SAR TEST REPORT

For

Amoi Mobile Co.,Ltd

QRCode Payment Terminal

Model No.: H7

Additional Model No.: /

Prepared for : Amoi Mobile Co.,Ltd

Address : Unit 2F-A5, Area A, Huaxun Building, Xiamen Torch Hi-

tech Zone, Xiamen, Fujian, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Address

Avenue, Bao'an District, Shenzhen, Guangdong, China

: (86)755-82591330 Tel : (86)755-82591332 Fax Web www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : August 21, 2018

Number of tested samples

Serial number **:** Prototype

Date of Test : August 22, 2018~ September 13, 2018

Date of Report : October 15, 2018 **SAR TEST REPORT**

Report Reference No.: LCS180815054AEB

Date Of Issue: October 15, 2018

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards ■

Partial application of Harmonised standards

Other standard testing method \Box

Applicant's Name...... Amoi Mobile Co.,Ltd

Address: Unit 2F-A5, Area A, Huaxun Building, Xiamen Torch Hi-tech

Zone, Xiamen, Fujian, China

Test Specification:

Standard : IEEE Std C95.1, 2005/ IEEE Std 1528TM-2013/ FCC Part 2.1093

Test Report Form No.: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2014-09

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Trade Mark: HantePay, Hante, AMOI, HantePOS

Model/Type Reference: H7

Operation Frequency: GSM850/PCS1900, WLAN2.4G

Modulation Type: GSM(GMSK,8PSK), WIFI(DSSS,OFDM)

Ratings: DC 3.7V by Rechargeable Li-ion Battery(1800mAh)

Recharged by DC 5V power adapter

Result: Positive

Compiled by: Supervised by: Approved by:

veraperg Calvin Weng

Vera Deng/ File administrators Calvin Weng/ Technique principal Gavin Liang/ Manager

SAR -- TEST REPORT

Test Report No.: LCS180815054AEB October 15, 2018
Date of issue

Type / Model..... : H7 EUT.....:: QRCode Payment Terminal Applicant.....: : Amoi Mobile Co.,Ltd Address..... : Unit 2F-A5, Area A, Huaxun Building, Xiamen Torch Hitech Zone, Xiamen, Fujian, China Telephone.....: : / Fax.....: : / Manufacturer.....: : Amoi Mobile Co.,Ltd Address...... : Unit 2F-A5, Area A, Huaxun Building, Xiamen Torch Hitech Zone, Xiamen, Fujian, China Telephone.....: : / Fax.....: : / Factory.....: : / Address..... : / Telephone.....: : / Fax.....: : /

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
000	October 15, 2018	Initial Issue	Gavin Liang

/

TABLE OF CONTENTS

1. TES	ST STANDARDS AND TEST DESCRIPTION	6
1.1.	TEST STANDARDS	6
1.2.		
1.3.		
1.4.	PRODUCT DESCRIPTION	6
1.5.		
2. TES	ST ENVIRONMENT	8
2.1.	TEST FACILITY	8
2.2.		
2.3.		
2.4.		
3. SAR	R MEASUREMENTS SYSTEM CONFIGURATION	11
3.1.	SAR MEASUREMENT SET-UP	11
3.2.		
3.3.		
3.4.		
3.5.		
3.6.		
3.7.		
3.8.		
3.9.		
3.10.). System Check	
3.11.	. SAR MEASUREMENT PROCEDURE	20
3.12.	2. Power Reduction	23
3.13.	3. Power Drift	23
4. TES	ST CONDITIONS AND RESULTS	24
4.1.	CONDUCTED POWER RESULTS	24
4.2.	MANUFACTURING TOLERANCE	26
4.3.	TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION	27
4.4.		
4.5.	SIMULTANEOUS TX SAR CONSIDERATIONS	29
4.6.		
4.7.		
4.8.		
4.9.	~	
4.10.). SAR TEST GRAPH RESULTS	35
5. CAI	LIBRATION CERTIFICATES	38
5.1	PROBE-EPGO281 CALIBRATION CERTIFICATE	38
5.2	SID835DIPOLE CALIBRATION CERITICATE	48
5.3	SID1900 DIPOLE CALIBRATION CERITICATE	59
5.4	SID2450 DIPOLE CALIBRATION CERITICATE	70
6. EUT	T TEST PHOTOGRAPHS	81
6.1 I	PHOTOGRAPH OF LIQUID DEPTH	81
6.2 P	PHOTOGRAPH OF THE TEST	83
7. EUT	T PHOTOGRAPHS	86

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1, 2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Part 2.1093 Radiofreguency Radiation Exposure Evaluation: Portable Devices

<u>KDB447498 D01 General RF Exposure Guidance v06 :</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04, Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	August 21, 2018
Testing commenced on	:	August 22, 2018
Testing concluded on	:	September 13, 2018

1.4. Product Description

The **Amoi Mobile Co.,Ltd** Model: QRCode Payment Terminal or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description			
Product Name:	QRCode Payment Terminal		
Model/Type reference:	H7		
Listed Models:	/		
Model Declaration	/		
Modulation Type:	GMSK for GPRS /EDGE; DSSS/OFDM for WIFI2.4G		
Device category:	Portable Device		
Exposure category:	General population/uncontrolled environment		
EUT Type:	Production Unit		
Hardware Version	1.0.1		
Software Version:	1.0.8.0		
Power supply: DC 3.7V by Rechargeable Li-ion Battery(1800mAh)			
	Recharged by DC 5V power adapter		
Hotspot:	supported		

The EUT is QRCode Payment Terminal. It is equipped with GPRS/EDGE class 12 for GSM850, PCS1900, and WiFi2.4G functions. For more information see the following datasheet

