

FCC TEST REPORT

FOR

Shenzhen Weierte Electronic Co.,Ltd

Remote control

Test Model: WRT8002

Prepared for	:	Shenzhen Weierte Electronic Co.,Ltd
Address	:	Floor B4, Building No.29, No.3 Industrial Zone Mashantou, Gongming, Guangming New District, Bao' an District, Shenzhen, China
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	March 14, 2018
Number of tested samples	:	1
Sample number	:	Prototype
Date of Test	:	March 14, 2018~March 28, 2018
Date of Report	:	March 28, 2018

FCC TEST REPORT**FCC CFR 47 PART 15 C(15.249)****Report Reference No.** : LCS180302042AEA

Date of Issue : March 28, 2018

Testing Laboratory Name : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure : Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method **Applicant's Name** : Shenzhen Weierte Electronic Co.,Ltd

Address : Floor B4, Building No.29, No.3 Industrial Zone Mashantou, Gongming, Guangming New District, Bao' an District, Shenzhen, China

Test Specification

Standard : FCC CFR 47 PART 15 C(15.249) / ANSI C63.10: 2013

Test Report Form No. : LCSEMC-1.0

TRF Originator : Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description : Remote control

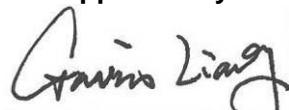
Trade Mark : N/A

Test Model : WRT8002

Ratings : DC 3V by battery


Result : Positive

Compiled by:


Dick Su/ File administrators

Supervised by:

Calvin Weng/ Technique principal

Approved by:

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No. : LCS180302042AEA

March 28, 2018

Date of issue

Test Model..... : WRT8002

EUT..... : Remote control

Applicant..... : Shenzhen Weierte Electronic Co.,LtdAddress..... : Floor B4, Building No.29, No.3 Industrial Zone Mashantou,
Gongming, Guangming New District, Bao' an District, Shenzhen,
China

Telephone..... : /

Fax..... : /

Manufacturer..... : Shenzhen Weierte Electronic Co.,LtdAddress..... : Floor B4, Building No.29, No.3 Industrial Zone Mashantou,
Gongming, Guangming New District, Bao' an District, Shenzhen,
China

Telephone..... : /

Fax..... : /

Factory..... : Shenzhen Weierte Electronic Co.,LtdAddress..... : Floor B4, Building No.29, No.3 Industrial Zone Mashantou,
Gongming, Guangming New District, Bao' an District, Shenzhen,
China

Telephone..... : /

Fax..... : /

Test Result**Positive**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	March 28, 2018	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. Description of Device (EUT)	6
1.2. Support Equipment List	6
1.3. External I/O	6
1.4. Description of Test Facility.....	6
1.5. Statement of the measurement uncertainty	7
1.6. Measurement Uncertainty.....	7
1.7. Description Of Test Modes	8
2. TEST METHODOLOGY	9
2.1. EUT Configuration.....	9
2.2. EUT Exercise	9
2.3. General Test Procedures.....	9
3. CONNECTION DIAGRAM OF TEST SYSTEM	10
3.1. Justification	10
3.2. EUT Exercise Software	10
3.3. Special Accessories.....	10
3.4. Block Diagram/Schematics.....	10
3.5. Equipment Modifications	10
3.6. Test Setup	10
4. SUMMARY OF TEST RESULTS.....	11
5. RADIATED EMISSION MEASUREMENT	12
5.1. Standard Applicable.....	12
5.2. Instruments Setting	12
5.3. Test Procedure	13
5.4. Block Diagram of Test Setup.....	17
5.5. Test Results	18
5.6. Results for Radiated Emissions (Above 1GHz).....	20
5.7. Results for Band edge Testing.....	21
6. 20 DB BANDWIDTH MEASUREMENT.....	24
6.1. Standard Applicable.....	24
6.2. Block Diagram of Test Setup.....	24
6.3. Test Procedure	24
6.4. Test Results	25
7. AC POWER LINE CONDUCTED EMISSIONS.....	26
8. ANTENNA REQUIREMENT	27
8.1. Standard Applicable.....	27
8.2. Antenna Connected Construction.....	27
9. SUMMARY OF TEST EQUIPMENT.....	28
10. TEST SETUP PHOTOGRAPHS	29
11. EXTERIOR PHOTOGRAPHS OF THE EUT	29
12. INTERIOR PHOTOGRAPHS OF THE EUT	29

