

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.225

Report Reference No..... GTS20190528003-1-1-2

FCC ID..... : 2ART3-KH100

Compiled by

(position+printed name+signature)...: File administrators Jimmy Wang

Supervised by

(position+printed name+signature)...: Test Engineer Aaron Tan

Approved by

(position+printed name+signature)...: Manager Jason Hu

Date of issue.....: June 06, 2019

Representative Laboratory Name ..: Shenzhen Global Test Service Co.,Ltd.

Address.....: No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China

Applicant's name Shenzhen Lonsdor Technology Co., Ltd.

Address: Room B701.B702.B706.B708.B710.B712.B713, Fuhai Street Bridge Head Community, Baoan District, Shenzhen, China

Test specification

Standard: FCC Part 15.225

TRF Originator.....: Shenzhen Global Test Service Co.,Ltd.

Master TRF.....: Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Full-featured Key Aide

Trade Mark: lonsdor

Manufacturer: Shenzhen Lonsdor Technology Co., Ltd.

Model/Type reference.....: KH100

Listed Models: N/A

Modulation Type: ASK

Operation Frequency.....: 13.56MHz

Hardware Version: N/A

Software Version: N/A

Rating: DC 3.70V from battery

Result.....: **PASS**

TEST REPORT

Test Report No. :	GTS20190528003-1-1-2	June 06, 2019
		Date of issue

Equipment under Test : Full-featured Key Aide

Model /Type : KH100

Listed Models : N/A

Applicant : **Shenzhen Lonsdor Technology Co., Ltd.**

Address : Room B701.B702.B706.B708.B710.B712.B713, Fuhai Street Bridge Head Community, Baoan District, Shenzhen, China

Manufacturer : **Shenzhen Lonsdor Technology Co., Ltd.**

Address : Room B701.B702.B706.B708.B710.B712.B713, Fuhai Street Bridge Head Community, Baoan District, Shenzhen, China

Test Result:	PASS
---------------------	-------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	<u>TEST STANDARDS</u>	4
<u>2</u>	<u>SUMMARY</u>	5
2.1	General Remarks	5
2.2	Product Description	5
2.3	Equipment Under Test	5
2.4	Short description of the Equipment under Test (EUT)	5
2.5	Block Diagram of Test Setup	6
2.6	Special Accessories	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
<u>3</u>	<u>TEST ENVIRONMENT</u>	7
3.1	Address of the test laboratory	7
3.2	Test Facility	7
3.3	Environmental conditions	7
3.4	Test Description	8
3.5	Statement of the measurement uncertainty	8
3.6	Equipments Used during the Test	8
<u>4</u>	<u>TEST CONDITIONS AND RESULTS</u>	10
4.1	AC Power Conducted Emission	10
4.2	Radiated Emission	13
4.3	20dB Bandwidth	16
4.4	Frequency Stability Test Data	17
<u>5</u>	<u>TEST SETUP PHOTOS OF THE EUT</u>	19
<u>6</u>	<u>PHOTOS OF THE EUT</u>	20

1 TEST STANDARDS

The tests were performed according to following standards:

[FCC Rules Part 15.225](#): Operation within the band 13.110–14.010 MHz.

[ANSI C63.10-2013](#): American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	May 10, 2019
Testing commenced on	:	May 11, 2019
Testing concluded on	:	June 06, 2019

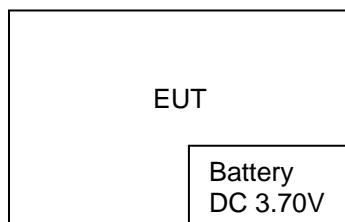
2.2 Product Description

Product Name:	Full-featured Key Aide
Model/Type reference:	KH100
Power supply:	DC 3.70V from battery
NFC	
Operation frequency:	13.56MHz
Modulation :	ASK
No. of Channel :	1
Antenna type:	Loop Antenna

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	<input type="radio"/>	230V / 50 Hz	<input type="radio"/>	120V / 60Hz
		<input type="radio"/>	12 V DC	<input type="radio"/>	24 V DC
		<input checked="" type="radio"/>	Other (specified in blank below)		


DC 3.70V

2.4 Short description of the Equipment under Test (EUT)

This is a Electric Sweeper(Full-featured Key Aide).

