.4	1.65M	2.274M	2M27D1D	1.625M	2.255M

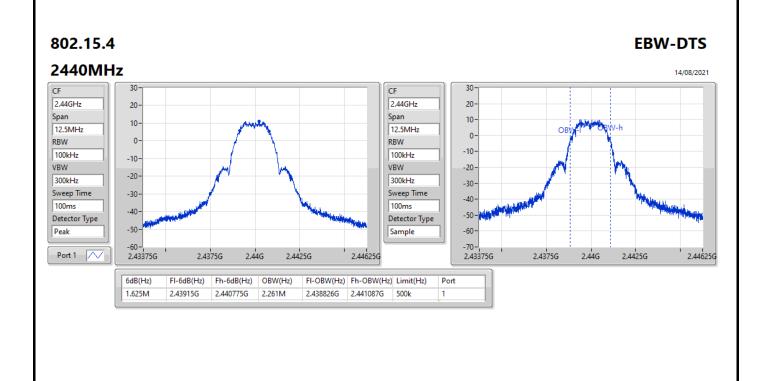
 $Max\text{-N }dB = Maximum \ 6dB \ down \ bandwidth; \ Max\text{-OBW} = Maximum \ 99\% \ occupied \ bandwidth; \ Min\text{-OBW} = Minimum \ 99\% \ occu$

Sporton International Inc. Hsinchu Laboratory

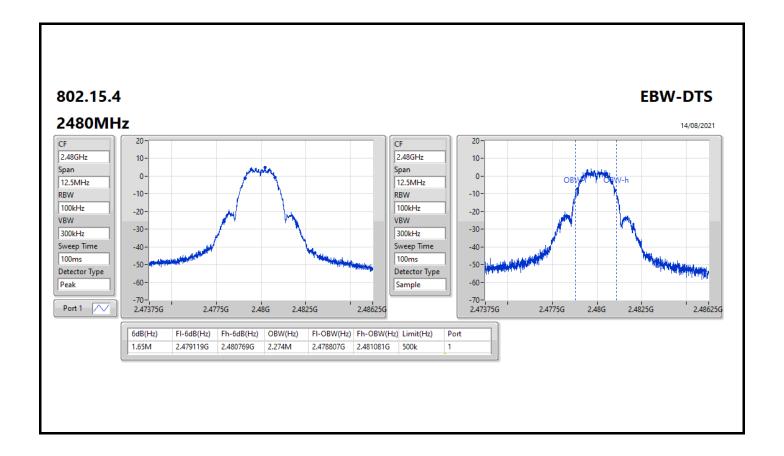
Page No. : 1 of 4

Report No. : FR172726AD


Result


Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
802.15.4	-	-	-	-
2405MHz	Pass	500k	1.638M	2.255M
2440MHz	Pass	500k	1.625M	2.261M
2480MHz	Pass	500k	1.65M	2.274M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth


Sporton International Inc. Hsinchu Laboratory

Page No. : 2 of 4
Report No. : FR172726AD

Page No. : 3 of 4
Report No. : FR172726AD

Page No. : 4 of 4
Report No. : FR172726AD

Average Power-DTS

Appendix C

Summary

Mode	Power (dBm)	Power (W)		
2.4-2.4835GHz	-	-		
802.15.4	15.03	0.03184		

Sporton International Inc. Hsinchu Laboratory Page No. Report No. : 1 of 2

: FR172726AD

Average Power-DTS

Appendix C

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
802.15.4	-	-	-	-
2405MHz	Pass	1.90	14.22	30.00
2440MHz	Pass	1.90	15.03	30.00
2475MHz	Pass	1.90	13.75	30.00
2480MHz	Pass	1.90	8.92	30.00

DG = Directional Gain; Port X = Port X output power

Page No. : 2 of 2 Report No. : FR172726AD

PSD-DTS Appendix D

Summary

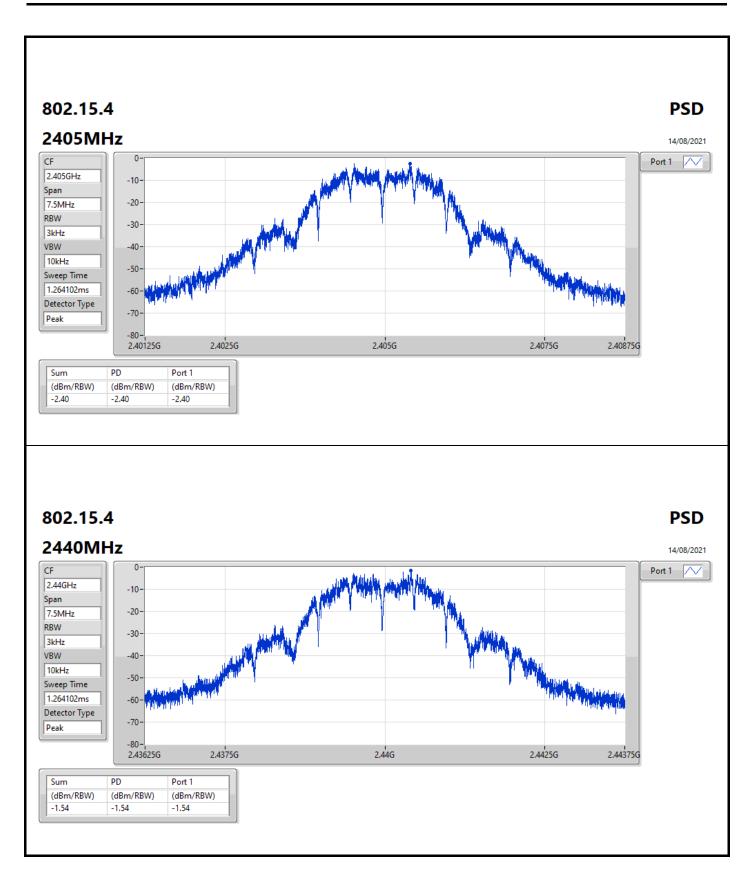
Mode	PD (dPm/DPM)			
	(dBm/RBW)			
2.4-2.4835GHz	·			
802.15.4	-1.54			