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Remote control
Test Model : WRT8002
Power Supply : DC 3V by battery
Hardware Version : V1.0
Software Version : V1.0
Frequency Range : 2405MHz, 2430MHz, 2470MHz
Modulation Type : GFSK
Antenna Description : Internal Antenna, 0dBi(Max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
--	--	--	--	--

1.3. External I/O

I/O Port Description	Quantity	Cable
--	--	--

1.4. Description of Test Facility

FCC Registration Number. is 254912.
Industry Canada Registration Number. is 9642A-1.
ESMD Registration Number. is ARCB0108.
UL Registration Number. is 100571-492.
TUV SUD Registration Number. is SCN1081.
TUV RH Registration Number. is UA 50296516-001
NVLAP Registration Code is 600167-0

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Radiation Uncertainty :	9KHz~30MHz	3.10dB	(1)
	30MHz~200MHz	2.96dB	(1)
	200MHz~1000MHz	3.10dB	(1)
	1GHz~26.5GHz	4.00dB	(1)
Conduction Uncertainty :	150kHz~30MHz	1.63dB	(1)
Power disturbance :	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description Of Test Modes

The EUT operates in the unlicensed ISM band at 2.4GHz. The following operating modes were applied for the related test items.

All test modes were tested, only the result of the worst case was recorded in the report.

The EUT is considered a portable unit and was set to transmit at 100% duty cycle. It was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane.

Mode of Operations	Transmitting Frequency (MHz)
GFSK	2405
	2430
	2470
For Conducted Emission	
Test Mode	N/A
For Radiated Emission	
Test Mode	TX Mode

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be TX-2405MHz.

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX-2405MHz.

***Note: Using a temporary antenna connector for the EUT when the conducted measurements(Band Edges Measurement and 20 dB Bandwidth) are performed.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition. Continuous transmitting was pre-programmed. it'll keep transmitting with modulated signal at the lowest channel by installing the batter. when press the White button, it'll move to the next channel. Repeat press White button, it'll transmitting at each of the channel used.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Power Line Conducted Emissions	Compliant
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant
§15.205	Band Edges Measurement	Compliant
§15.249, §15.215	20 dB Bandwidth	Compliant

5. RADIATED EMISSION MEASUREMENT

5.1. Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

5.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 0.8 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP detector with an EMI receiver.
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 12.75 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

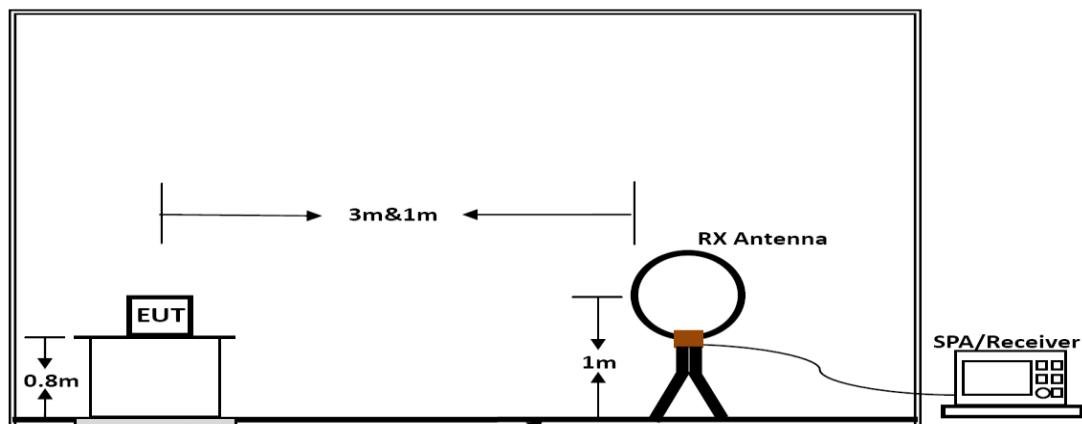
Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

