

FCC PART 15.247 TEST REPORT

For

CALTTA TECHNOLOGIES CO., LTD.

Floor12, Building G2, international E-City Nanshan District, Shenzhen, China

FCC ID: 2AQV7PH6X0U1

Report Type: Class II Permissive Change	Product Type: Digital Portable Radio
Report Number: <u>RSZ210401010-00BA1</u>	
Report Date: <u>2021-04-28</u>	
Reviewed By: <u>RF Engineer</u>	
Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 5F(B-West) ,6F,7F,the 3rd Phase of Wan Li Industrial Building D,Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “★”.

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk “*”. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTY	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION.....	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT EXERCISE SOFTWARE	5
SPECIAL ACCESSORIES.....	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS.....	7
TEST EQUIPMENT LIST	8
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	9
APPLICABLE STANDARD	9
FCC §15.203 – ANTENNA REQUIREMENT.....	10
APPLICABLE STANDARD	10
ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
EUT SETUP	11
EMI TEST RECEIVER SETUP.....	11
TEST PROCEDURE	11
CORRECTED FACTOR & MARGIN CALCULATION	12
TEST DATA	12
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS.....	17
APPLICABLE STANDARD	17
EUT SETUP	17
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	17
TEST PROCEDURE	17
CORRECTED AMPLITUDE & MARGIN CALCULATION	18
TEST DATA	18

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Digital Portable Radio
Tested Model	PH600 U(1), PH660 U(1)
Multiple Model	PH690 UHF, PH660 UHF, PH600 UHF
Model Differences	Refer to the DoS letter
Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 0.00342W
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Specification*	-4dBi(It is provided by the applicant)
Voltage Range	DC 7.4 V from battery or DC 12.0V from adapter
Date of Test	2021-04-13 to 2021-04-22
Sample serial number	RSZ210401010-RF-S1 & RSZ210401010-RF-S2 (Assigned by BACL, Shenzhen)
Received date	2021-04-01
Sample/EUT Status	Good condition
Adapter information	Model: ES085H-X120100XYF Input: AC 100-240V~50/60Hz, 0.5A Output: DC 12.0V, 1.0A

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

This is a CIIPC application of the device; the differences between the original device and the current one are as follows:

1. Changing the company address to “Floor12, Building G2, international E-City Nanshan District, Shenzhen, China”.
2. Changing the product name to “Digital Portable Radio”.
3. Adding the model names “PH600 U(1), PH660 U(1), PH690 UHF, PH660 UHF, PH600 UHF”
4. For PH660 U(1), change the screen and keypad.
5. For PH600 U(1), remove the screen and keypad.
6. Adding the adapter for added models.

Based on above differences, we added the test item of “AC LINE CONDUCTED EMISSIONS”, “RADIATED SPURIOUS EMISSIONS” for added models and related photos, the other photos and data please refer to the original report.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

For Radiated Emissions testing, please refer to DA 00-705 Released March 30, 2000, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter	Uncertainty	
Occupied Channel Bandwidth	±5%	
RF Output Power with Power meter	±0.73dB	
RF conducted test with spectrum	±1.6dB	
AC Power Lines Conducted Emissions	±1.95dB	
Emissions, Radiated	Below 1GHz Above 1GHz	±4.75dB ±4.88dB
Temperature	±1°C	
Humidity	±6%	
Supply voltages	±0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) 5F(B-West) ,6F,7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