RBW = 3kHz;

Sporton International Inc. Hsinchu Laboratory

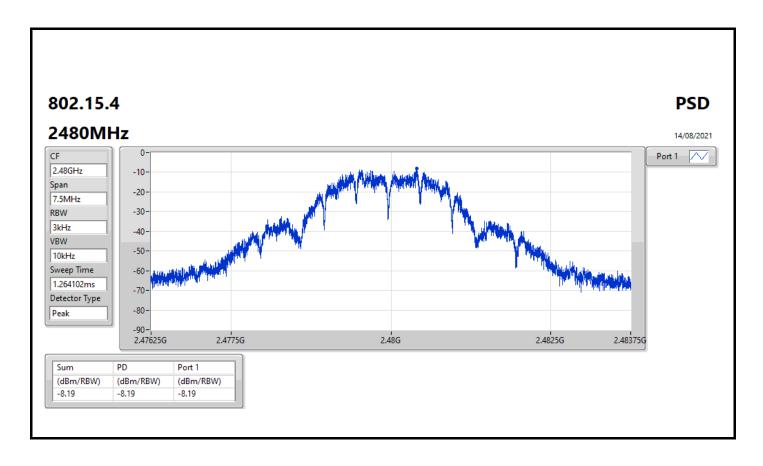
Page No. : 1 of 4 Report No. : FR172726AD

Appendix D **PSD-DTS**


Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
802.15.4	-	-	-	-
2405MHz	Pass	1.90	-2.40	8.00
2440MHz	Pass	1.90	-1.54	8.00
2480MHz	Pass	1.90	-8.19	8.00

Sporton International Inc. Hsinchu Laboratory : 2 of 4 Page No. Report No. : FR172726AD


DG = Directional Gain; RBW = 3kHz; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;

PSD-DTS Appendix D

Page No. : 3 of 4
Report No. : FR172726AD

Page No. : 4 of 4 Report No. : FR172726AD

CSE (Non-restricted Band)-DTS

Appendix E

Summary

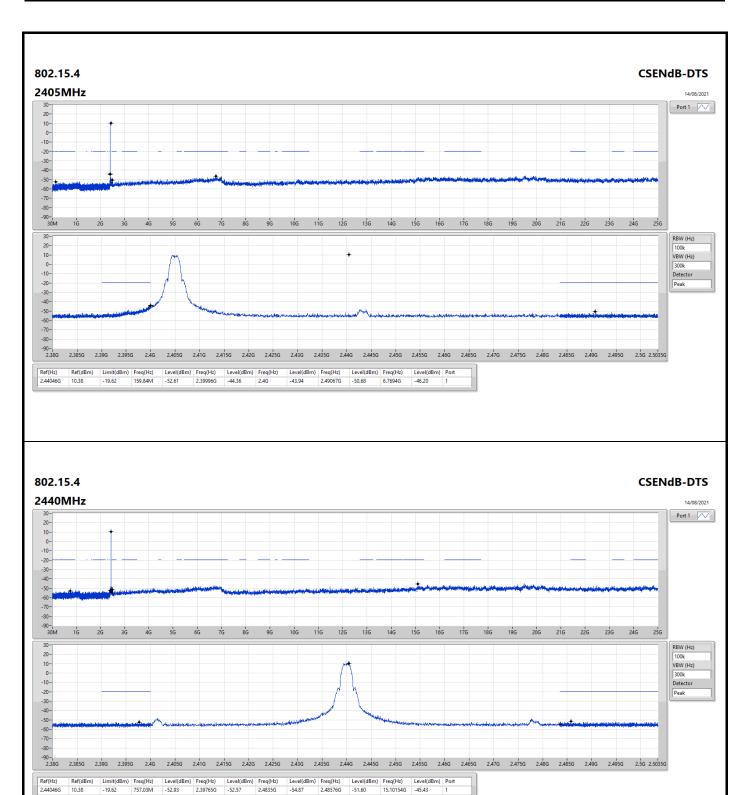
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
802.15.4	Pass	2.44046G	10.38	-19.62	159.84M	-52.61	2.39996G	-44.36	2.4G	-43.94	2.49067G	-50.68	6.7694G	-46.20	1