For more details, refer to the user's manual of the EUT.

2.5 Block Diagram of Test Setup

2.6 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
AC-DC Adapter	Delta	ANU-050200A	Input: 100-240VAC, 0.3A, 50/60Hz Output: 5V 2000mA	SDOC	Laboratory
/	/	/	/	/	/
/	/	/	/	/	/
/	/	/	/	/	/

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the EUT filing to comply with Section 15.225 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Description

FCC PART 15 .225		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 2.1049	20dB Bandwidth	PASS
FCC Part 15.225(a) (b) (c)	In-band Emissions	PASS
FCC Part 15.225(d)/15.207	Out-of-band Emissions	PASS
FCC Part 15.225(e)	Frequency Stability Tolerance	PASS

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 „Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements“ and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

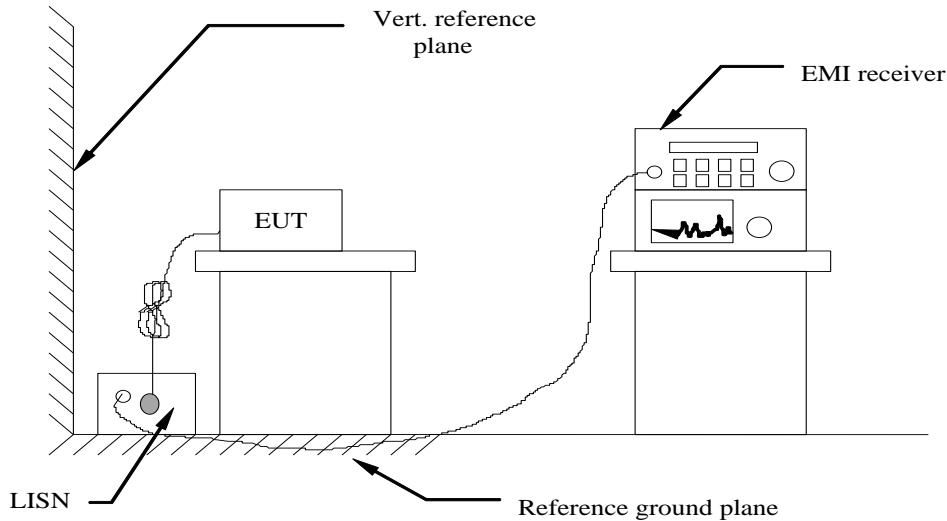
Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18~40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2018/09/20	2019/09/19
LISN	R&S	ESH2-Z5	893606/008	2018/09/20	2019/09/19
Bilog Antenna	Schwarzbeck	VULB9163	976	2018/09/20	2019/09/19
EMI Test Receiver	R&S	ESCI7	101102	2018/09/20	2019/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2018/09/20	2019/09/19
Spectrum Analyzer	R&S	FSP40	100019	2018/06/05	2019/06/04
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2018/09/20	2019/09/19
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2018/09/20	2019/09/19
Broadband Horn Antenna	SCHWARZBEC K	BBHA 9170	971	2018/09/20	2019/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2018/09/20	2019/09/19
Amplifier	EMCI	EMC051845B	980355	2018/09/20	2019/09/19
Temperature/Humidity Meter	Gangxing	CTH-608	02	2018/09/20	2019/09/19
High-Pass Filter	K&L	9SH10-2700/X12750-O/O	KL142031	2018/09/20	2019/09/19


High-Pass Filter	K&L	41H10-1375/U12750-O/O	KL142032	2018/09/20	2019/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2018/09/20	2019/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2018/09/20	2019/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2018/09/20	2019/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2018/09/20	2019/09/19
EMI Test Software	R&S	ES-K1	V1.7.1	2018/09/20	2019/09/19
EMI Test Software	JS Tonscend	JS32-RE	2.0.1.5	2018/09/20	2019/09/19

Note: The Cal.Interval was one year.