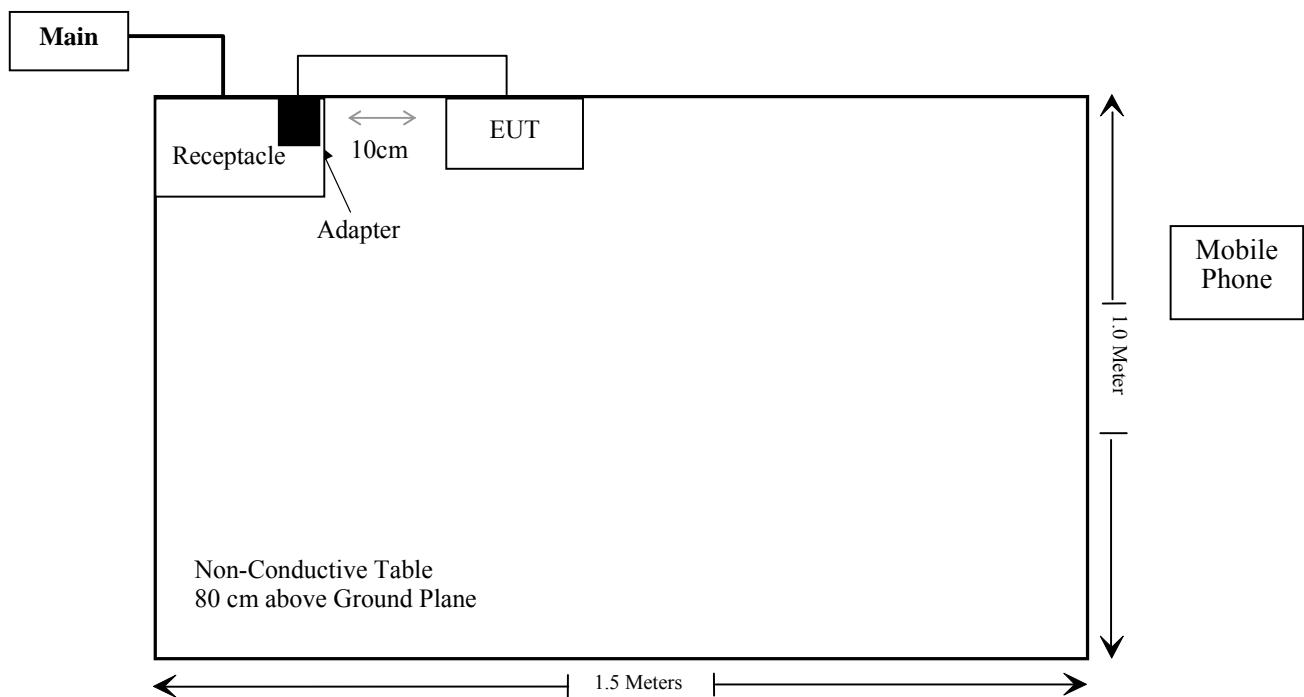
EUT Exercise Software

“BlueTest3” software was used to the EUT tested and the power level is 100/25.

Special Accessories

No special accessory.

Equipment Modifications


No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
HUAWEI	Mobile phone	V20	Unknown

External I/O Cable

Cable Description	Length (m)	From Port	To
Un-shielding Un-detachable DC Cable	1.2	Charger	Adapter

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance*
§15.247(a)(1)	Channel Separation Test	Compliance*
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance*
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance*
§15.247(b)(1)	Peak Output Power Measurement	Compliance*
§15.247(d)	Band edges	Compliance*

Compliance*: Please refer to original report RSZ190325001-00B.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2020/08/04	2021/08/03
Rohde & Schwarz	LISN	ENV216	101613	2020/08/04	2021/08/03
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2020/11/29	2021/11/28
Unknown	CE Cable	CE Cable	UF A210B-1-0720-504504	2020/11/29	2021/11/28
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR
Radiated Emission Test					
R&S	EMI Test Receiver	ESR3	102455	2020/08/04	2021/08/03
Sonoma instrument	Pre-amplifier	310 N	186238	2020/08/04	2021/08/03
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2020/12/22	2023/12/21
Unknown	Cable 2	RF Cable 2	F-03-EM197	2020/11/29	2021/11/28
Unknown	Cable	Chamber Cable 1	F-03-EM236	2020/11/29	2021/11/28
Unknown	Cable	Chamber Cable 4	EC-007	2020/11/29	2021/11/28
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE**Applicable Standard**

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, where}$

1. $f(\text{GHz})$ is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency (MHz)	Maximum Tune-up power		Calculated Distance (mm)	Calculated Value	Threshold (1-g SAR)	SAR Test Exclusion
	(dBm)	(mW)				
2480	5.5	3.55	5	1.1	3.0	Yes