ENZHEN LCS COMPLIANCE TESTI	NG LABORATORY LTD.	FCC ID: 2AQ44-H7	Report No.: LCS180815054A
Technical Characteristics			
GSM			
Support Networks	GPRS, EDGE		
Support Band	GPRS850/GPRS	1900/EDGE850/EDGE1900	
Frequency	GSM850: 824.2~8	348.8MHz	
	GSM1900: 1850.2	2~1909.8MHz	
Power Class:	GSM850:Power C		
	PCS1900:Power		
Modulation Type:	GMSK for GPRS/	EDGE	
Antenna Gain:	-1.4dBi(Max.) for		
Antenna Gain.	0.6dBi(Max.) for C	SSM 1900 Band;	
GSM Release Version	R99		
GPRS Multislot Class	12		
EGPRS Multislot Class	12		
DTM Mode	Not Supported		
WIFI 2.4G			
Supported Standards:	IEEE 802.11b/802	2.11g/802.11n(HT20)	
Operation frequency:	2412-2462MHz fo		
		SSS(CCK,DQPSK,DBPSK)	
Type of Modulation:		FDM(64QAM, 16QAM, QPS	
TEEE 802.TIN HT20. OFDIN (64QAM, TOQAM, QPSK,BPSK)			
		t support 802.11n HT40.	
Channel number:		2.11g/802.11n(HT20): 11	
Channel separation:	5MHz		
Antenna Gain:	3.0dBi(Max.) for V	VLAN;	

1.5. Statement of Compliance

Operating Frequency:

Antenna Description:

Modulation Type:

The maximum of results of SAR found during testing for 3 are follows:

13.56MHz;

Loop Antenna, 0dBi (max.)

ASK

< Highest Reported standalone SAR Summary>

Classment Class	Frequency Band	Body-worn (Separation Distance 0mm) (Report 1g SAR(W/kg)
PCB	GSM 850	0.560
PCB	GSM1900	0.525
DTS	WIFI2.4G	0.176

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Frequency Band	Reported SAR _{1-g} (W/kg)	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Body	GSM 850	0.560	PCB	
(Separation Distance 0mm)	WIFI	0.176	DTS	0.736

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Site Description EMC Lab.

: FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001.

NVLAP Registration Code is 600167-0

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C		
Humidity:	40-65 %		
Atmospheric pressure:	950-1050mbar		

2.3. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average(averaged over the whole body)	0.08	0.4	
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0	
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

2.4. Equipments Used during the Test

			Calibration		
Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Calibration Due
PC	Lenovo	G5005	MY42081102	N/A	N/A
SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
Signal Generator	Angilent	E4438C	MY42081396	11/18/2017	11/17/2018
Multimeter	Keithley	MiltiMeter 2000	4059164	11/18/2017	11/17/2018
S-parameter Network Analyzer	Agilent	8753ES	US38432944	11/18/2017	11/17/2018
Wireless Communication Test Set	R&S	CMU200	105988	11/18/2017	11/17/2018
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	11/18/2017	11/17/2018
E-Field PROBE	SATIMO	SSE2	SN 45/15 EPGO281	02/04/2018	02/03/2019
DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	10/01/2015	09/30/2018
DIPOLE 900	SATIMO	SID 900	SN 07/14 DIP 0G900-300	10/01/2015	09/30/2018
DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	10/01/2015	09/30/2018
COMOSAR OPEN Coaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	11/18/2017	11/17/2018
SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	11/18/2017	11/17/2018
Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	11/18/2017	11/17/2018
Mobile Phone POSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
Liquid measurement Kit	HP	85033D	3423A03482	11/18/2017	11/17/2018
Power meter	Agilent	E4419B	MY45104493	06/16/2018	06/15/2019
Power meter	Agilent	E4418B	GB4331256	06/16/2018	06/15/2019
Power sensor	Agilent	E9301H	MY41497725	06/16/2018	06/15/2019
Power sensor	Agilent	E9301H	MY41495234	06/16/2018	06/15/2019
Directional Coupler	MCLI/USA	4426-20	0D2L51502	06/16/2018	06/15/2019

Note

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;

SHENZH	EN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AQ44-H7	Report No.: LCS180815054AEB
c)	The most recent return-loss results,measued at le previous measurement;		
d)	The most recent measurement of the real or imag within 5Ω from the provious measurement.		
2)	Network analyzer probe calibration against air, dis measuring liquid parameters.	stilled water and a shorting	block performed before

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

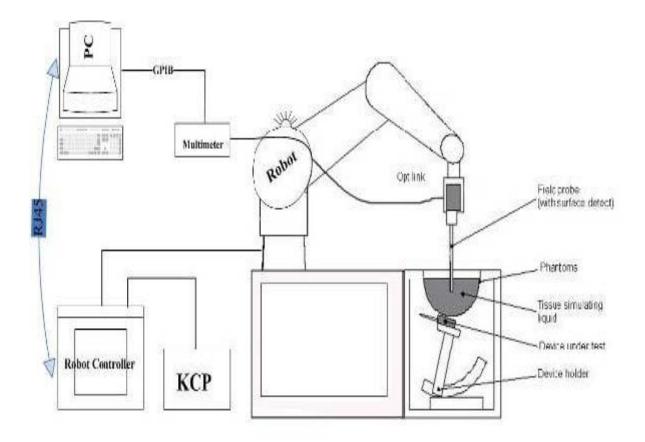
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO281 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency 450 MHz to 6 GHz;

Linearity:0.25dB(450 MHz to 6GHz)

Directivity 0.25 dB in HSL (rotation around probe axis)

0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range 0.01W/kg to > 100 W/kg;

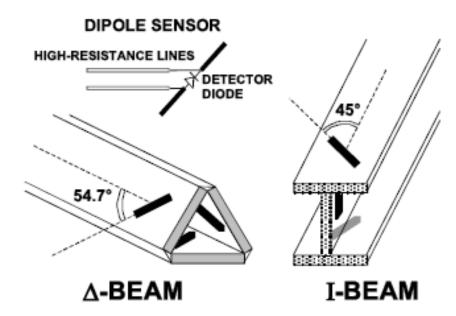
Linearity: 0.25 dB

Dimensions Overall length: 330 mm (Tip: 16mm)