Sporton International Inc. Hsinchu Laboratory Page No. Report No. : 1 of 4

: FR172726AD

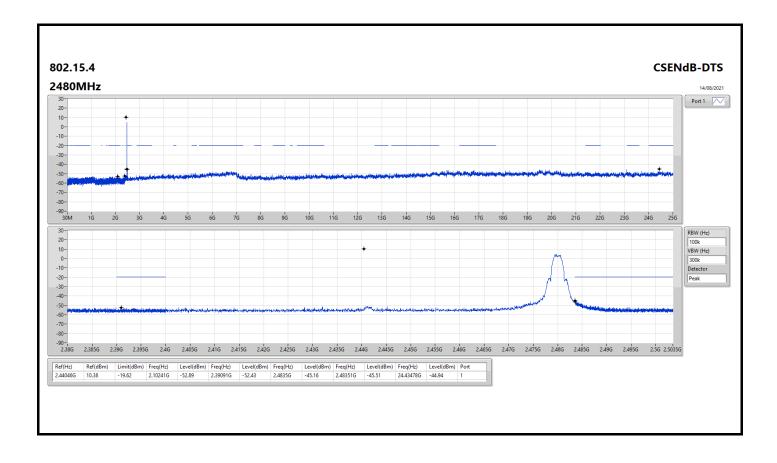
CSE (Non-restricted Band)-DTS

Appendix E


Result

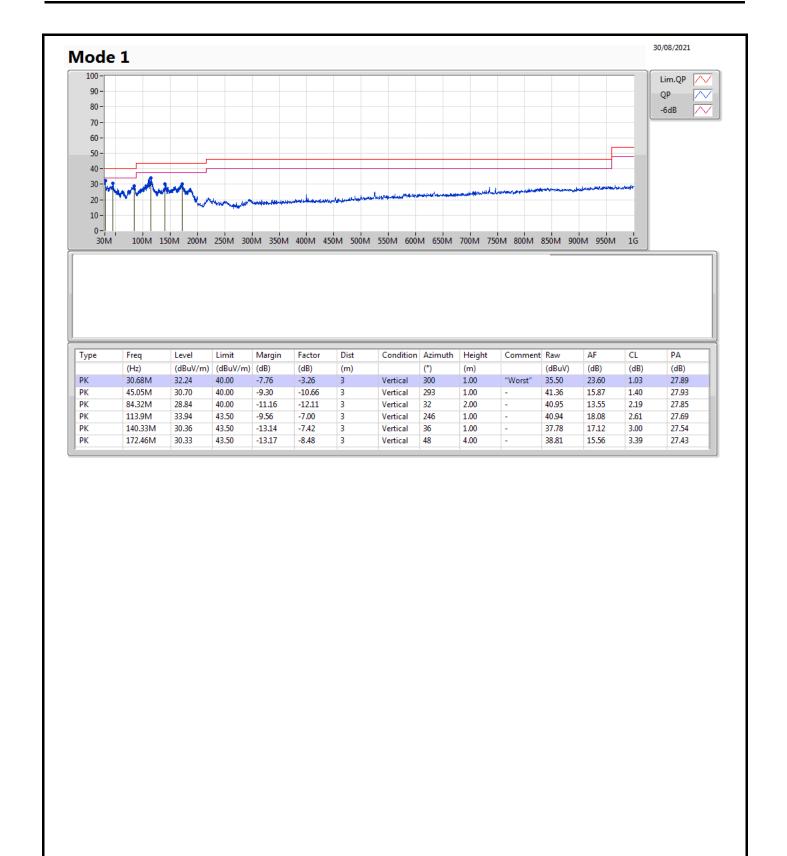
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
802.15.4	-	-	-	-	-	-	-	-	-	-	-	-	-		
2405MHz	Pass	2.44046G	10.38	-19.62	159.84M	-52.61	2.39996G	-44.36	2.4G	-43.94	2.49067G	-50.68	6.7694G	-46.20	1
2440MHz	Pass	2.44046G	10.38	-19.62	757.03M	-52.93	2.39765G	-52.57	2.4835G	-54.87	2.48576G	-51.60	15.10154G	-45.43	1
2480MHz	Pass	2.44046G	10.38	-19.62	2.10241G	-52.89	2.39091G	-52.43	2.4835G	-45.16	2.48351G	-45.51	24.43478G	-44.94	1

Sporton International Inc. Hsinchu Laboratory Page No.

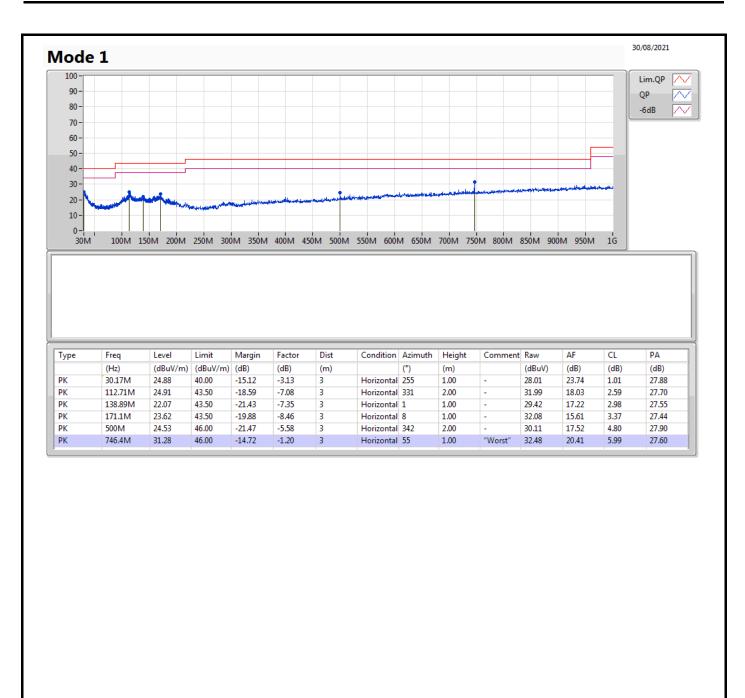

: 2 of 4 : FR172726AD Report No.