Result: No Standalone SAR test is required

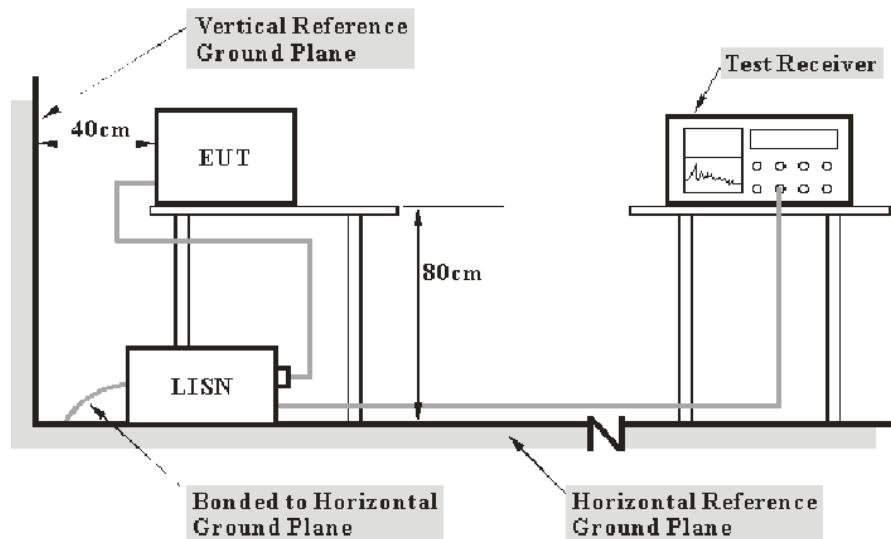
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one external antenna, the antenna was professionally installed by user and the antenna gain is -4 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the device was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

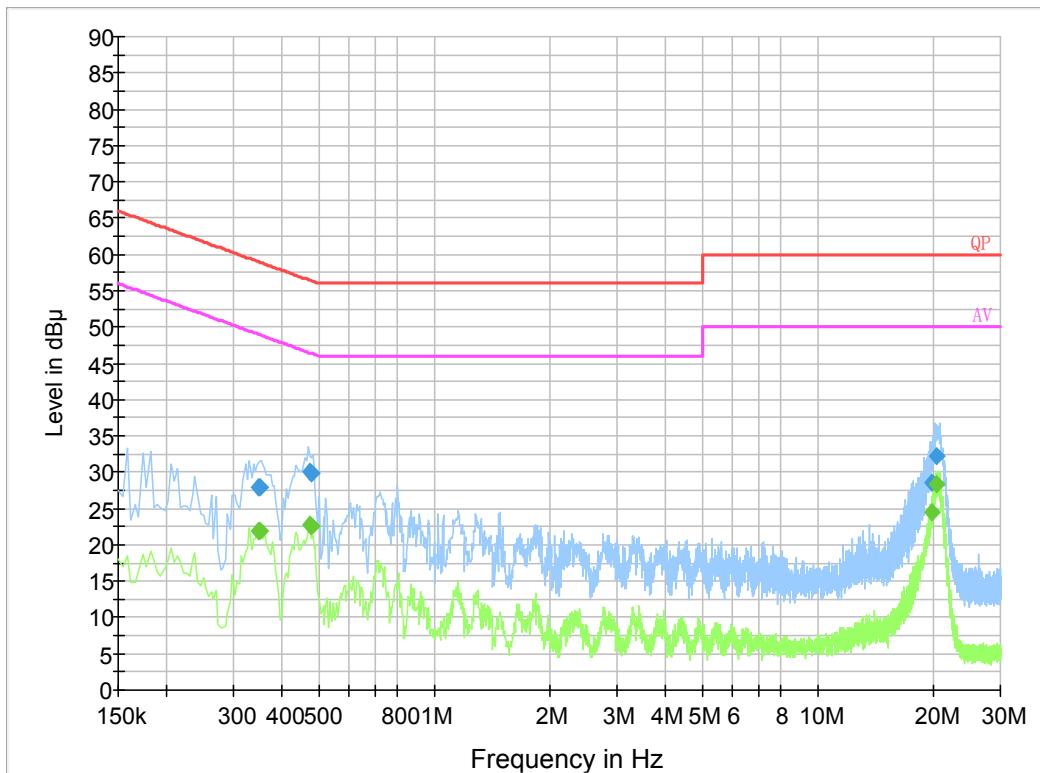
The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

$$\text{Correction Factor} = \text{LISN VDF} + \text{Cable Loss} + \text{Transient Limiter Attenuation}$$

