

4.5 Transmitter Radiated Emissions

FCC Rules: 15.247(d), 15.209, 15.205; RSS-247;

4.5.1 Requirement

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

For out of band radiated emissions (except for frequencies in restricted bands), in any 100 kHz bandwidths outside the EUT pass-band, the RF power shall be at least 20dB (peak) or 30 dB (average) below that of the maximum in-band 100 kHz emissions.

4.5.2 Procedure

Radiated emission measurements were performed from 30 MHz to 25 GHz according to the procedure described in ANSI C63.10: 2013. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz for frequencies above 1000 MHz. Above 1000 MHz Peak and Average measurements were performed.

The EUT is placed on a plastic turntable that is 80 cm in height for below 1000MHz and 1.5m in height for above 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 3 meters for frequencies above 1 GHz and at 10 meters for frequencies below 1 GHz.

Measurements made from 1 GHz to 18GHz had a 2.4-2.5GHz notch filter in place. A preamp was used from 30MHz to 26GHz.

All measurements were made with a Peak Detector and compared to QP limits for 30MHz - 1GHz and Average limits for 1GHz - 26GHz.

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels).

File: 103319970MPK-009 Page 48 of 79

4.5.3 Field Strength Calculation

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG; if measurement is performed at a distance other than specified in the rule, a Distance Correction Factor (DCF) shall be added.

Where $FS = Field Strength in dB(\mu V/m)$

RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$; AF = Antenna Factor in dB(1/m)

CF = Cable Attenuation Factor in dB; AG = Amplifier Gain in dB

Assume a receiver reading of 52.0 dB(µV) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 $dB(\mu V/m)$. This value in $dB(\mu V/m)$ was converted to its corresponding level in $\mu V/m$.

 $RA = 52.0 dB(\mu V)$

AF = 7.4 dB(1/m)

CF = 1.6 dB

AG = 29.0 dB

 $FS = 52.0 + 7.4 + 1.6 - 29.0 = 32 dB(\mu V/m)$.

Level in $\mu V/m = Common \ Antilogarithm \ [(32 \ dB\mu V/m)/20] = 39.8 \ \mu V/m$.

EMC Report for Radial Medical, Inc. on the Radial Medical Compression System

4.5.4 Antenna-port conducted measurements

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

4.5.6 General Procedure for conducted measurements in restricted bands

- a) Measure the conducted output power (in dBm) using the detector specified for determining quasi-peak, peak, and average conducted output power, respectively.
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (*e.g.*, Watts, mW).
- e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8 + DCF (DCF for Average measurements) where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

DCF = Duty Cycle Correction Factor

- f) Compare the resultant electric field strength level to the applicable limit.
- g) Perform radiated spurious emission test

4.5.7 Test Results

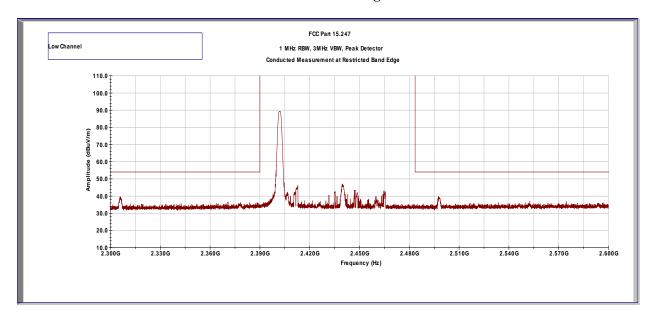
The data on the following pages list the significant emission frequencies, the limit and the margin of compliance where emissions are within 3dB of the limit.

All conducted antenna port plots are corrected with the consideration of a 2 dBi Antenna Gain.

All radiated measurements were conducted with the AC adapter and Battery mode. The worst case data was reported.

Vertical and Horizontal orientations were pre-tested. Worst case orientation was used throughout emission measurements.