Page No. : 3 of 4
Report No. : FR172726AD

Page No. : 4 of 4
Report No. : FR172726AD


Radiated Emissions below 1GHz

Appendix F.1


Summary

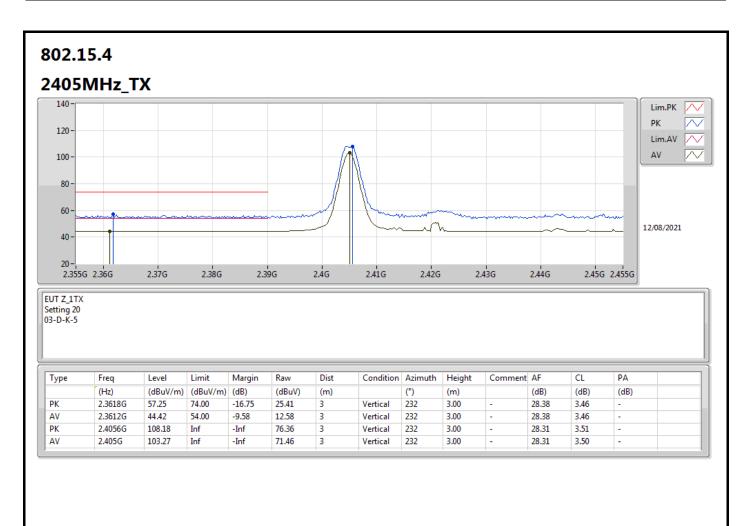
Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 1	Pass	PK	30.68M	32.24	40.00	-7.76	Vertical

Sporton International Inc. Hsinchu Laboratory Page No. Report No. : 1 of 3 : FR172726AD

Page No. : 2 of 3 Report No. : FR172726AD

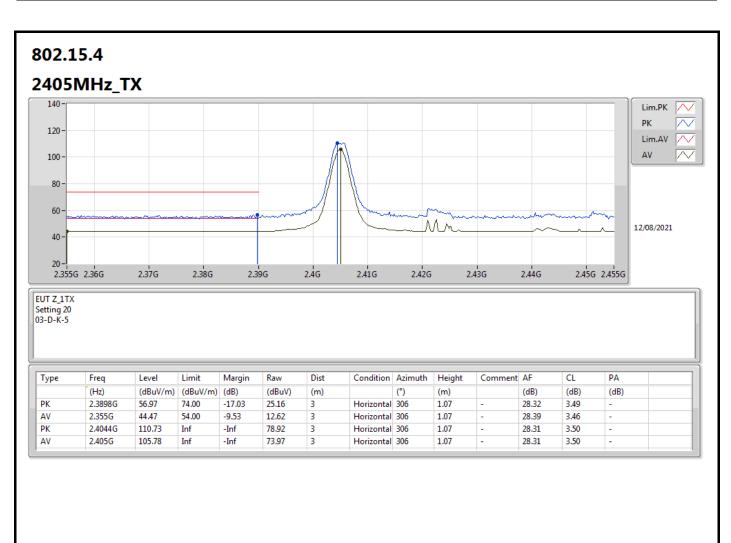
Page No. : 3 of 3 Report No. : FR172726AD