The “**Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

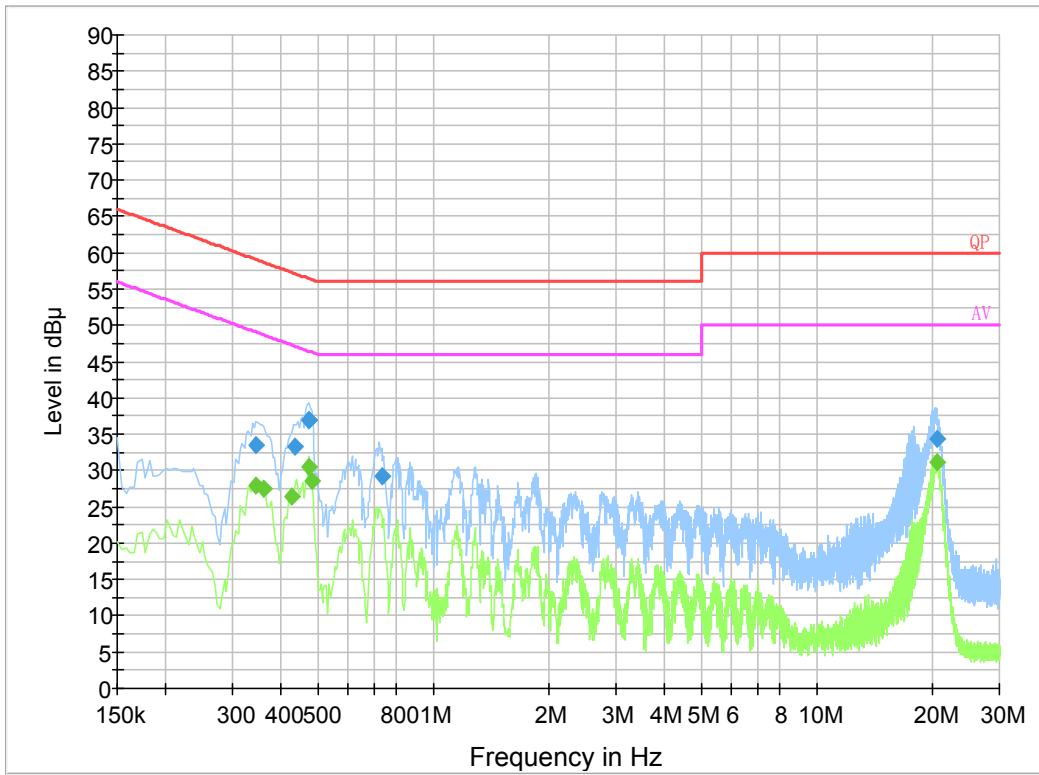
Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	65 %
ATM Pressure:	101.0 kPa

The testing was performed by Haiguo Li on 2021-04-13.