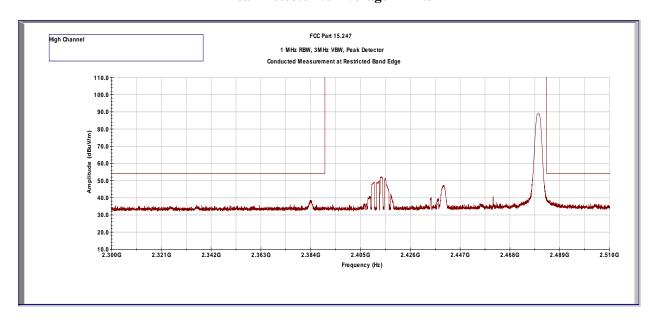
Date of Test:	December 4 – 5 & 11, 2017
Results	Complies


EMC Report for Radial Medical, Inc. on the Radial Medical Compression System
File: 103319970MPK-009 Page 50 of 79

4.5.7 Test Results for Battery Mode

15.209/15.205 Restricted Band Emissions at Antenna Port

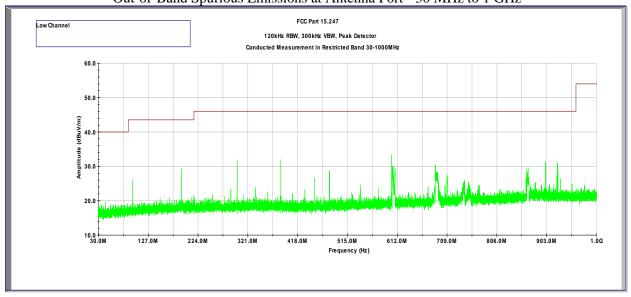
Out-of-Band Spurious Emissions at the Band Edge – Tx @ 2402 MHz Battery Mode Peak Detector vs Average Limits

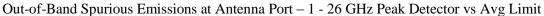


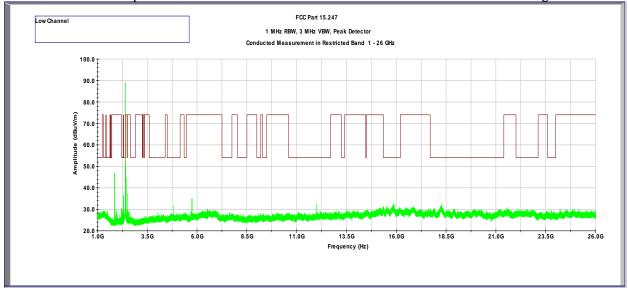
Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
2.498	39.6	54	-14.4	Peak	Pass

EMC Report for Radial Medical, Inc. on the Radial Medical Compression System
File: 103319970MPK-009 Page 51 of 79

Out-of-Band Spurious Emissions at the Band Edge – Tx @ 2480 MHz Battery Mode Peak Detector vs Average Limits

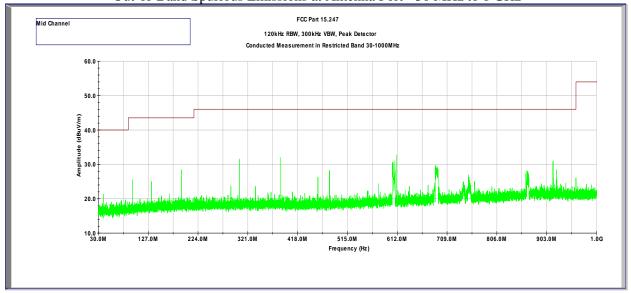

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
2.384	38.5	54	-15.5	Peak	Pass

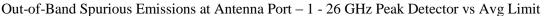

EMC Report for Radial Medical, Inc. on the Radial Medical Compression System
File: 103319970MPK-009 Page 52 of 79

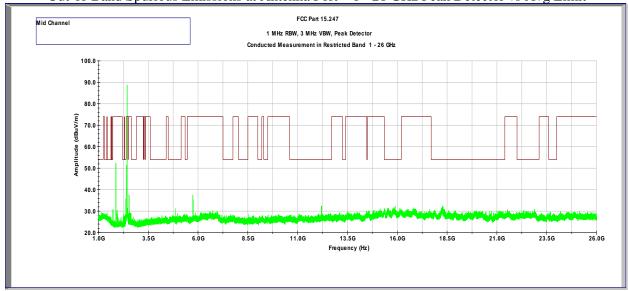


Tx @ 2402MHz **Battery Mode**

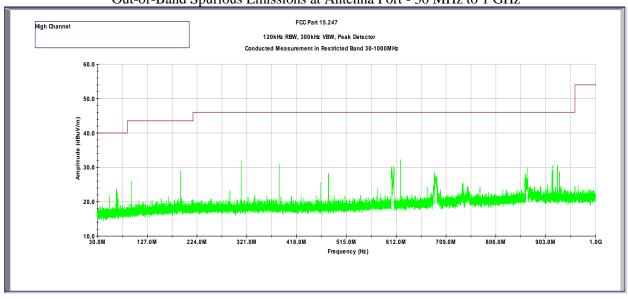
Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz


Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.804	31.9	54	-22.1	Peak	Pass

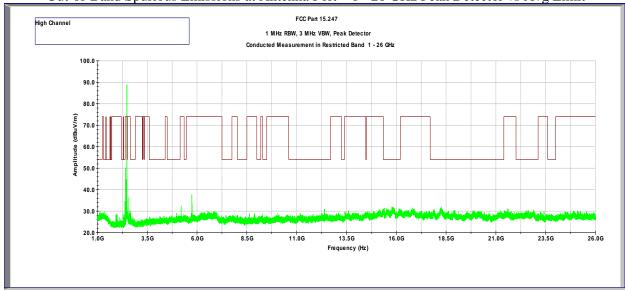

File: 103319970MPK-009 Page 53 of 79



Tx @ 2440MHz **Battery Mode**

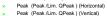

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.880	31.2	54	-22.8	Peak	Pass

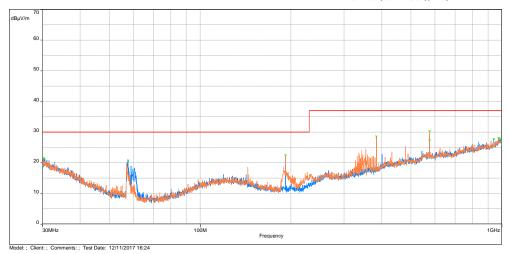
File: 103319970MPK-009 Page 54 of 79



Tx @ 2480MHz Battery Mode

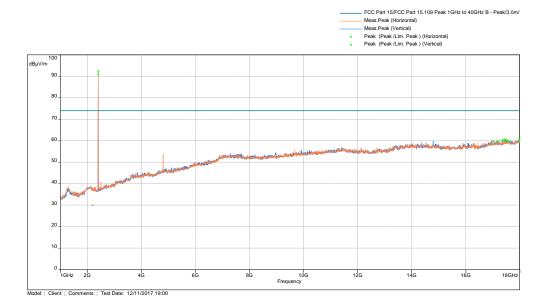
Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz

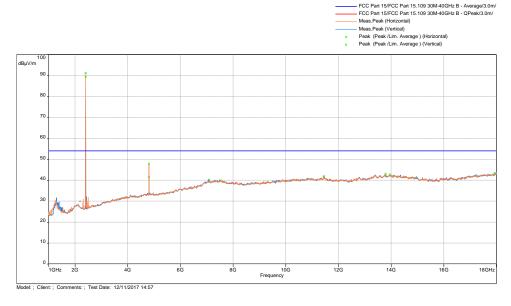



Out-of-Band Radiated Spurious Emissions (Cabinet Radiation)

Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 2402MHz
Battery Mode

Radiated Spurious Emissions 30 MHz - 1000 MHz



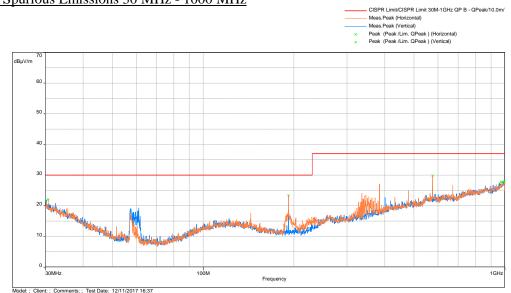

EMC Report for Radial Medical, Inc. on the Radial Medical Compression System
File: 103319970MPK-009 Page 56 of 79

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

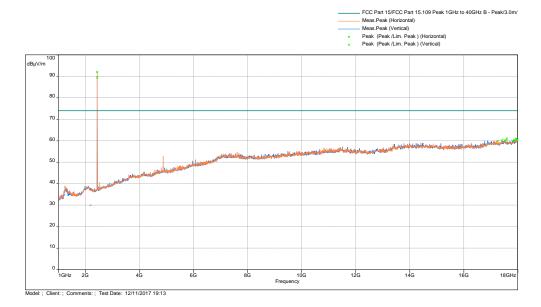
Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.804	47.9	54	-6.1	RMS	Pass

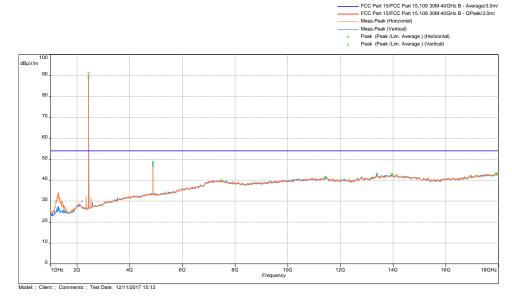
Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz


Note: FS@3m = RA + AF + CF - Preamp

	Resu	lts Complie	es
--	------	-------------	----


Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 2440MHz Battery Mode

Radiated Spurious Emissions 30 MHz - 1000 MHz

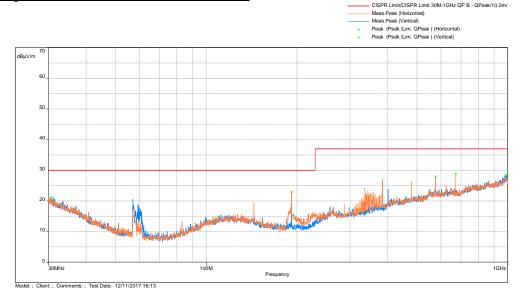


Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

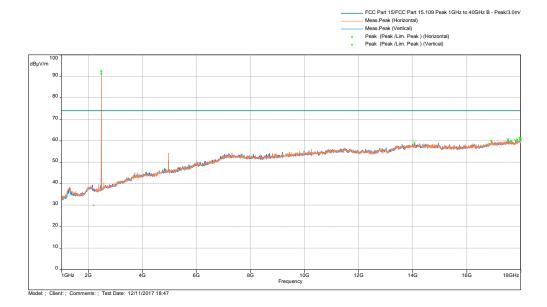
Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.880	48.6	54	-5.4	RMS	Pass

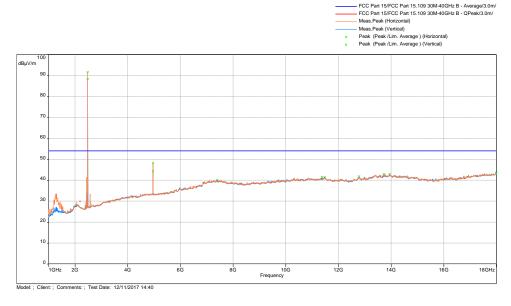
Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz


Note: FS@3m = RA + AF + CF - Preamp

Results	Complies


Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 2480MHz Battery Mode

Radiated Spurious Emissions 30 MHz - 1000 MHz



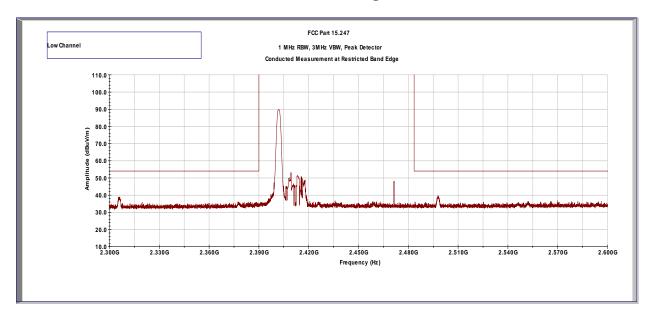
Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.960	48.1	54	-5.9	RMS	Pass

Note: Radiated emission measurements were performed up to 25 GHz. No Emissions were identified when scanned from $18-25 \ GHz$

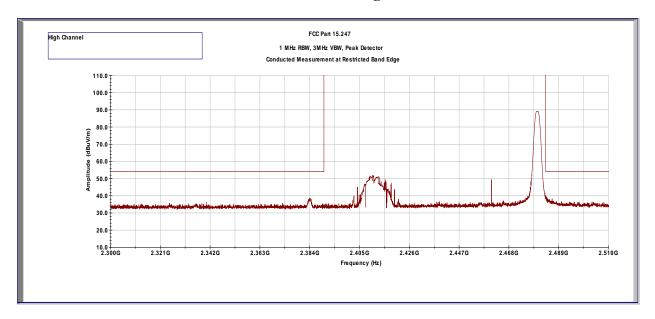
Note: FS@3m = RA + AF + CF - Preamp


Results Complies

4.5.7 Test Results for Charge Mode

15.209/15.205 Restricted Band Emissions at Antenna Port

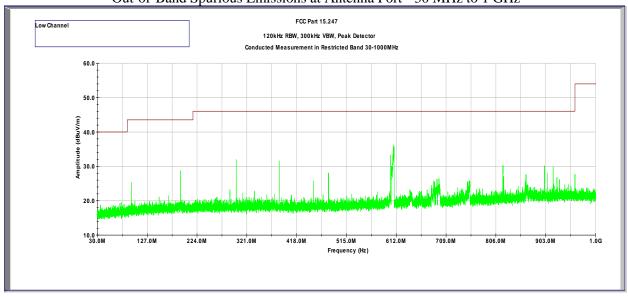
Out-of-Band Spurious Emissions at the Band Edge – Tx @ 2402 MHz Charge Mode Peak Detector vs Average Limits