Tip diameter: 5 mm (Body: 8 mm)

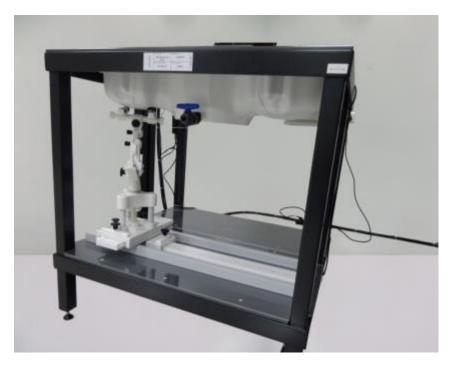
Distance from probe tip to sensor centers: 2.5 mm

Application General dosimetry up to 6 GHz


Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

scrittered dround the maxima round in the proceeding area soun.								
spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz}$: $\leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz}$: $\leq 4 \text{ mm}^*$					
uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm					
Δz _{Zoom} (1): between 1st two points closest to phantom surface		≤ 4 mm	$3-4 \text{ GHz}: \le 3 \text{ mm}$ $4-5 \text{ GHz}: \le 2.5 \text{ mm}$ $5-6 \text{ GHz}: \le 2 \text{ mm}$					
gna	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$						
x, y, z		\geq 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$					
	uniform graded grid	spatial resolution: Δx_{Zoom} , Δy_{Zoom} uniform grid: $\Delta z_{Zoom}(n)$ $\begin{array}{c} \Delta z_{Zoom}(1) \text{: between} \\ 1^{st} \text{ two points closest} \\ \text{to phantom surface} \\ \hline \Delta z_{Zoom}(n > 1) \text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$					

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

Diode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ - Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan

visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi =compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot Conv}}$$

$$H$$
 – fieldprobes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ al of channel i $(i = x, y, z)$

With Vi = compensated signal of channel i (i = x, y

Normi = sensor sensitivity of channel i (i = x, y, z)[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

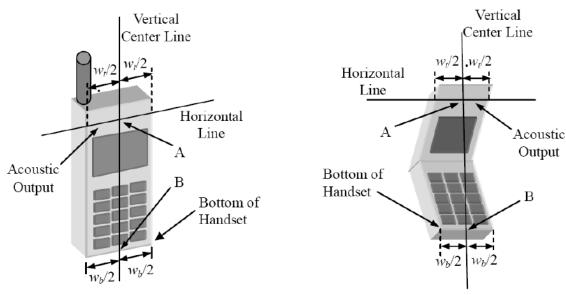
σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

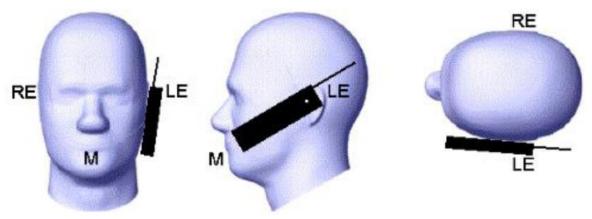

The power flow density is calculated assuming the excitation field as a free space field

$$P_{\text{(pwe)}} = \frac{E_{\text{tot}}^2}{3770} \text{ or } P_{\text{(pwe)}} = H_{\text{tot}}^2.37.7$$

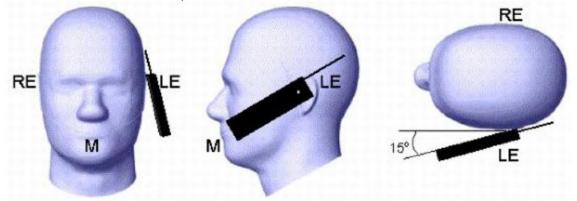
Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2

E_{tot}=total electric field strength in V/m

H_{tot}=total magnetic field strength in A/m


WtWidth of the handset at the level of the acoustic

W_bWidth of the bottom of the handset


A Midpoint of the widthwtof the handset at the level of the acoustic output

B Midpoint of the width w_b of the bottom of the handset

Picture 1-a Typical "fixed" case handset Picture 1-b Typical "clam-shell" case handset

Picture 2 Cheek position of the wireless device on the left side of SAM

Picture 3 Tilt position of the wireless device on the left side of SAM

For body SAR test we applied to FCC KDB447498 D01v06.

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

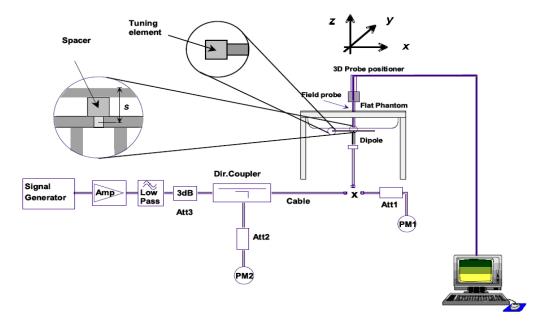
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid

Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	εr
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
1900	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3

Target Frequency	He	ad	В	ody
(MHz)	$\epsilon_{ m r}$	σ(S/m)	$\epsilon_{ m r}$	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.9. Tissue equivalent liquid properties


Dielectric Performance of Head and Body Tissue Simulating Liquid

	Biologino i circimanos di ricad ana Body ricodo cirridia ing Eiquia								
Tissue	Measured	Target	t Tissue		Measure		Liquid		
Type	Frequency (MHz)	εr	σ	ε _r	Dev.	σ	Dev.	Temp.	Test Data
835B	835	55.20	0.97	54.98	-0.40%	1.01	4.12%	21.5	08/22/2018
1900B	1900	53.30	1.52	53.67	0.69%	1.55	1.97%	22.4	08/30/2018
2450B	2450	52.70	1.95	51.93	-1.46%	1.89	-3.08%	20.9	09/13/2018