EUT operation mode: BT link

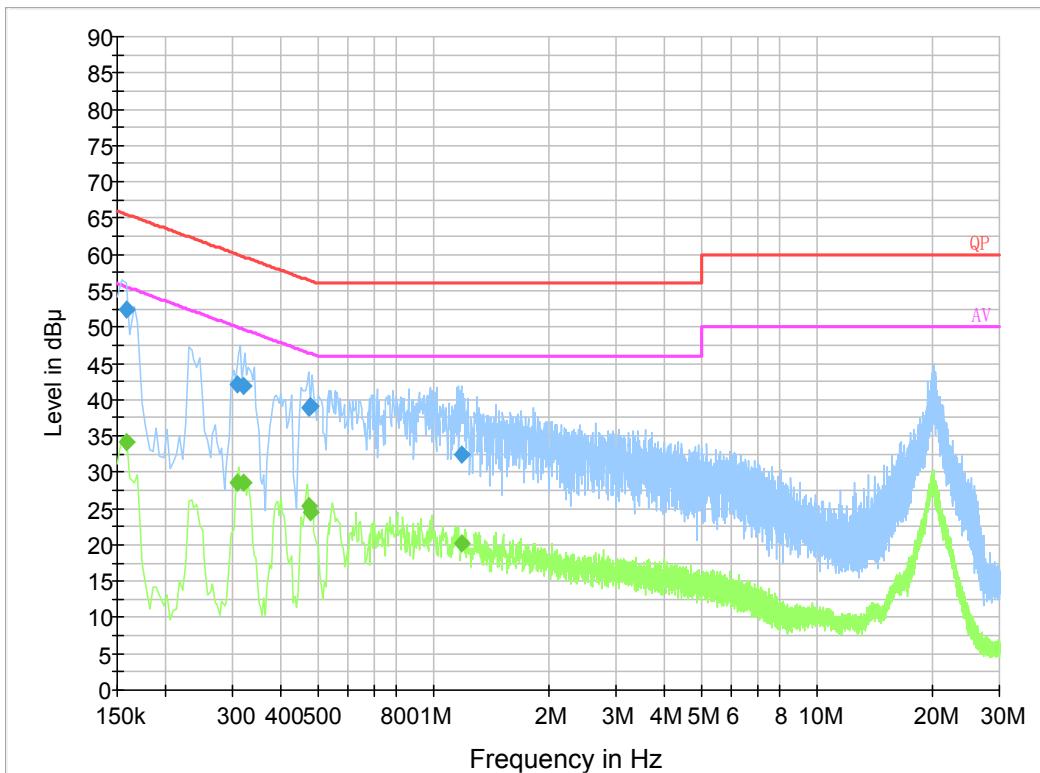

Test Model: PH600 U(1)

AC 120V/60 Hz, Line**Final Result 1**

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.348690	27.9	9.000	L1	19.9	31.1	59.0
0.352750	27.8	9.000	L1	19.9	31.1	58.9
0.474950	30.1	9.000	L1	19.8	26.3	56.4
0.478770	29.9	9.000	L1	19.8	26.5	56.4
19.828930	28.7	9.000	L1	20.5	31.3	60.0
20.463150	32.1	9.000	L1	20.5	27.9	60.0

Final Result 2

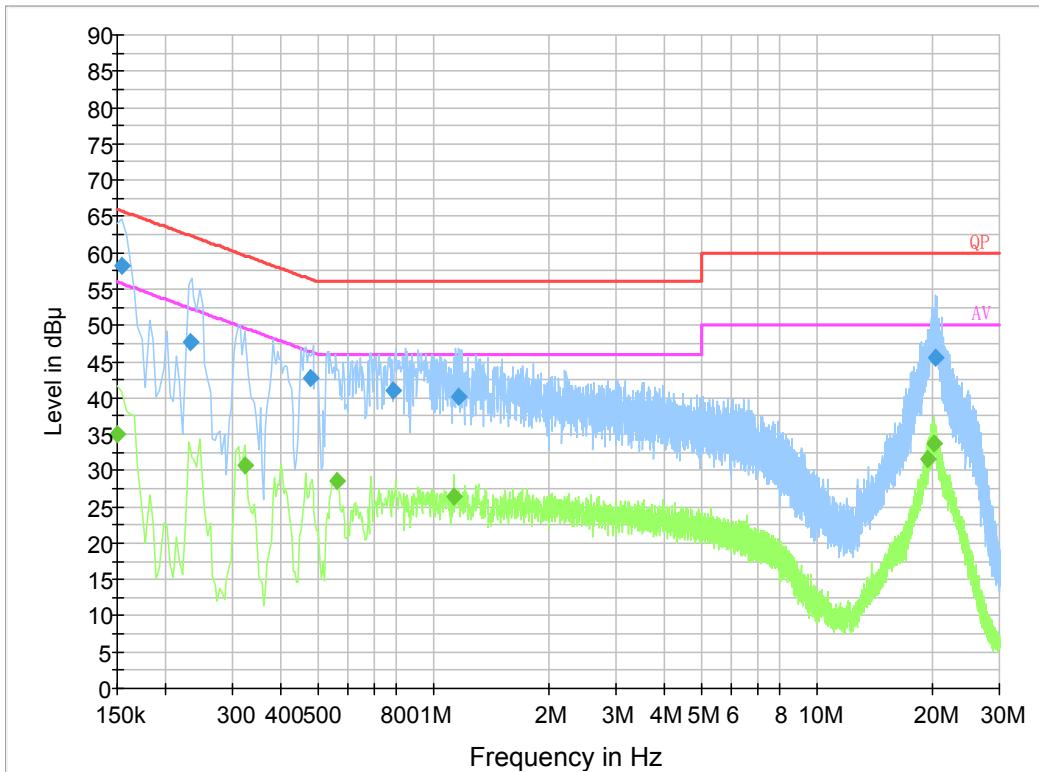
Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.348690	21.8	9.000	L1	19.9	27.1	49.0
0.352750	21.8	9.000	L1	19.9	27.1	48.9
0.474950	22.7	9.000	L1	19.8	23.8	46.4
0.478770	22.7	9.000	L1	19.8	23.7	46.4
19.828930	24.5	9.000	L1	20.5	25.5	50.0
20.463150	28.5	9.000	L1	20.5	21.5	50.0