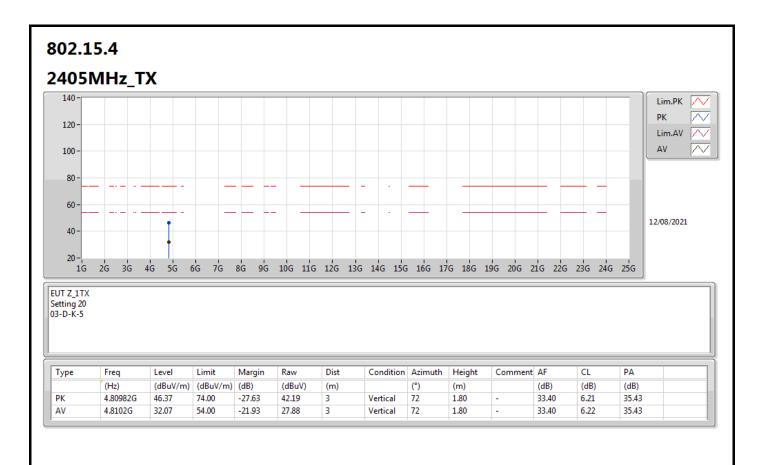
RSE TX above 1GHz

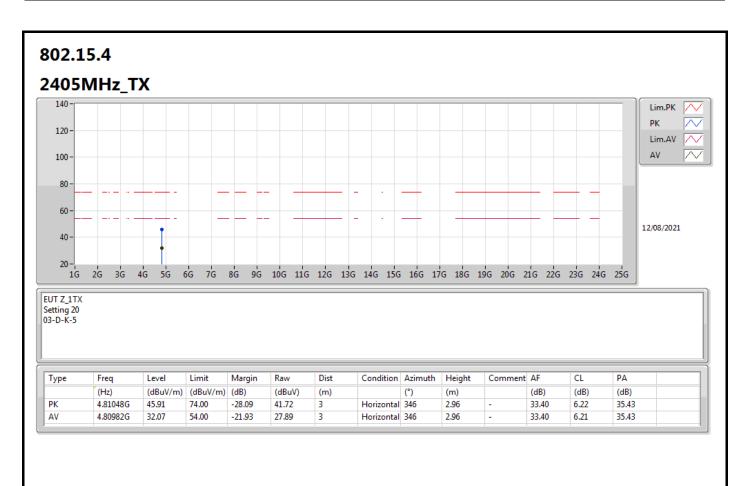

Appendix F.2

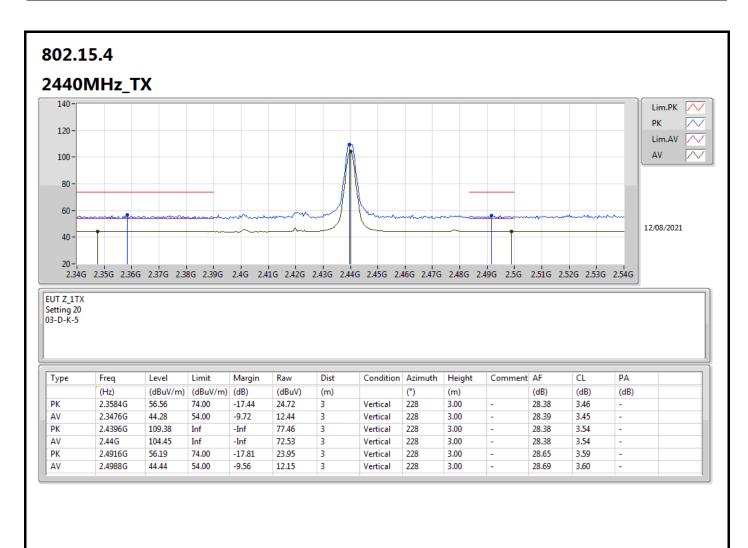
Summary

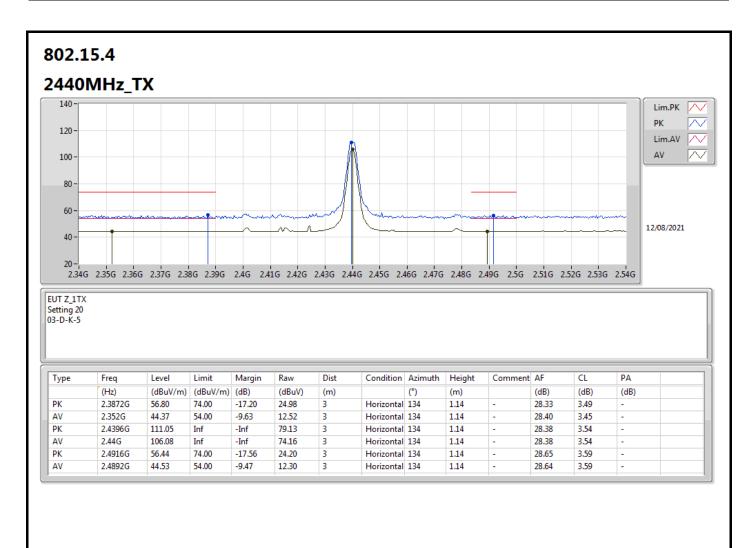
Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-		-		-	-			-	-
802.15.4	Pass	AV	2.4835G	53.91	54.00	-0.09	3	Horizontal	136	1.17	-

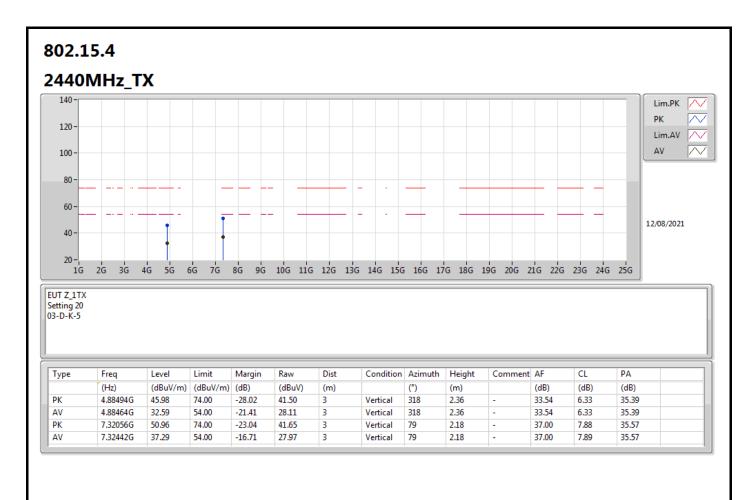

Sporton International Inc. Hsinchu Laboratory Page No. Report No. : 1 of 17 : FR172726AD