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2015-10-01	-24.46		55.4		2.4	
2016-09-30	-25.53	-4.374	56.1	0.7	1.352	-1.048
2017-09-30	-25.16	2.862	55.8	0.4	1.832	-0.568

SID1900 SN 30/14 DIP 1G900-333 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2015-10-01	-23.68		51.2		6.4	
2016-09-30	-24.19	-2.154	50.179	-1.021	3.521	-2.879
2017-09-30	-23.55	-0.549	50.395	-0.805	4.261	-2.139

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)		
2015-10-01	-25.61		44.9		-0.9			
2016-09-30	-26.38	-3.007	45.026	0.126	-1.067	-0.167		
2017-09-30	-26.22	2.382	45.107	0.207	-0.992	-0.092		

Mixtur	Frequen	Power	SAR _{1q}	SAR _{10g} Drift		Drift 1W Target		Difference percentage		Liquid	Date
e Type	cy (MHz)	Fower	(W/Kg)	(W/Kg)	(%)	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Temp	Date
		100 mW	0.972	0.636							08/22/
Body	835	Normalize to 1 Watt	9.72	6.36	2.34	9.90	6.39	-1.82%	-0.47%	21.5	2018
		100 mW	4.341	2.132							08/30/
Body	1900	Normalize to 1 Watt	43.41	21.32	-3.35	43.33	21.59	0.18%	-1.25%	22.4	2018
		100 mW	5.314	2.433							09/13/
Body	2450	Normalize to 1 Watt	53.14	24.33	0.78	54.65	24.58	-2.76%	-1.02%	20.9	2018

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

- a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- b. Read the WWAN RF power level from the base station simulator.
- c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
- d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.11.3 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

- 1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.
- 2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.
- a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.
- b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands
- c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.
- 3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.
- 4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions.
- a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.
- b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.
- 5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.
- 6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test

position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements.20 In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

- 3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements
 The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11
 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.
- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power,

additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
- 1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
- 2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.
- a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4.TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

Conducted power measurement results for GSM850/PCS1900

		Tune- up	Burst	Conducted (dBm)	l power		Tune-	Average power (dBm)		
GSN	л 850		Chann	el/Frequen	cy(MHz)	Division	up	Channel/Frequency(MHz)		
30.1	000	Max	128/ 824.2	190/ 836.6	251/ 848.8	Factors	Max	128/ 824.2	190/ 836.6	251/84 8.8
	1TX slot	33.00	32.56	32.61	32.55	-9.03dB	23.97	23.53	23.58	23.52
GPRS	2TX slot	31.50	30.99	31.04	31.00	-6.02dB	25.48	24.97	25.02	24.98
(GMSK)	3TX slot	30.00	29.52	29.55	29.53	-4.26dB	25.74	25.26	25.29	25.27
	4TX slot	28.50	28.01	28.06	27.97	-3.01dB	25.49	25.00	25.05	24.96
	1TX slot	26.50	26.01	26.04	25.99	-9.03dB	17.47	16.98	17.01	16.96
EDGE	2TX slot	25.00	24.50	24.53	24.47	-6.02dB	18.98	18.48	18.51	18.45
(8PSK)	3TX slot	23.50	23.01	23.03	22.99	-4.26dB	19.24	18.75	18.77	18.73
	4TX slot	22.00	21.49	21.52	21.50	-3.01dB	18.99	18.48	18.51	18.49
		Tune- up	Burst Conducted power (dBm)				Tune-	Avera	ge power (dBm)
GSM	1900	ир	Channel/Frequency(MHz)			Division	•	Channel/Frequency(MHz)		
		Max	512/ 1850.2	661/ 1880	810/ 1909.8	Factors	Max.	512/ 1850.2	661/ 1880	810/ 1909.8
	1TX slot	30.00	29.52	29.54	29.50	-9.03dB	20.97	20.49	20.51	20.47
GPRS	2TX slot	28.50	28.01	28.06	28.03	-6.02dB	22.48	21.99	22.04	22.01
(GMSK)	3TX slot	27.00	26.52	26.55	26.51	-4.26dB	22.74	22.26	22.29	22.25
, ,	4TX slot	25.50	24.99	25.03	24.97	-3.01dB	22.49	21.98	22.02	21.96
	1TX slot	26.00	25.51	25.54	25.49	-9.03dB	16.97	16.48	16.51	16.46
EDGE	2TX slot	24.50	24.02	24.07	23.99	-6.02dB	18.48	18.00	18.05	17.97
(8PSK)	3TX slot	23.00	22.47	22.50	22.49	-4.26dB	18.74	18.21	18.24	18.23
	4TX slot	21.50	20.98	21.01	21.00	-3.01dB	18.49	17.97	18.00	17.99

Notes:

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB

2. According to the conducted power as above, the GPRS measurements are performed with 3Txslot for GPRS850 and 3Txslot GPRS1900.

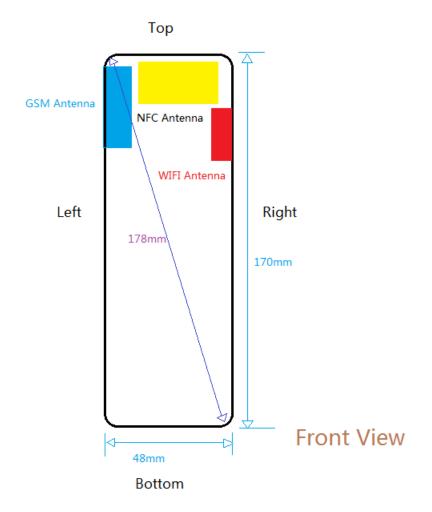
<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)
			1	8.69
	1	2412	2	8.54
			5.5	8.05
			11	8.26
			1	9.56
IEEE 802.11b	6	2437	2	9.38
IEEE OUZ.IID			5.5	9.34
			11	9.02
			1	9.70
	44	2462	2	9.35
	11	2402	5.5	9.66
			11	9.17
IEEE 000 11a	1	2412	6	5.23
IEEE 802.11g	_	2412	9	5.11