AC 120V/60 Hz, Neutral**Final Result 1**

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.344810	33.6	9.000	N	19.8	25.5	59.1
0.435550	33.3	9.000	N	19.8	23.8	57.1
0.474770	37.0	9.000	N	19.8	19.4	56.4
0.474890	37.0	9.000	N	19.8	19.4	56.4
0.735110	29.2	9.000	N	19.8	26.8	56.0
20.544330	34.3	9.000	N	20.4	25.7	60.0

Final Result 2

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.346000	28.0	9.000	N	19.8	21.1	49.1
0.362000	27.5	9.000	N	19.9	21.2	48.7
0.426000	26.5	9.000	N	19.8	20.8	47.3
0.474000	30.5	9.000	N	19.8	15.9	46.4
0.482000	28.6	9.000	N	19.8	17.7	46.3
20.602000	31.1	9.000	N	20.4	18.9	50.0


Test Model: PH660 U(1)

AC 120V/60 Hz, Line**Final Result 1**

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.158000	52.5	9.000	L1	19.8	13.1	65.6
0.309290	42.0	9.000	L1	19.7	18.0	60.0
0.321170	41.9	9.000	L1	19.8	17.8	59.7
0.474770	38.9	9.000	L1	19.8	17.5	56.4
0.478890	39.0	9.000	L1	19.8	17.4	56.4
1.192270	32.5	9.000	L1	19.8	23.5	56.0

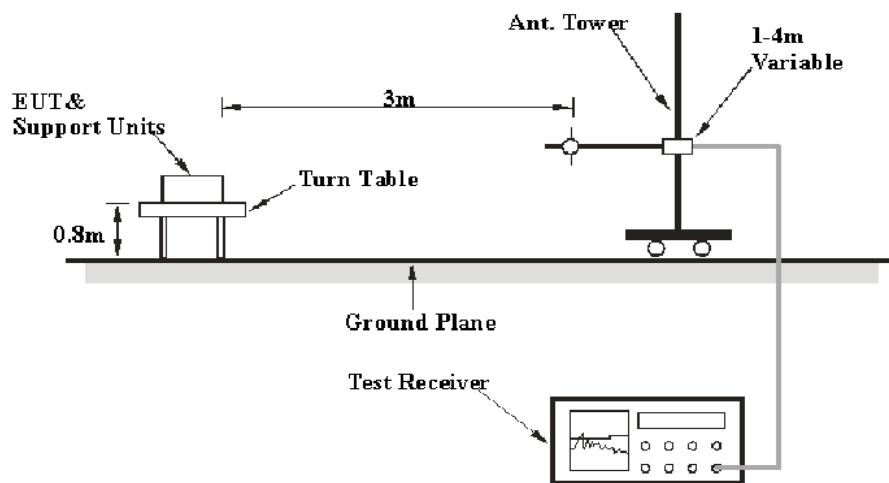
Final Result 2

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.158000	34.2	9.000	L1	19.8	21.4	55.6
0.309290	28.5	9.000	L1	19.7	21.5	50.0
0.321170	28.6	9.000	L1	19.8	21.1	49.7
0.474770	25.4	9.000	L1	19.8	21.0	46.4
0.478890	24.4	9.000	L1	19.8	22.0	46.4
1.192270	20.3	9.000	L1	19.8	25.7	46.0