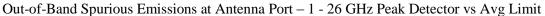


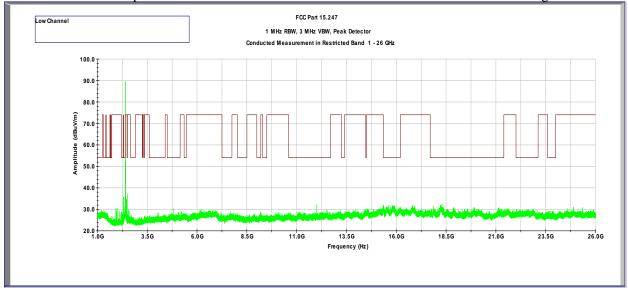
Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
2.498	39.4	54	-14.6	Peak	Pass

EMC Report for Radial Medical, Inc. on the Radial Medical Compression System
File: 103319970MPK-009 Page 62 of 79

Out-of-Band Spurious Emissions at the Band Edge – Tx @ 2480 MHz Charge Mode Peak Detector vs Average Limits

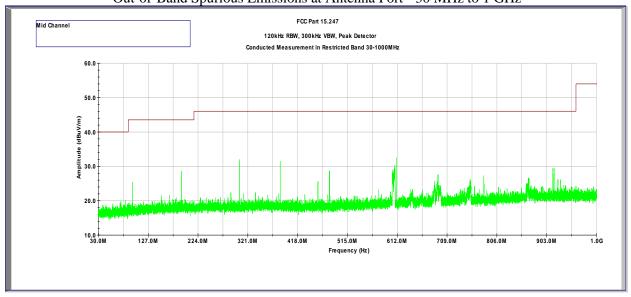


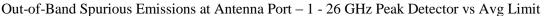

Frequency	Corrected Amplitude	Avg Limit	Margin Detector Res		Results	
GHz	dBμV/m	dBμV/m	dB			
2.384	38.2	54	-15.8	Peak	Pass	

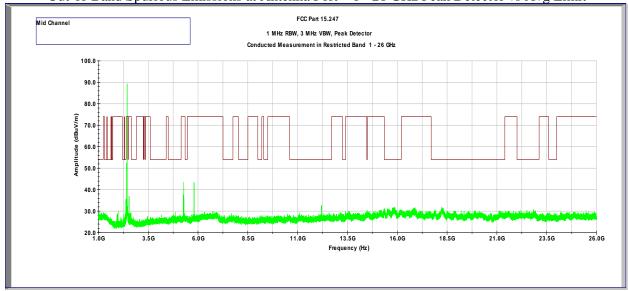


Tx @ 2402MHz **Charge Mode**

Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz

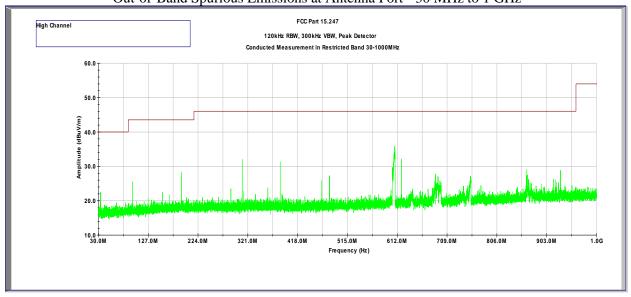

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.804	30.6	54	-23.4	Peak	Pass