SHENZHEN LCS COMP	LIANCE TESTING LABORA	ATORY LTD.	FCC ID: 2AQ44-H7	Report No.: LCS180815054AEE
			12	5.15
			18	4.97
			24	5.06
			36	5.14
			48	4.86
			54	5.20
			6	5.70
			9	5.33
			12	5.41
			18	5.22
	6	2437	24	5.53
			36	5.47
			48	5.08
			54	5.46
			6	6.00
			9	5.92
			12	5.09
				5.44
	11	2462	18	
			24	5.87
			36	5.64
			48	5.58
			54	5.23
			MCS0	5.05
		2412	MCS1	4.86
	1		MCS2	4.49
			MCS3	4.96
	-		MCS4	4.37
			MCS5	4.75
			MCS6	5.00
			MCS7	5.02
			MCS0	5.83
			MCS1	5.33
			MCS2	5.72
IEEE 802.11n	6	2437	MCS3	5.68
HT20		2407	MCS4	5.70
			MCS5	5.45
			MCS6	5.48
			MCS7	5.63
			MCS0	6.04
			MCS1	6.00
			MCS2	5.98
	14	0.400	MCS3	5.88
	11	2462	MCS4	5.67
			MCS5	5.73
			MCS6	5.93
			MCS7	5.52

Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

4.2. Manufacturing tolerance


GSM Speech

GSM 850 GPRS (GMSK) (Burst Average Power)								
Cha	annel	128	190	251				
1 Tyolot	Target (dBm)	32.0	32.0	32.0				
1 Txslot	Tolerance ±(dB)	1.0	1.0	1.0				
2 Tyclot	Target (dBm)	30.0	30.5	30.5				
2 Txslot	Tolerance ±(dB)	1.0	1.0	1.0				
2 Tyolot	Target (dBm)	29.0	29.0	29.0				
3 Txslot	Tolerance ±(dB)	1.0	1.0	1.0				
4 Txslot	Target (dBm)	27.5	27.5	27.0				
4 1 X SIOL	Tolerance ±(dB)	1.0	1.0	1.0				
		E (8PSK) (Burst Av	verage Power)					
Cha	annel	128	190	251				
1 Txslot	Target (dBm)	25.5	25.5	25.0				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0				
2 Txslot	Target (dBm)	24.0	24.0	24.0				
2 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0				
3 Txslot	Target (dBm)	22.5	22.5	22.0				
3 1 7 2 10 1	Tolerance ±(dB)	1.0	1.0	1.0				
4 Txslot	Target (dBm)	21.0	21.0	21.0				
4 1 7 2 10 1	Tolerance ±(dB)	1.0	1.0	1.0				
	GSM 1900 GPRS (GMSK) (Burst Average Power)							
Cha	annel	512	661	810				
1 Txslot	Target (dBm)	29.0	29.0	29.0				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0				
2 Txslot	Target (dBm)	27.5	27.5	27.5				
2 1 13101	Tolerance ±(dB)	1.0	1.0	1.0				
3 Txslot	Target (dBm)	26.0	26.0	26.0				
3 1 73101	Tolerance ±(dB)	1.0	1.0	1.0				
4 Txslot	Target (dBm)	24.0	24.5	24.0				
4 1 73101	Tolerance ±(dB)	1.0	1.0	1.0				
		E (8PSK) (Burst A						
Cha	nnel	512	661	810				
1 Txslot	Target (dBm)	25.0	25.0	25.0				
1 1 70101	Tolerance ±(dB)	1.0	1.0	1.0				
2 Txslot	Target (dBm)	23.5	23.5	23.0				
2 1 // 3101	Tolerance ±(dB)	1.0	1.0	1.0				
3 Txslot	Target (dBm)	22.0	22.0	22.0				
O I AGIOL	Tolerance ±(dB)	1.0	1.0	1.0				
4 Txslot	Target (dBm)	20.0	20.5	20.5				
4 1 7 5 10 1	Tolerance ±(dB)	1.0	1.0	1.0				

WiFi 2.4G

WII 1 2.40							
	802.11b (Average)						
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	8.0	9.0	9.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	802.11g (Average)						
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	5.0	5.0	6.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	802.11n HT20	0 (Average)					
Channel	Channel Channel 1 Channel 6 Channel 11						
Target (dBm)	5.0	5.0	6.0				
Tolerance ±(dB)	1.0	1.0	1.0				

4.3. Transmit Antennas and SAR Measurement Position

Antenna information:

Antenna information.	
WWAN Main Antenna	GSM TX/RX
WLAN Antenna	WLAN TX/RX

Note:

1). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

4.4. Standalone SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10}

Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

	- /
Test Mode	Duty Cycle
GPRS850	1:2.67
GPRS1900	1:2.67
WiFi2450	1:1

4.4.1 SAR Results

SAR Values [GSM 850 (GPRS)]

	Freq. Time Test Conducted Allowed		Maximum	Power		SAR _{1-g} res	ults(W/kg)			
Ch.	Freq. (MHz)	Time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
			measured	/ reported SA	R numbers -	Body (E	Body-wor	n)		
190	836.6	3Txslots	Front	29.55	30.00	0.10	1.109	0.505	0.560	Plot 1
190	836.6	3Txslots	Rear	29.55	30.00	1.25	1.109	0.374	0.415	
190	836.6	3Txslots	Тор	29.55	30.00	-0.37	1.109	0.402	0.446	
190	836.6	3Txslots	Left	29.55	30.00	2.56	1.109	0.463	0.513	

SAR Values [GSM 1900 (GPRS)]