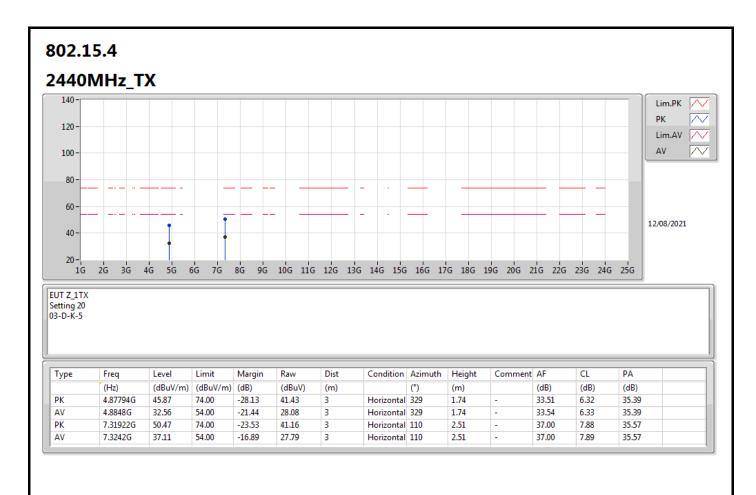

Page No. : 2 of 17 Report No. : FR172726AD

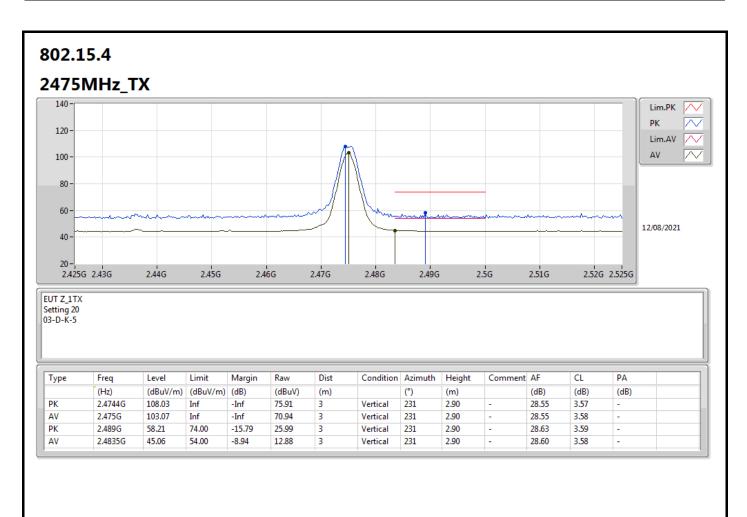

Page No. : 3 of 17 Report No. : FR172726AD

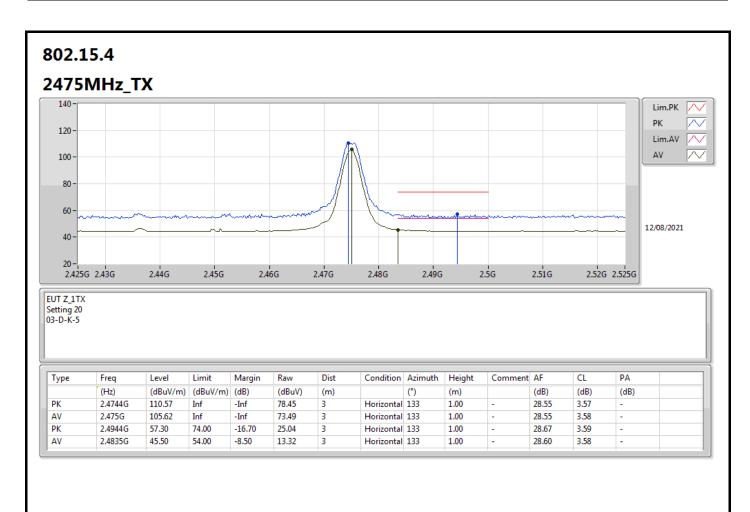

Page No. : 4 of 17 Report No. : FR172726AD

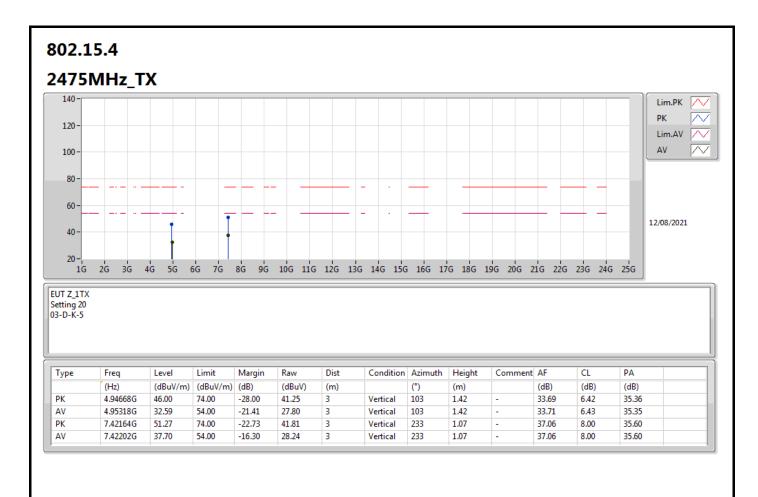

Page No. : 5 of 17 Report No. : FR172726AD

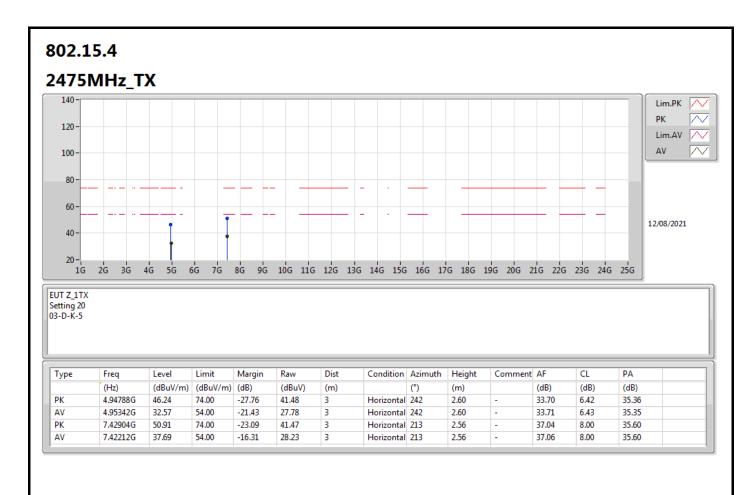

Page No. : 6 of 17 Report No. : FR172726AD

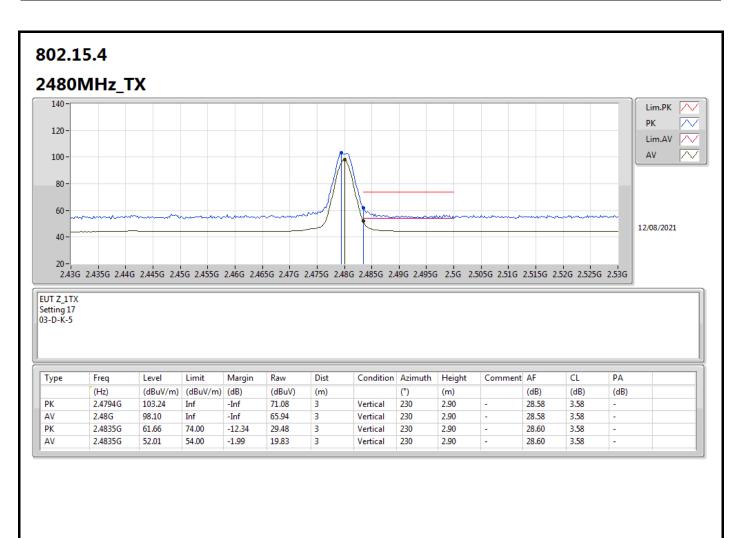

Page No. : 7 of 17 Report No. : FR172726AD