AC 120V/60 Hz, Neutral**Final Result 1**

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.154000	58.3	9.000	N	19.8	7.5	65.8
0.233500	47.7	9.000	N	19.8	14.6	62.3
0.478710	42.8	9.000	N	19.8	13.6	56.4
0.786030	40.9	9.000	N	19.8	15.1	56.0
1.160810	40.3	9.000	N	19.8	15.7	56.0
20.355370	45.6	9.000	N	20.4	14.4	60.0

Final Result 2


Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.150000	35.0	9.000	N	19.8	21.0	56.0
0.322000	30.8	9.000	N	19.8	18.9	49.7
0.562000	28.7	9.000	N	19.8	17.3	46.0
1.134000	26.5	9.000	N	19.8	19.5	46.0
19.578000	31.6	9.000	N	20.4	18.4	50.0
20.158000	33.8	9.000	N	20.4	16.2	50.0

FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, according to the DA 00-705 Released March 30, 2000, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

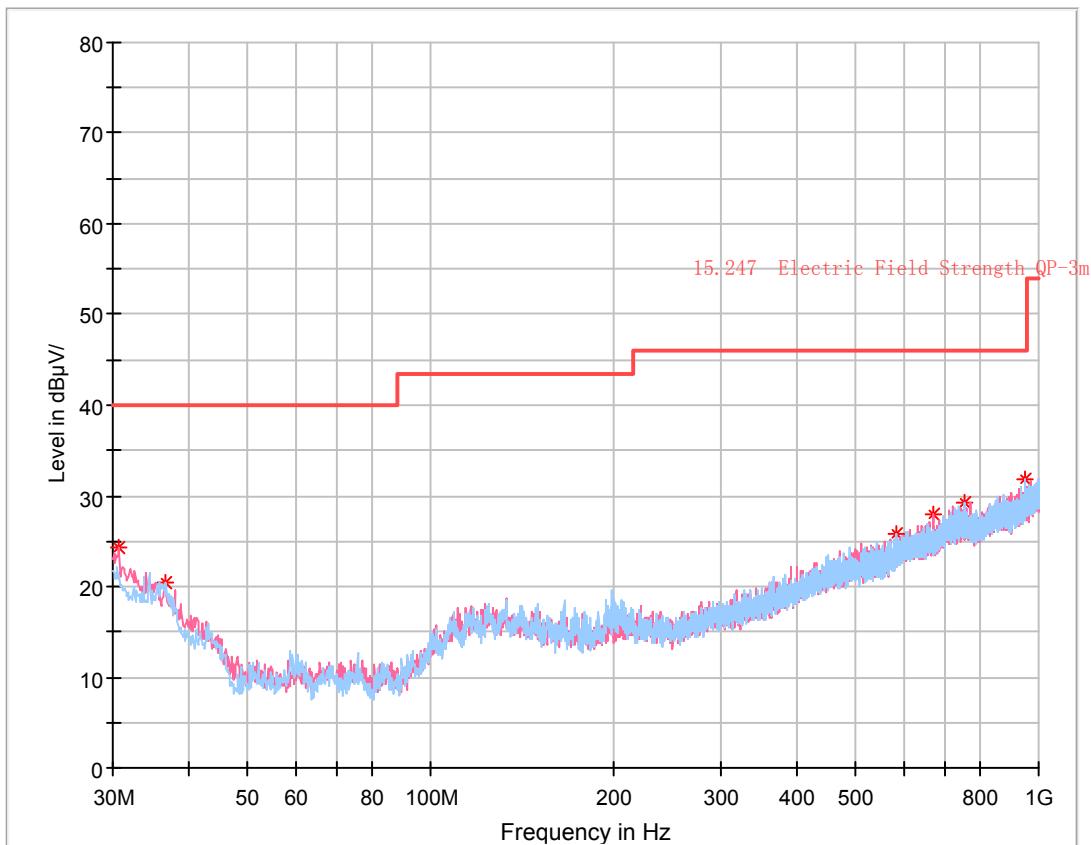
The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Data