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

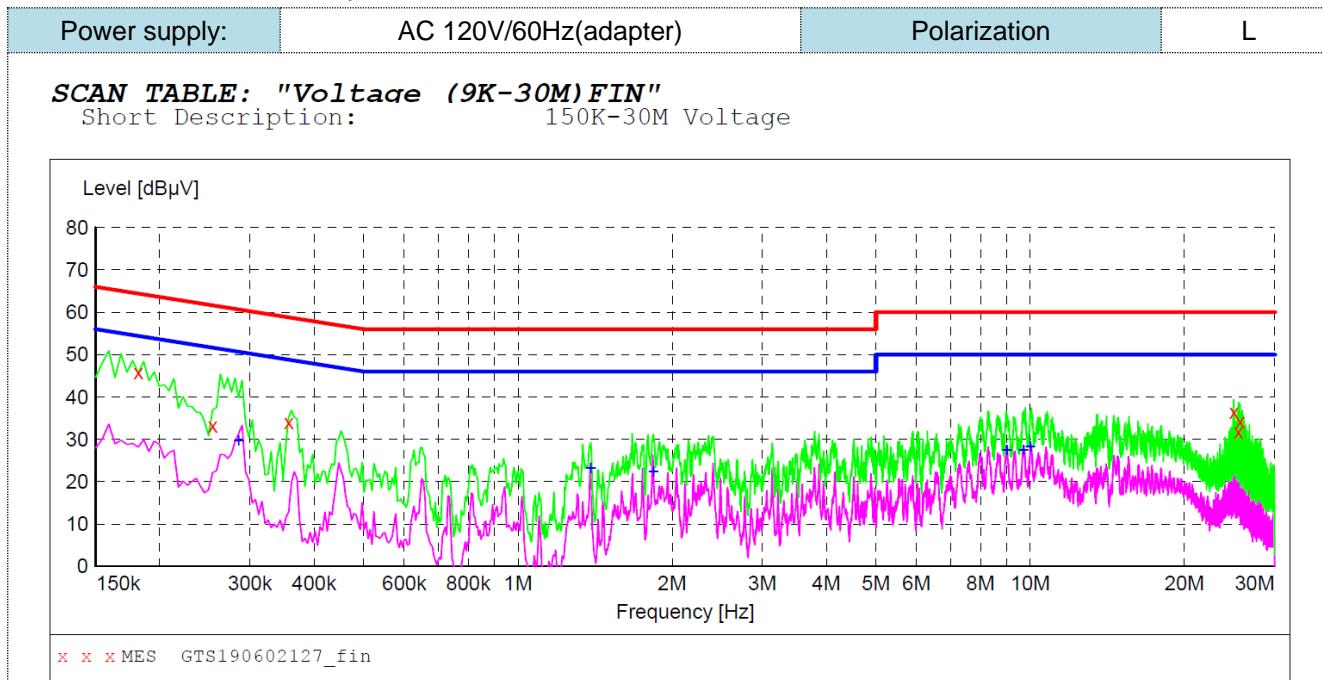
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :


Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

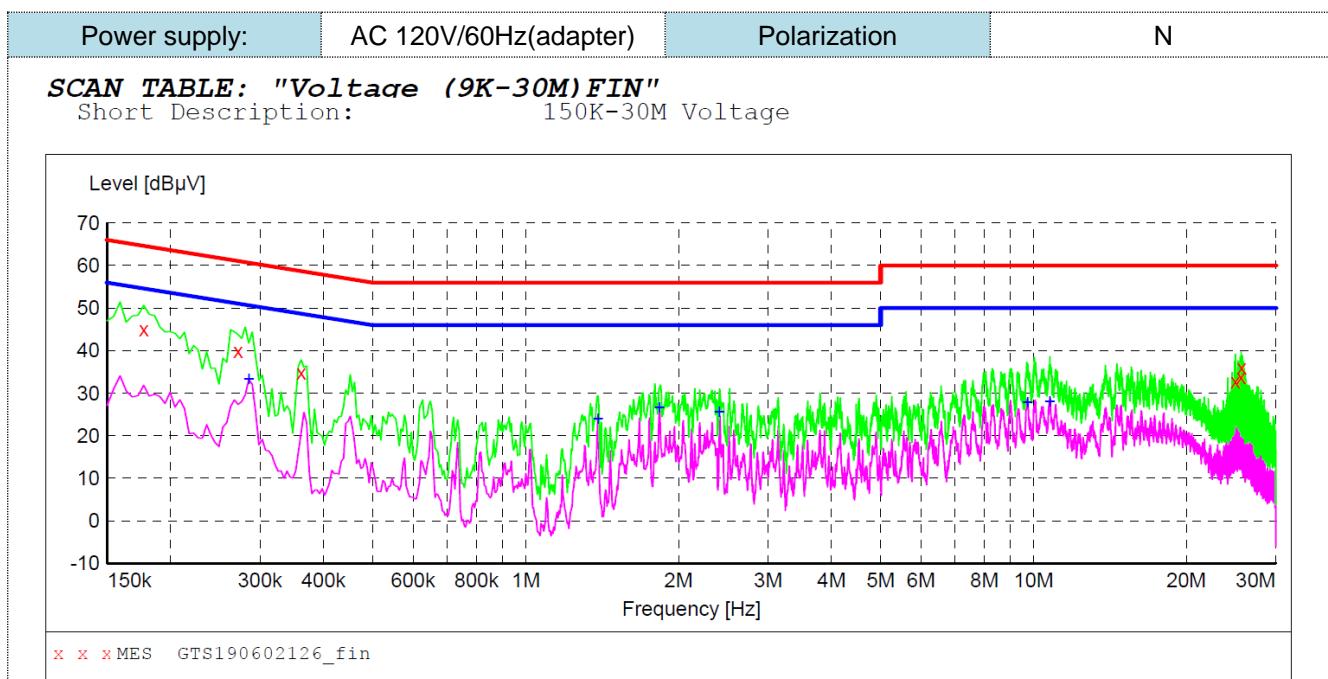
* Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

MEASUREMENT RESULT: "GTS190602127_fin"


6/2/2019 11:33AM

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.181501	45.70	10.2	64	18.7	QP	L1	GND
0.253501	33.30	10.2	62	28.3	QP	L1	GND
0.357001	34.10	10.2	59	24.7	QP	L1	GND
24.967501	36.50	11.1	60	23.5	QP	L1	GND
25.507501	31.70	11.1	60	28.3	QP	L1	GND
25.687501	34.20	11.1	60	25.8	QP	L1	GND

MEASUREMENT RESULT: "GTS190602127_fin2"

6/2/2019 11:33AM

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.285001	29.70	10.2	51	21.0	AV	L1	GND
1.387501	23.30	10.3	46	22.7	AV	L1	GND
1.837501	22.40	10.3	46	23.6	AV	L1	GND
9.001501	27.50	10.6	50	22.5	AV	L1	GND
9.699001	27.50	10.6	50	22.5	AV	L1	GND
10.009501	28.30	10.6	50	21.7	AV	L1	GND

MEASUREMENT RESULT: "GTS190602126_fin"