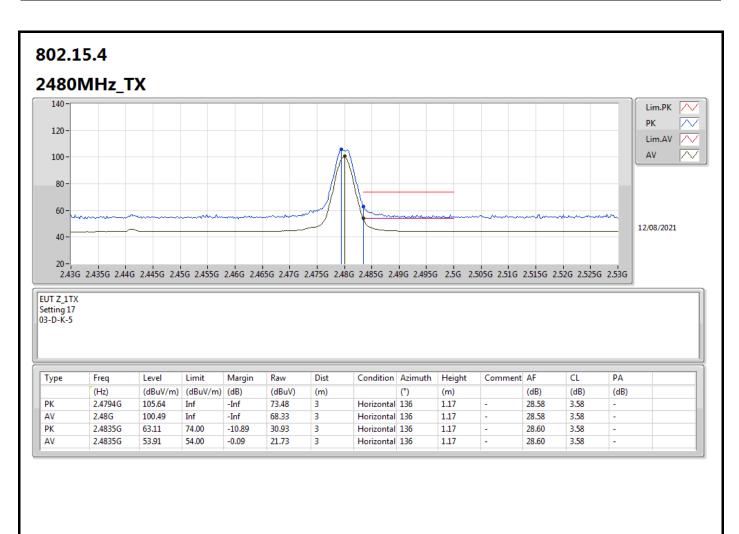

Page No. : 8 of 17 Report No. : FR172726AD

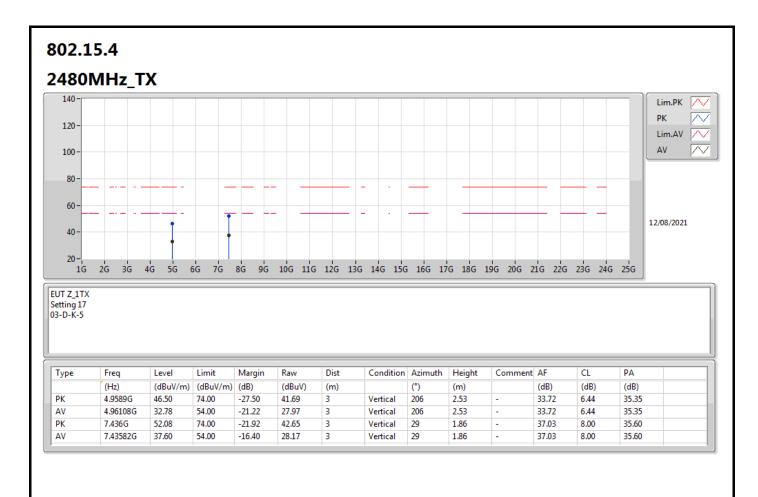

Page No. : 9 of 17 Report No. : FR172726AD

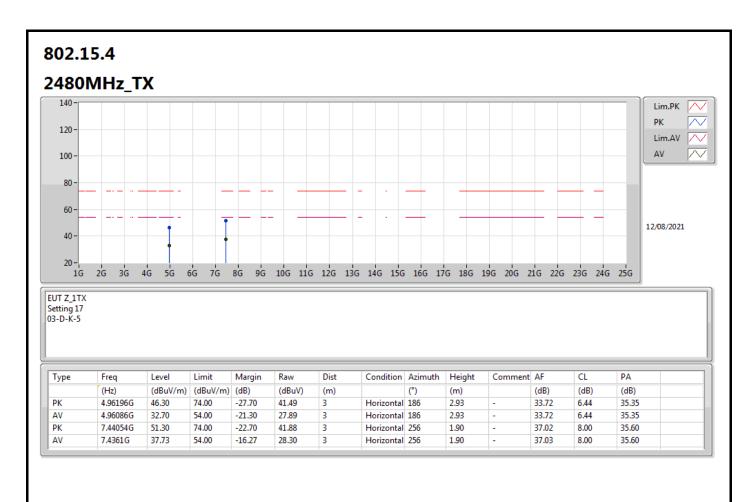

Page No. : 10 of 17 Report No. : FR172726AD


Page No. : 11 of 17 Report No. : FR172726AD


Page No. : 12 of 17 Report No. : FR172726AD


Page No. : 13 of 17 Report No. : FR172726AD

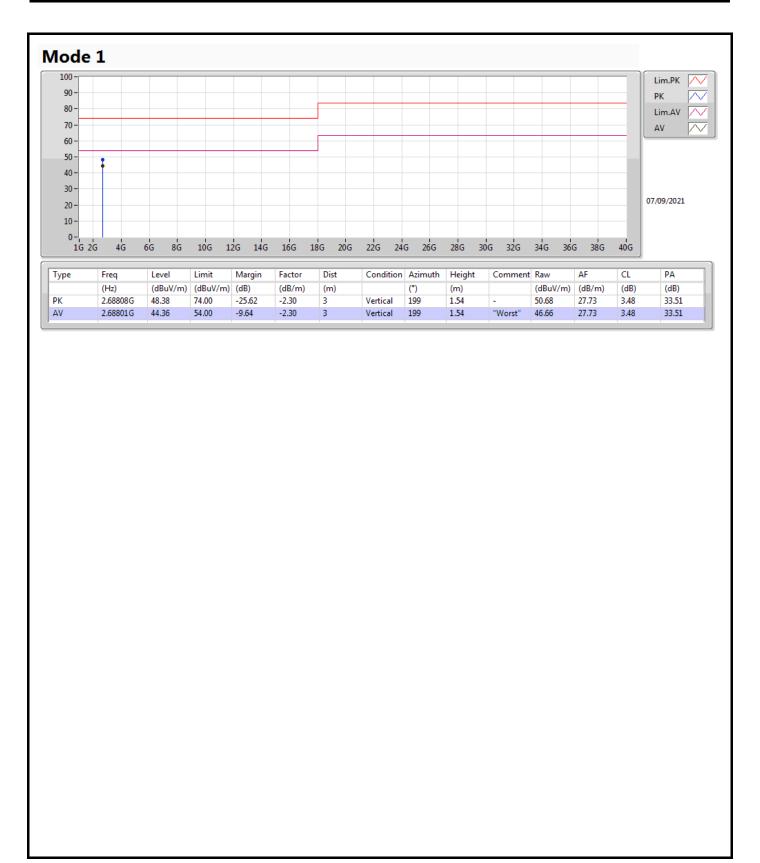

Page No. : 14 of 17 Report No. : FR172726AD