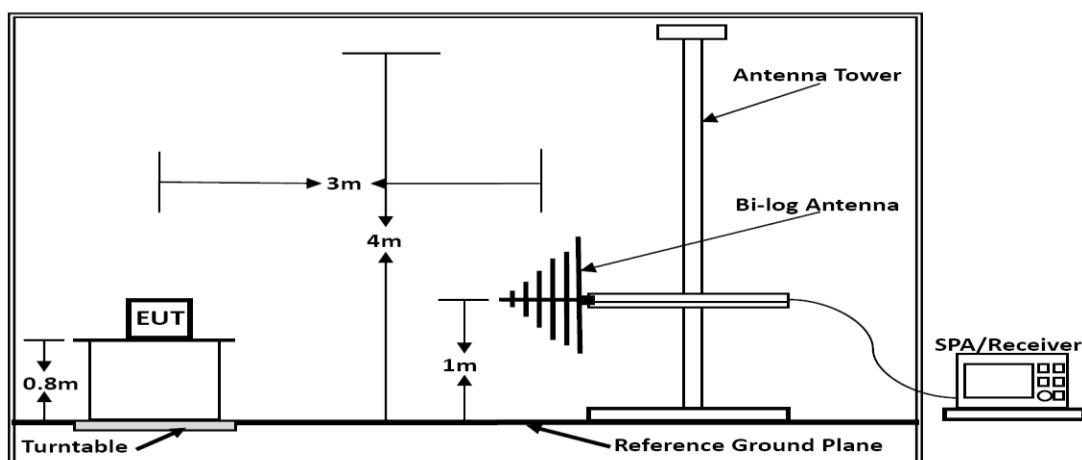
4) Sequence of testing above 12.75 GHz

Setup:

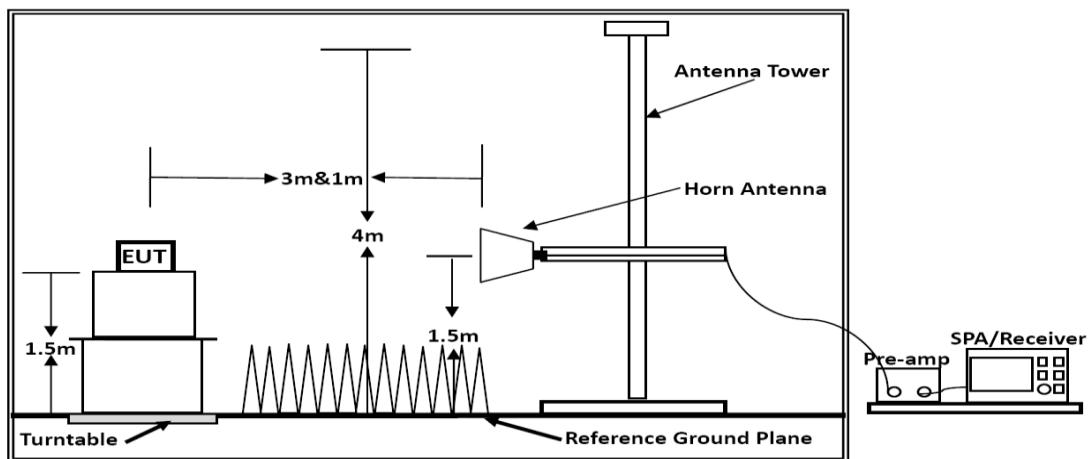
- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 1 meter.
- The EUT was set into operation.


Premeasurement:

- The antenna is moved spherical over the EUT in different polarisations of the antenna.