6/2/2019 11:30AM

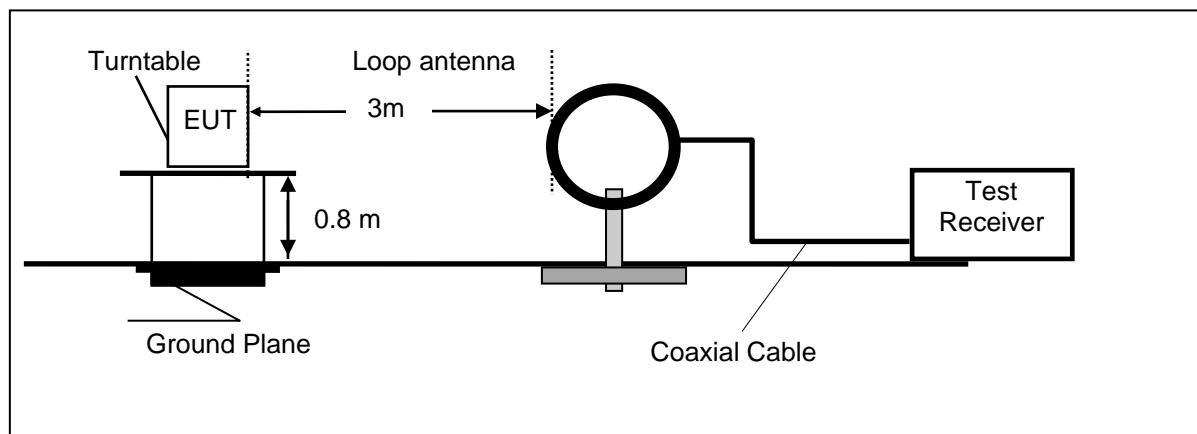
Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.177001	45.00	10.2	65	19.6	QP	N	GND
0.271501	39.80	10.2	61	21.3	QP	N	GND
0.361501	34.80	10.2	59	23.9	QP	N	GND
24.972001	32.80	11.1	60	27.2	QP	N	GND
25.633501	33.70	11.1	60	26.3	QP	N	GND
25.692001	36.00	11.1	60	24.0	QP	N	GND

MEASUREMENT RESULT: "GTS190602126_fin2"

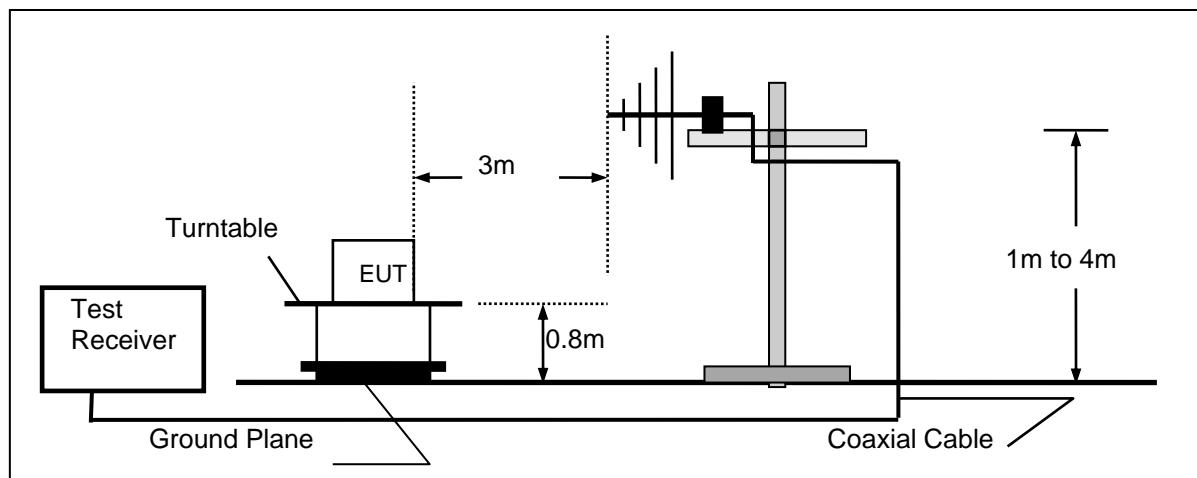
6/2/2019 11:30AM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.285001	33.30	10.2	51	17.4	AV	N	GND
1.387501	24.00	10.3	46	22.0	AV	N	GND
1.833001	26.60	10.3	46	19.4	AV	N	GND
2.404501	25.70	10.4	46	20.3	AV	N	GND
9.721501	27.90	10.6	50	22.1	AV	N	GND
10.747501	28.10	10.6	50	21.9	AV	N	GND

4.2 Radiated Emission


LIMIT

- a The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters.
- b Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- c Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- d The field strength of any emissions appearing outside of the 13.110– 14.010 MHz band shall not exceed the general radiated emission limits in §15.209.