				OAIL Values	LOCINI 1900 (
	Cor		Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)		
Ch.	Freq. (MHz)	time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
			measured	/reported SA	R numbers -	- Body (I	Body-wor	n)		
661	1880.0	3Txslots	Front	26.55	27.00	-2.16	1.109	0.473	0.525	Plot 2
661	1880.0	3Txslots	Rear	26.55	27.00	2.38	1.109	0.328	0.364	
661	1880.0	3Txslots	Тор	26.55	27.00	-0.93	1.109	0.389	0.431	
661	1880.0	3Txslots	Left	26.55	27.00	1.12	1.109	0.403	0.447	

SAR Values [WIFI2.4G]

	Ch Freq. Service Test Power Allower		Maximum	Power		SAR _{1-g} res	ults(W/kg)			
Ch.	Freq. (MHz)	Service	Test Position	Power (dBm	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
6	2437	DSSS	Front	9.70	10.00	-0.76	1.072	0.164	0.176	Plot 3
6	2437	DSSS	Rear	9.70	10.00	3.78	1.072	0.083	0.089	
6	2437	DSSS	Right	9.70	10.00	-2.41	1.072	0.134	0.144	

Remark:

- 1. The value with blue color is the maximum SAR Value of each test band.
- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
- 3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
- 4. Per KDB 648474 D04, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is $\leq 1.2 \text{ W/kg}$, SAR testing with a headset connected to the handset is not required.

4.5. Simultaneous TX SAR Considerations

4.5.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters. Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the WIFI modules using a antenna, GSM modules sharing same single antenna; Application Simultaneous Transmission information:

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)
GSM	EDGE	DT	Yes, WLAN	N/A
WLAN	2450	DT	Yes,EDGE	Yes
Note: DT-Digita	l Transport			

4.5.2 Evaluation of Simultaneous SAR

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB 447498D01 General RF Exposure Guidance v06.

Simultaneous transmission SAR for WiFi and GSM

Test Position	GPRS850 Reported SAR _{1-g} (W/kg)	GPRS1900 Reported SAR _{1-g} (W/kg)	WiFi2.4G Reported SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.560	0.525	0.176	0.736	1.6	no	no
Rear	0.415	0.364	0.089	0.504	1.6	no	no
Тор	0.446	0.431	/	0.446	1.6	no	no
Bottom	/	/	/	/	1.6	no	no
Left	0.513	0.447	/	0.513	1.6	no	no
Right	/	/	0.144	0.144	1.6	no	no

Remark:

- 1. The value with block color is the maximum values of standalone
- 2. The value with blue color is the maximum values of $\sum SAR_{1-g}$

4.6. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with ≤ 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

						First Re	epeated
Frequency Band	Air Interface	RF Exposure Configuration	Test Position	Repeated SAR (yes/no)	Highest Measured SAR _{1-a} (W/Kg)	Measued SAR _{1-q} (W/Kg)	Largest to Smallest SAR Ratio
850MHz	GSM850	Standalone	Body-Rear	no	0.505	n/a	n/a
1900MHz	GSM1900	Standalone	Body-Rear	no	0.473	n/a	n/a
2450MHz	2.4GWLAN	Standalone	Body-Rear	no	0.164	n/a	n/a

4.7. General description of test procedures

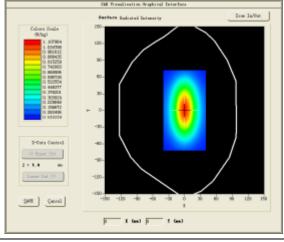
- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 6. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - \bullet ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 7. IEEE 1528-2013 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 8. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.

VZIIEN LCS COMI	LIANCE TESTING LABORATOR	RY LTD.	FCC ID: 2AQ44-H7	Report No.: LCS180815054A
4.8. Measur	ement Uncertainty (4	50MHz-6GH	łz)	
				reports only when the highest
measured SAR	in a frequency band is ≥ 1.5	5 W/kg for 1-g	SAR accoridng to	KDB865664D01.

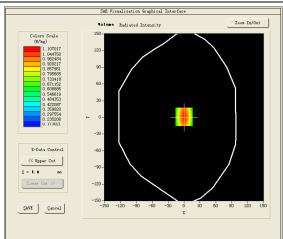
4.9. System Check Results

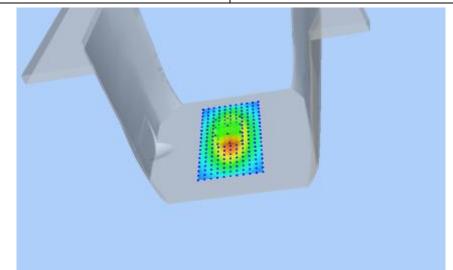
#1

Test mode:835MHz(Body)
Product Description:Validation


Model:Dipole SID835

E-Field Probe: SSE2(SN 45/15 EPGO281)


Test Date: August 22, 2018

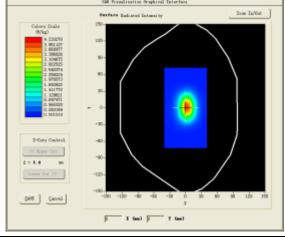

Medium(liquid type)	MSL_835
Frequency (MHz)	835.0000
Relative permittivity (real part)	54.98
Conductivity (S/m)	1.01
Input power	100mW
Crest Factor	1.0
Conversion Factor	5.04
Variation (%)	2.340000
SAR 10g (W/Kg)	0.636279
SAR 1g (W/Kg)	0.971524

SURFACE SAR

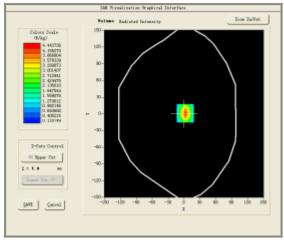
VOLUME SAR

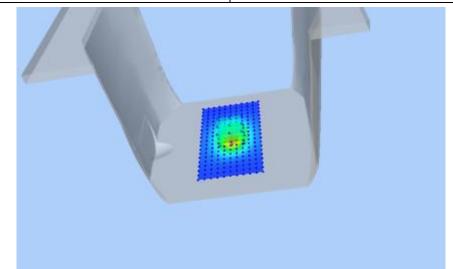
#2

Test mode:1900MHz(Body)
Product Description:Validation


Model:Dipole SID1900

E-Field Probe: SSE2(SN 45/15 EPGO281)