Final measurement:

- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and RMS detector.
- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


5.4. Block Diagram of Test Setup

Below 30MHz

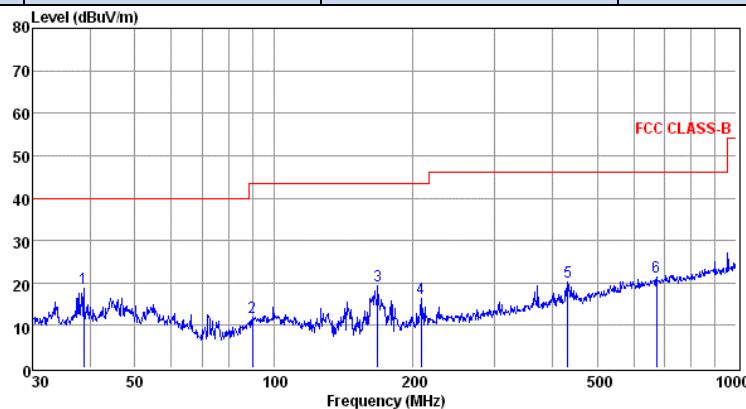
Below 1GHz

Above 1GHz

5.5. Test Results

Results of Radiated Emissions (9kHz~30MHz)

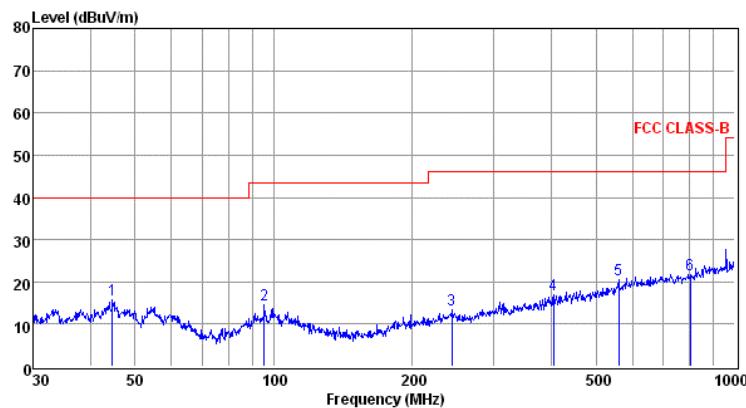
Frequency (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note


Note:

The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.

Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);
Limit line = specific limits (dBuV) + distance extrapolation factor.

Results of Radiated Emissions (30MHz~1000MHz)


Temperature	22.5°C	Humidity	52.1%
Test Engineer	Mina Xu	Test Date	March 20, 2018
Test Mode	TX-2405MHz		

Env./Ins: 22.5°C/52.1%
pol: VERTICAL

Freq	Reading	CabLos	Antfac	Measured		Limit	Over	Remark
				MHz	dBuV	dB	dB/m	dBuV/m
1	38.75	5.08	0.38	13.26	18.72	40.00	-21.28	QP
2	89.90	-0.62	0.68	11.87	11.93	43.50	-31.57	QP
3	167.82	9.70	0.77	8.90	19.37	43.50	-24.13	QP
4	207.85	4.73	0.86	10.82	16.41	43.50	-27.09	QP
5	432.55	3.42	1.18	15.53	20.13	46.00	-25.87	QP
6	672.84	0.93	1.65	18.71	21.29	46.00	-24.71	QP

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the official limit are not reported

Env./Ins: 22.5°C/52.1%
pol: HORIZONTAL

Freq	Reading	CabLos	Antfac	Measured		Limit	Over	Remark
				MHz	dBuV	dB	dB/m	dBuV/m
1	44.59	1.71	0.41	13.55	15.67	40.00	-24.33	QP
2	95.43	1.26	0.58	12.87	14.71	43.50	-28.79	QP
3	243.38	0.39	0.90	12.08	13.37	46.00	-32.63	QP
4	404.67	0.38	1.32	15.16	16.86	46.00	-29.14	QP
5	560.69	1.33	1.43	17.71	20.47	46.00	-25.53	QP
6	801.79	0.01	1.72	20.08	21.81	46.00	-24.19	QP

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the official limit are not reported

Notes: Only record the worst case.