Page No. : 15 of 17 Report No. : FR172726AD

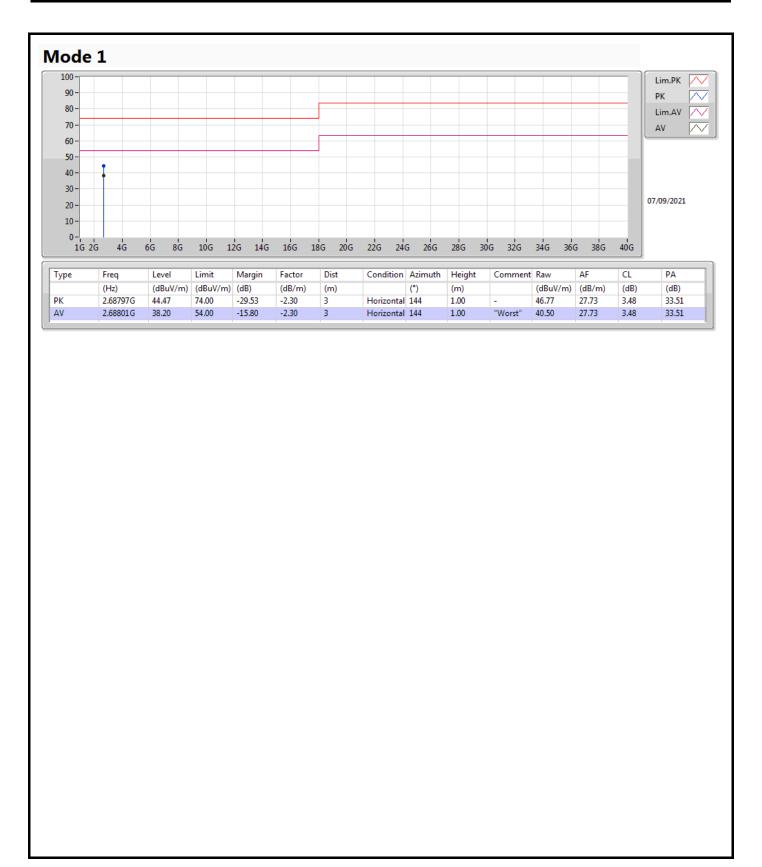
Page No. : 16 of 17 Report No. : FR172726AD

Page No. : 17 of 17 Report No. : FR172726AD

Radiated Emissions Co-location


Appendix G

Summary


Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 1	Pass	AV	2.68801G	44.36	54.00	-9.64	Vertical

Sporton International Inc. Hsinchu Laboratory Page No. Report No.

: 1 of 3 : FR172726AD

Page No. : 2 of 3 Report No. : FR172726AD

Page No. : 3 of 3 Report No. : FR172726AD