Test Date: August 30, 2018

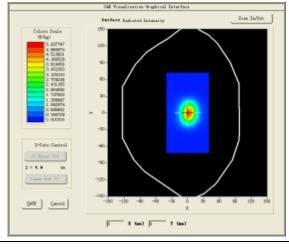

Medium(liquid type)	MSL_1900
Frequency (MHz)	1900.0000
Relative permittivity (real part)	53.67
Conductivity (S/m)	1.55
Input power	100mW
Crest Factor	1.0
Conversion Factor	4.85
Variation (%)	-3.350000
SAR 10g (W/Kg)	2.132354
SAR 1g (W/Kg)	4.341153

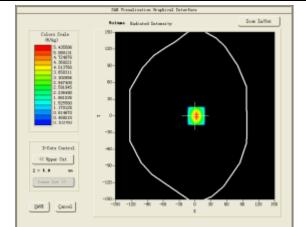
SURFACE SAR

VOLUME SAR

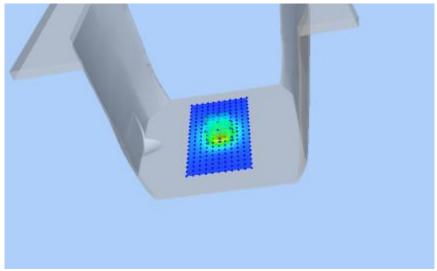
#3

Test mode:2450MHz(Body)
Product Description:Validation


Model:Dipole SID2450


E-Field Probe:SSE2(SN 45/15 EPGO281)

Test Date: September 13, 2018


Medium(liquid type)	MSL_2450
Frequency (MHz)	2450.000000
Relative permittivity (real part)	51.93
Conductivity (S/m)	1.89
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.55
Variation (%)	0.780000
SAR 10g (W/Kg)	2.432562
SAR 1g (W/Kg)	5.314132

SURFACE SAR

VOLUME SAR

4.10. SAR Test Graph Results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

Test Mode: GSM850MHz, Middle channel (Body Front Side)

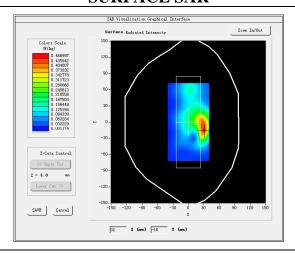
Product Description: QRCode Payment Terminal

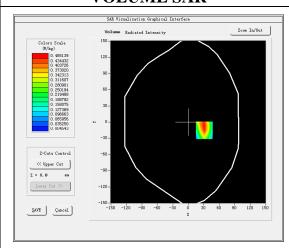
Model: H7

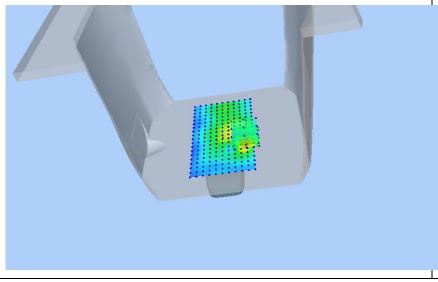
Test Date: August 22, 2018

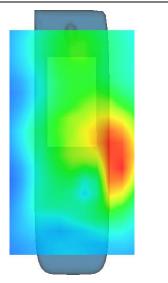
Medium(liquid type)	MSL_835
Frequency (MHz)	836.600000
Relative permittivity (real part)	54.98
Conductivity (S/m)	1.01
E-Field Probe	SN 45/15 EPGO281
Crest Factor	6.02
Conversion Factor	5.02
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.100000
SAR 10g (W/Kg)	0.306942
SAR 1g (W/Kg)	0.504551
SURFACE SAR	VOLUME SAR
SAM Transligation Graphical Interface Saw face Radiated Intensity Calers Scale 077a0 51905 0 496405 0 496405 0 496405 0 10 496405 0 10 2000 0 1	SAR Visualization Graphical Interface Volume Rediated Intensity Zees In/but 150 -

#2


Test Mode: GPRS1900MHz, Middle channel (Body Front Side)

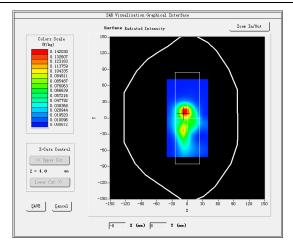

Product Description: QRCode Payment Terminal

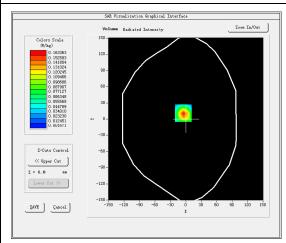

Model: H7

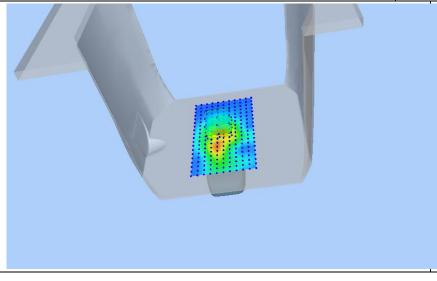

Test Date: August 30, 2018

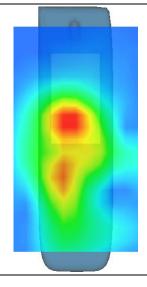
Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.67
Conductivity (S/m)	1.55
E-Field Probe	SN 45/15 EPGO281
Crest Factor	4.06
Conversion Factor	4.85
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.160000
SAR 10g (W/Kg)	0.253568
SAR 1g (W/Kg)	0.473202
SURFACE SAR	VOLUME SAR

#3


Test Mode: 802.11b(WiFi2.4G), Middle channel (Body Front Side)