Frequency (MHz)	Distance (Meters)	Radiated (dBuV/m)	Radiated (μ V/m)
0.009-0.49	3	$20\log(2400/F(\text{KHz}))+40\log(300/3)$	$2400/F(\text{KHz})$
0.49-1.705	3	$20\log(24000/F(\text{KHz}))+40\log(30/3)$	$24000/F(\text{KHz})$
1.705-13.110	3	69.54	30
13.110-13.410	3	80.50	106
13410-13.553	3	90.47	334
13.553-13.567	3	124.00	15848
13.567-13.710	3	90.47	334
13.710-14.010	3	80.50	106
14.010-30.0	3	69.54	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz.
2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.
5. Radiated emission test frequency band from 9KHz to 1GHz.
6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

Test Results**4.2.1 In-band Emissions**

Frequency(MHz):			13.56			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	51.42	PK	80.50	29.08	46.72	5.26	-0.56	4.70
2	13.55	60.36	PK	90.47	30.11	55.57	5.36	-0.57	4.79
3	13.56	87.25	PK	124.00	36.75	82.37	5.45	-0.57	4.88
4	13.57	60.25	PK	90.47	30.22	55.11	5.49	-0.35	5.14
5	13.75	52.36	PK	80.50	28.14	47.03	5.63	-0.30	5.33

Frequency(MHz):			13.56			Polarity:		VERTICAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	13.15	52.45	PK	80.50	28.05	47.75	5.26	-0.56	4.70
2	13.55	61.42	PK	90.47	29.05	56.63	5.36	-0.57	4.79
3	13.56	88.23	PK	124.00	35.77	83.35	5.45	-0.57	4.88
4	13.57	62.02	PK	90.47	28.45	56.88	5.49	-0.35	5.14
5	13.75	53.78	PK	80.50	26.72	48.45	5.63	-0.30	5.33

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
3. Margin value = Limit value- Emission level.
4. The other emission levels were very low against the limit.

4.2.2 Out-of-band Emissions

Frequency(MHz):			13.56			Polarity:		HORIZONTAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	27.12	37.25	PK	69.54	32.29	29.75	7.25	0.25	7.50
2	40.68	30.26	PK	40.00	9.74	21.45	8.25	0.56	8.81
3	54.24	28.89	PK	40.00	11.11	19.85	8.30	0.74	9.04
4	67.80	24.25	PK	40.00	15.75	14.72	8.55	0.98	9.53

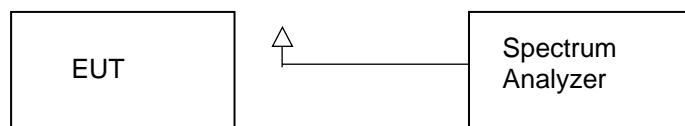
Frequency(MHz):			13.56			Polarity:		VERTICAL	
No.	Frequency (MHz)	Emission Level (dBuV/m)	Detector	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Correction Factor (dB/m)
1	27.12	38.05	PK	69.54	31.49	30.55	7.25	0.25	7.50
2	40.68	31.44	PK	40.00	8.56	22.63	8.25	0.56	8.81
3	54.24	29.05	PK	40.00	10.95	20.01	8.30	0.74	9.04
4	67.80	24.69	PK	40.00	15.31	15.16	8.55	0.98	9.53

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)
3. Margin value = Limit value- Emission level.
4. The other emission levels were very low against the limit.