5.6. Results for Radiated Emissions (Above 1GHz)

Field Strength Of Fundamental (TX-2405MHz)

Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result
2405.00	H	82.14	79.84	114	94	Pass
2405.00	V	83.07	80.25	114	94	Pass

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4810.00	44.10	33.06	35.04	3.94	46.06	74	-27.94	Peak	Horizontal
4810.00	33.64	33.06	35.04	3.94	35.60	54	-18.40	Average	Horizontal
4810.00	45.83	33.06	35.04	3.94	47.79	74	-26.21	Peak	Vertical
4810.00	34.49	33.06	35.04	3.94	36.45	54	-17.55	Average	Vertical

Field Strength Of Fundamental (TX-2430MHz)

Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result
2430.00	H	89.48	74.58	114	94	Pass
2430.00	V	92.97	82.13	114	94	Pass

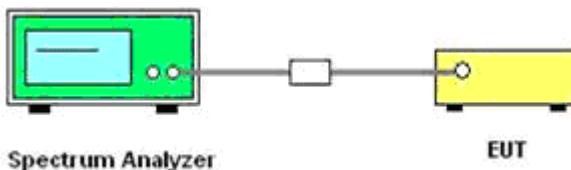
Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4860.00	44.75	33.16	35.15	3.96	46.72	74	-27.28	Peak	Horizontal
4860.00	32.57	33.16	35.15	3.96	34.54	54	-19.46	Average	Horizontal
4860.00	42.44	33.16	35.15	3.96	44.41	74	-29.59	Peak	Vertical
4860.00	36.04	33.16	35.15	3.96	38.01	54	-15.99	Average	Vertical

Field Strength Of Fundamental (TX-2470MHz)

Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result
2470.00	H	89.37	74.47	114	94	Pass
2470.00	V	93.05	81.96	114	94	Pass

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4940.00	43.95	33.26	35.14	3.98	46.05	74	-27.95	Peak	Horizontal
4940.00	35.01	33.26	35.14	3.98	37.11	54	-16.89	Average	Horizontal
4940.00	44.06	33.26	35.14	3.98	46.16	74	-27.84	Peak	Vertical
4940.00	33.79	33.26	35.14	3.98	35.89	54	-18.11	Average	Vertical

Notes: Only record the worst case.


1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.
2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
3. No emission was be recorded above 18GHz means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.7. Results for Band edge Testing

5.7.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.7.2. Test Setup Layout

5.7.3. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.7.4. Test Procedures

According to KDB 558074 D01 V03 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for Peak detector.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.
6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
8. Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies $>$ 1000 MHz).

9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).