Product Description: QRCode Payment Terminal


Model: H7


Test Date: September 13, 2018

Medium(liquid type)	MSL_2450
Frequency (MHz)	2437.000000
Relative permittivity (real part)	51.93
Conductivity (S/m)	1.89
E-Field Probe	SN 45/15 EPGO281
Crest Factor	1.0
Conversion Factor	2.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.760000
SAR 10g (W/Kg)	0.073496
SAR 1g (W/Kg)	0.163627
SURFACE SAR	VOLUME SAR

5.CALIBRATION CERTIFICATES

5.1 Probe-EPGO281 Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.348.1.15.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F., BUILDING B, ZHUOKE SCIENCE PARK, No.190, CHONGQING ROAD, FUYONG STREET BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 45/15 EPGO281

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 02/04/2018

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR.348.1.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	02/08/2018	Jes
Checked by :	Jérôme LUC	Product Manager	02/08/2018	Jes
Approved by:	Kim RUTKOWSKI	Quality Manager	02/08/2018	him huthowski

	Customer Name		
Distribution :	Shenzhen STS Test Services Co., Ltd.		

Issue	Date	Modifications
A	02/08/2018	Initial release
8		
2		
2.		

Page: 2/10

Ref: ACR.348.1.15.SATU.A

TABLE OF CONTENTS

1	Devi	ce Under Test	
2	Prod	uct Description4	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Calil	oration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	
	5.4	Isotropy	8
6	List	of Equipment10	

Page: 3/10

Ref: ACR.348.1.15.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type COMOSAR DOSIMETRIC E FIELD PRO			
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 45/15 EPGO281		
Product Condition (new / used)	New		
Frequency Range of Probe	0.45 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.186 MΩ		
	Dipole 2: R2=0.194 MΩ		
	Dipole 3: R3=0.191 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Ref: ACR.348.1.15.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$-\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$-\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

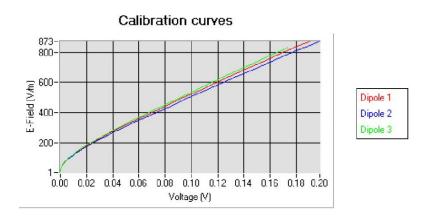
Page: 5/10

Ref: ACR.348.1.15.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

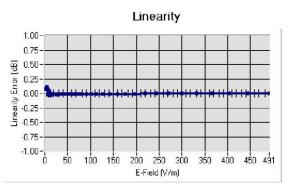

5.1 <u>SENSITIVITY IN AIR</u>

	Normy dipole $2 (\mu V/(V/m)^2)$	
$\frac{1 \left(\mu \sqrt{(\sqrt{m})^2} \right)}{0.77}$	$\frac{2 (\mu V/(V/m)^2)}{0.83}$	0.67

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
91	90	95

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$



Page: 6/10

Ref: ACR.348.1.15.SATU.A

5.2 <u>LINEARITY</u>

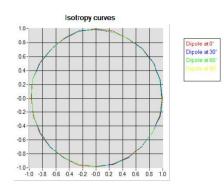
Linearity: II+/-2.60% (+/-0.11dB)

5.3 <u>SENSITIVITY IN LIQUID</u>

<u>Liquid</u>	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	<u>ConvF</u>
HL450	450	44.12	0.88	1.76
BL450	450	58.92	1.00	1.81
HL750	750	42.24	0.90	1.53
BL750	750	56.85	0.99	1.59
HL850	835	43.02	0.90	1.78
BL850	835	53.72	0.98	1.85
HL900	900	42.47	0.99	1.62
BL900	900	56.97	1.09	1.67
HL1800	1800	42.24	1.40	1.83
BL1800	1800	53.53	1.53	1.87
HL1900	1900	40.79	1.42	2.10
BL1900	1900	54.47	1.57	2.16
HL2000	2000	40.52	1.44	2.01
BL2000	2000	54.18	1.56	2.09
HL2450	2450	38.73	1.81	2.21
BL2450	2450	53.23	1.96	2.28
HL2600	2600	38.54	1.95	2.32
BL2600	2600	52.07	2.23	2.38
HL5200	5200	36.80	4.84	2.46
BL5200	5200	51.21	5.16	2.52
HL5400	5400	36.35	4.96	2.70
BL5400	5400	50.51	5.70	2.79
HL5600	5600	35.57	5.23	2.74
BL5600	5600	49.83	5.91	2.83
HL5800	5800	35.30	5.47	2.53
BL5800	5800	49.03	6.28	2.60

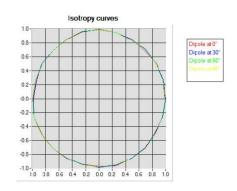
LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10



Ref: ACR.348.1.15.SATU.A

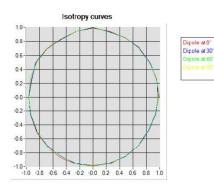
5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.06 dB

HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.08 dB


Page: 8/10

Ref: ACR.348.1.15.SATU.A

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.08 dB

Page: 9/10

Ref: ACR.348.1.15.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description			Current Calibration Date	Next Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2018	02/2021		
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2018		
Multimeter	Keithley 2000	1188656	12/2015	12/2018		
Signal Generator	Agilent E4438C	MY49070581	12/2015	12/2018		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2015	12/2018		
Power Sensor	HP ECP-E26A	US37181460	12/2015	12/2018		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	150798832	10/2016	10/2018		

Page: 10/10

5.2 SID835Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.4.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 07/14 DIP 0G835-303

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2015	JES
Checked by:	Jérôme LUC	Product Manager	10/14/2015	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	tum Puthowski

	Customer Name		
	Shenzhen LCS		
Distribution:	Compliance Testing		
	Laboratory Ltd.		

Issue	Date	Modifications	
A	10/14/2015	Initial release	

Page: 2/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.4.14.SATU.A

TABLE OF CONTENTS

1	Inti	roduction	
2	De	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	
6	Cal	libration Measurement Results6	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	-
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	Lis	t of Equipment 11	

Page: 3/11