Environmental Conditions

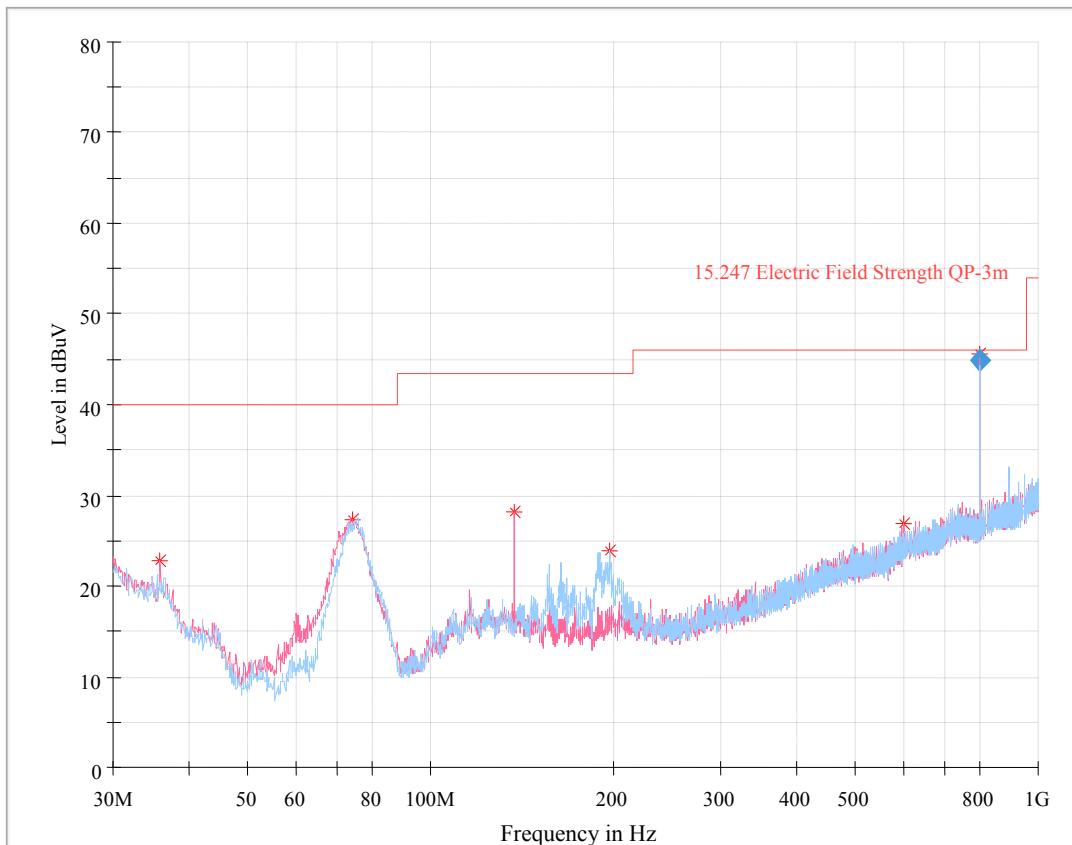
Temperature:	27 °C
Relative Humidity:	63 %
ATM Pressure:	101.0 kPa


The testing was performed by Andy Yu on 2021-04-22.

EUT operation mode: Transmitting

Note: For above 1GHz, please refer to original report.

30 MHz~1 GHz: (the worst case is 8DPSK Mode, Low channel)


Test Model: PH600 U(1)

Critical_Freqs

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.727500	24.22	40.00	15.78	200.0	V	302.0	-4.1
36.547500	20.41	40.00	19.59	200.0	V	166.0	-8.3
582.900000	25.78	46.00	20.22	300.0	H	24.0	-3.6
672.261250	28.03	46.00	17.97	100.0	V	216.0	-2.0
754.347500	29.20	46.00	16.80	400.0	H	314.0	-0.5
947.620000	31.92	46.00	14.08	200.0	H	354.0	1.6

Test Model: PH660 U(1)

Final_Result

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
800.086000	44.98	46.00	1.02	194.0	V	178.0	-0.5

Critical_Freqs

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.941250	22.86	40.00	17.14	400.0	V	111.0	-7.9
74.498750	27.26	40.00	12.74	100.0	V	98.0	-16.4
137.185000	28.17	43.50	15.33	300.0	V	197.0	-10.6
197.446250	23.90	43.50	19.60	100.0	H	115.0	-11.4
601.936250	26.87	46.00	19.13	300.0	V	345.0	-3.0

Note: the QP measurement will not be performed when the peak value is more than 6dB lower than limit

***** END OF REPORT *****