10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

$$E = EIRP - 20\log D + 104.8$$

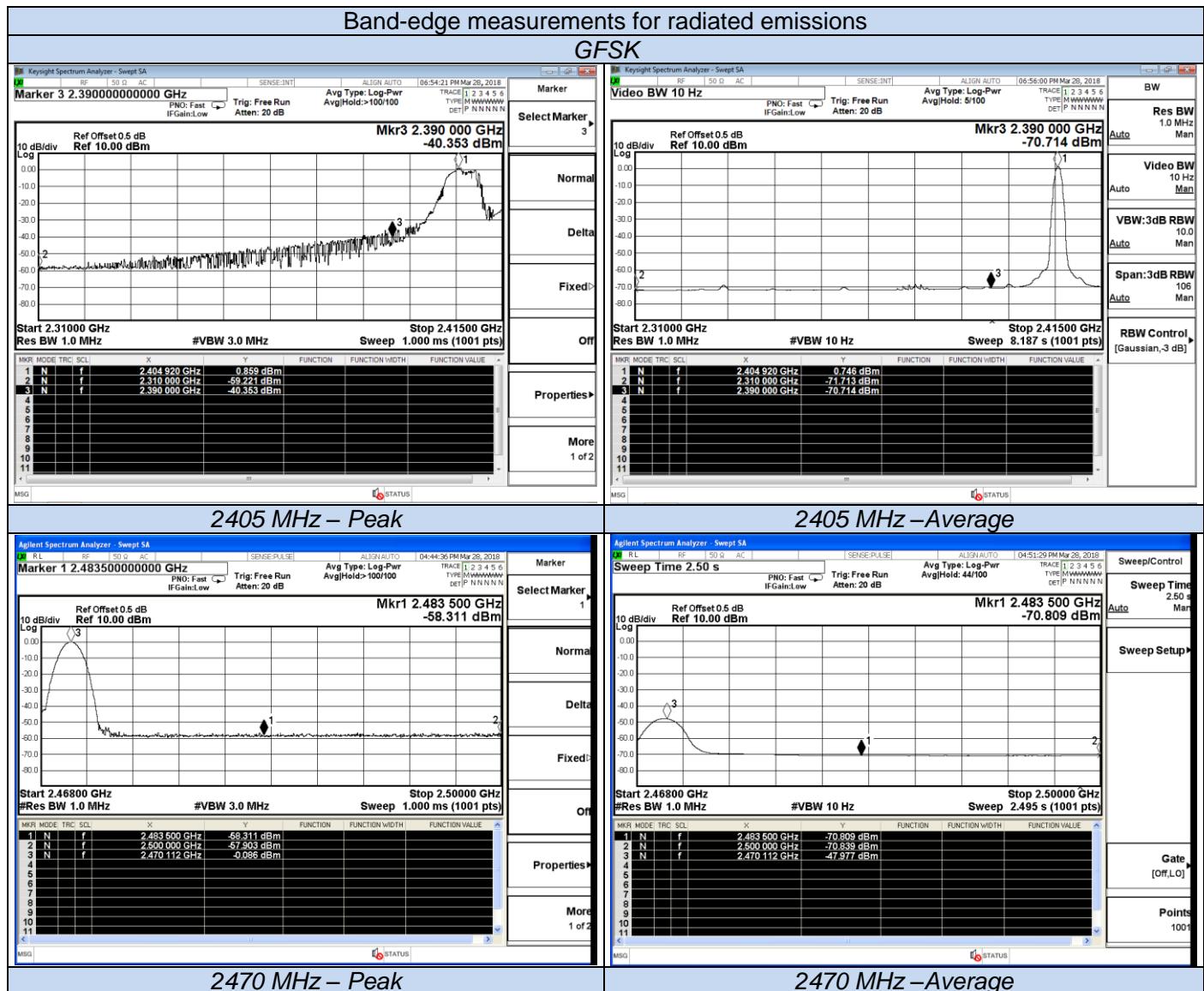
Where:

E = electric field strength in dB μ V/m,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

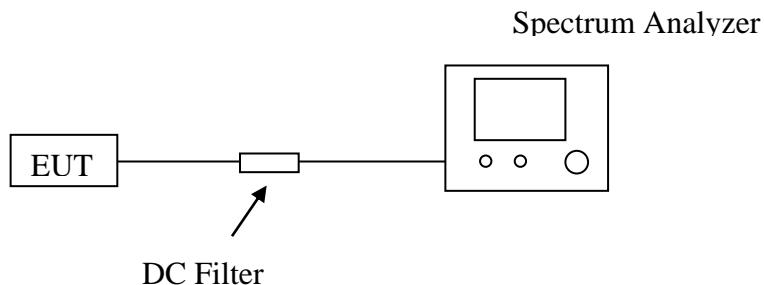

12. Compare the resultant electric field strength level to the applicable regulatory limit.

13. Perform radiated spurious emission test duress until all measured frequencies were complete.

5.7.5 Test Results

Temperature	22.5°C	Humidity	52.1%
Test Engineer	Mina Xu	Test Date	March 28, 2018

GFSK-Low channel							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dB μ V/m)	Detector	Limit (dB μ V/m)	Verdict
2310.000	-59.221	2.0	0.0	38.04	Peak	74.00	PASS
2310.000	-71.713	2.0	0.0	25.55	AV	54.00	PASS
2390.000	-40.353	2.0	0.0	56.91	Peak	74.00	PASS
2390.000	-70.714	2.0	0.0	26.55	AV	54.00	PASS
GFSK-High channel							
2483.500	-58.311	2.0	0.0	38.95	Peak	74.00	PASS
2483.500	-70.809	2.0	0.0	26.45	AV	54.00	PASS
2500.000	-57.903	2.0	0.0	39.36	Peak	74.00	PASS
2500.000	-70.839	2.0	0.0	26.42	AV	54.00	PASS