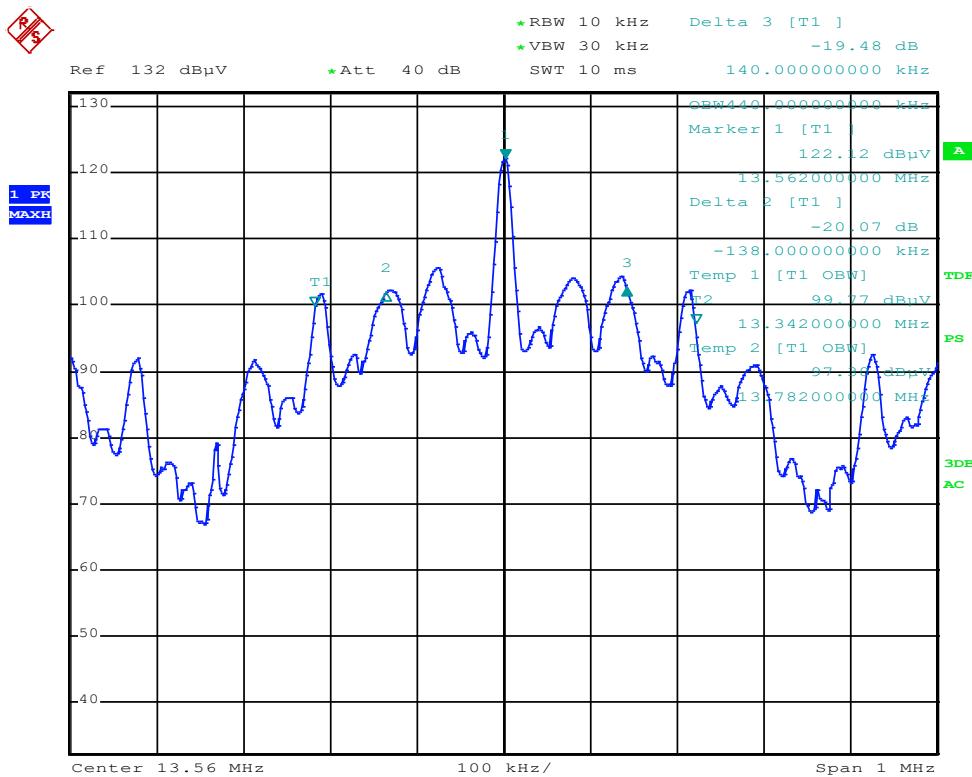
4.3 20dB Bandwidth

Limit


No limit for 20dB bandwidth.

Test Procedure

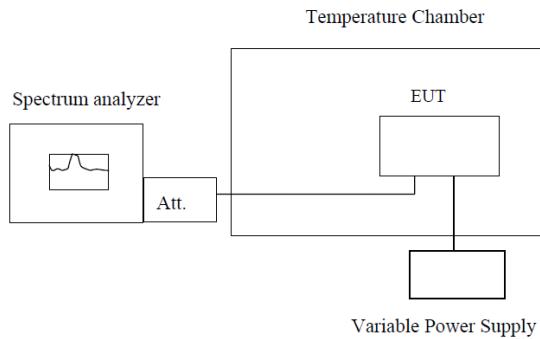
The 20dB bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Modulation	Frequency(MHz)	20dB bandwidth (MHz)	Result
ASK	13.56MHz	0.278	Pass



4.4 Frequency Stability Test Data

LIMIT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

TEST CONFIGURATION

Note : Measurement setup for testing on Antenna connector


TEST PROCEDURE

1. The equipment under test was connected to an external DC power supply and input rated voltage.
2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
3. The EUT was placed inside the temperature chamber.
4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency.
5. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.
7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) or endpoint, record the maximum frequency change.

TEST RESULTS

Reference Frequency: 13.56MHz				
Voltage (V)	Temperature (°C)	Frequency (Hz)	Frequency Deviation(Hz)	Deviation (%)
3.70	+20(Ref)	13.560189	189	0.001106
	-20	13.560060	60	0.001917
	-10	13.560182	182	0.001696
	0	13.560158	158	-0.001844
	+10	13.560122	122	0.000737
	+20	13.560079	79	0.001696
	+25	13.560072	72	0.001032
	+30	13.560179	179	-0.001254
	+40	13.56008	80	-0.001844
	+50	13.560136	136	-0.006637
4.25	+20	13.560123	123	0.001917
3.15	+20	13.560075	75	0.002212

5 Test Setup Photos of the EUT

6 Photos of the EUT

Reference to the test report No. GTS20190528003-1-1

***** **End of Report** *****