6. 20 DB BANDWIDTH MEASUREMENT

6.1. Standard Applicable

According to §15.215

6.2. Block Diagram of Test Setup

6.3. Test Procedure

Use the following spectrum analyzer settings:

Span = 3MHz

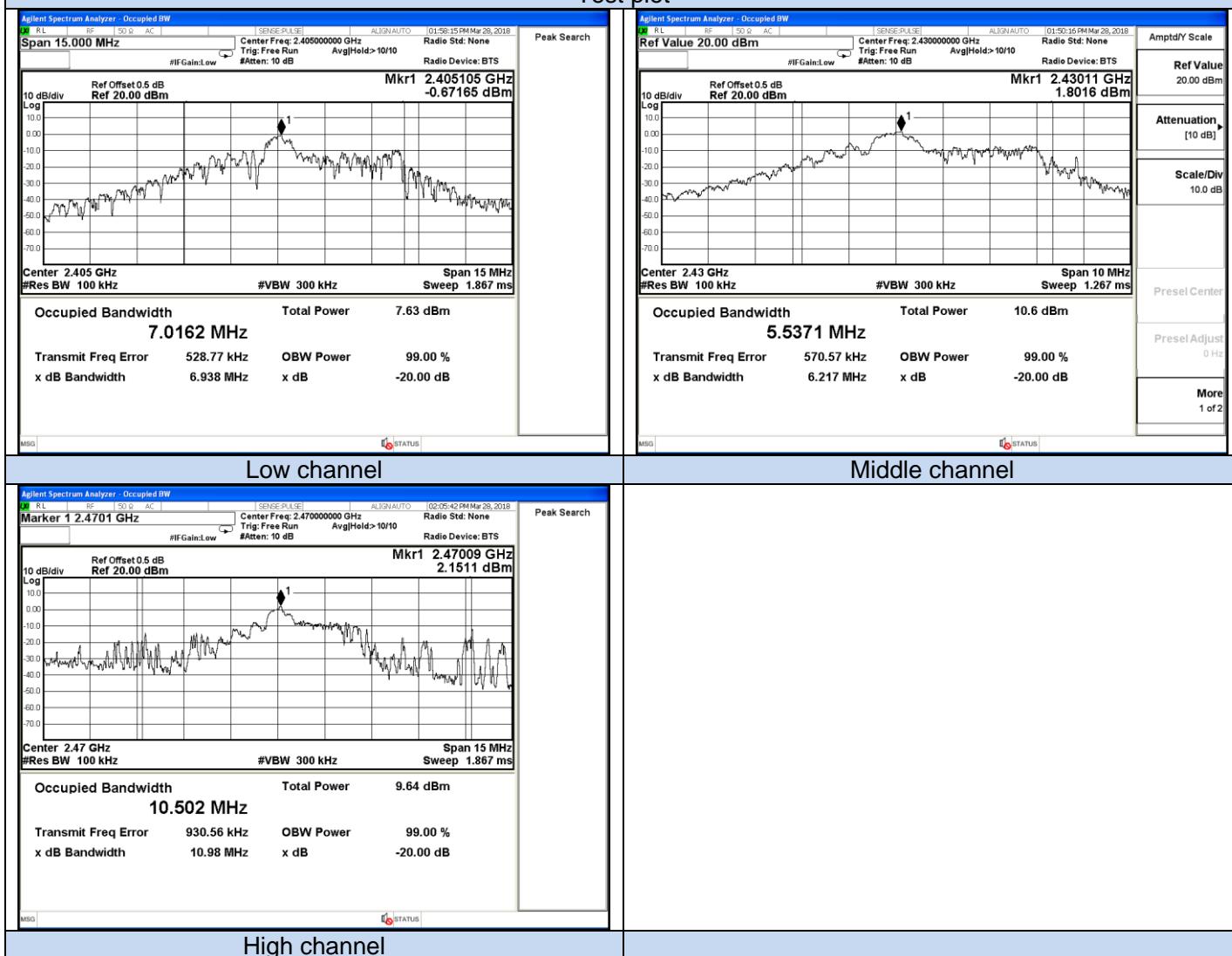
RBW = 30KHz

VBW = 100KHz

Sweep = auto

Detector function = peak

Trace = max hold


The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

6.4. Test Results

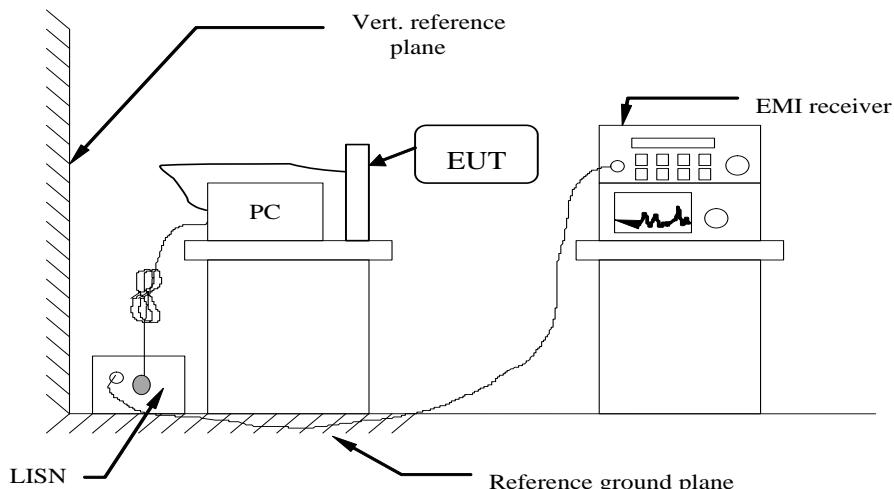
Temperature	22.5°C	Humidity	52.1%
Test Engineer	Mina Xu	Test Date	March 28, 2018

Test Result Of 20dB Bandwidth Measurement		
Test Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
2405	6.938	Non-Specified
2430	6.217	Non-Specified
2470	10.98	Non-Specified

Test plot

High channel

7. AC POWER LINE CONDUCTED EMISSIONS


7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency

7.2 Block Diagram of Test Setup

7.3 Test Results

Not applicable for the EUT.

8. ANTENNA REQUIREMENT

8.1. Standard Applicable

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

8.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is connect to PCB board and no consideration of replacement. Please see EUT photo for details.

Result: Compliance.

9. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2017-06-17	2018-06-16
2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16
3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16
4	EPM Series Power Meter	Agilent	E4419B	MY45104493	2017-06-17	2018-06-16
5	E-SERIES AVG POWER SENSOR	Agilent	E9301H	MY41495234	2017-06-17	2018-06-16
6	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16
7	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16
8	SPECTRUM ANALYZER	R&S	FSP	100503	2017-06-17	2018-06-16
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-17	2018-06-16
10	Positioning Controller	MF	MF-7082	/	2017-06-17	2018-06-16
11	EMI Test Software	AUDIX	E3	/	N/A	N/A
12	EMI Test Receiver	R&S	ESR 7	101181	2017-06-17	2018-06-16
13	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
14	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22
15	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-05-02	2018-05-01
16	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22
17	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20
18	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20
19	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16
20	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16
21	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16
22	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16
23	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-0032	2017-06-17	2018-06-16
24	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16
25	RF Control Unit	JS Tonscend Corporation	JS0806-2	178060073	2017-10-28	2018-10-27
26	JS1120-3 BT/WIFI Test Software	JS Tonscend Corporation	JS1120-3	/	N/A	N/A

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.

10. TEST SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of the EUT.

11. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

12. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----