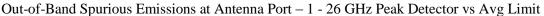

File: 103319970MPK-009 Page 64 of 79

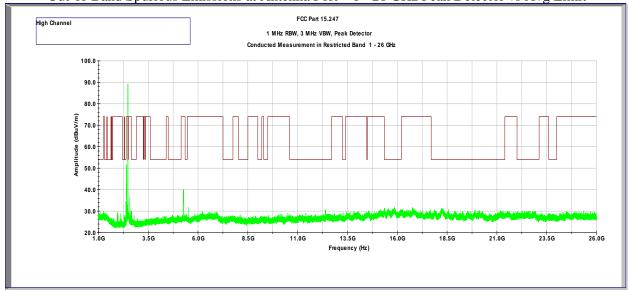


Tx @ 2440MHz Charge Mode

Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz

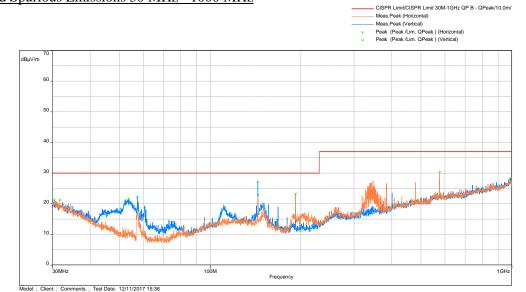



Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.880	29.5	54	-24.5	Peak	Pass

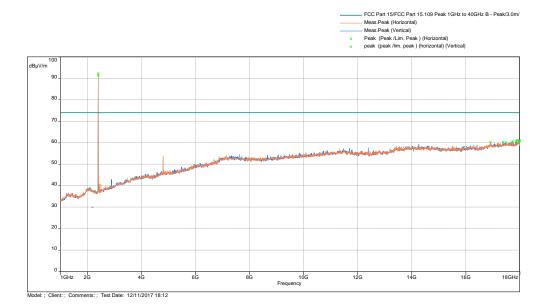


Tx @ 2480MHz Charge Mode

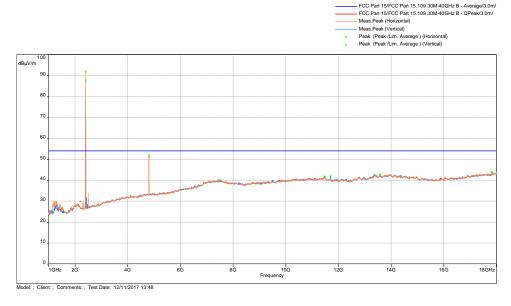
Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz



Out-of-Band Radiated Spurious Emissions (Cabinet Radiation)


Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 2402MHz Charge Mode

Radiated Spurious Emissions 30 MHz - 1000 MHz

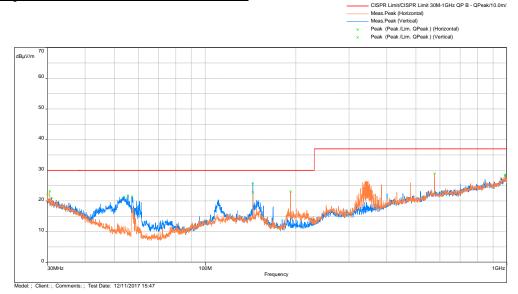


Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

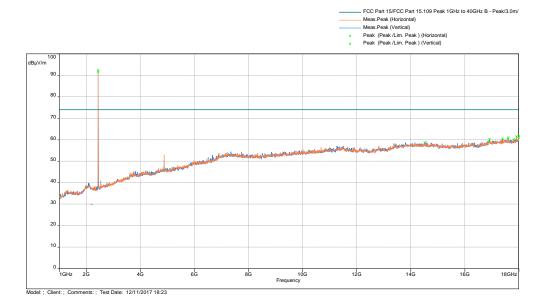
Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.804	51.8	54	-2.2	RMS	Pass

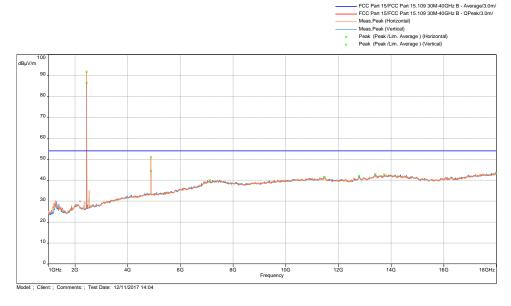
Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz


Note: FS@3m = RA + AF + CF - Preamp

Results	Complies


Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 2440MHz Charge Mode

Radiated Spurious Emissions 30 MHz - 1000 MHz

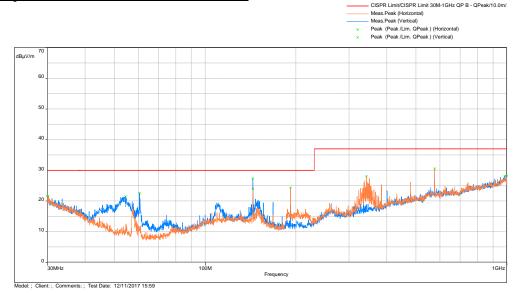


Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

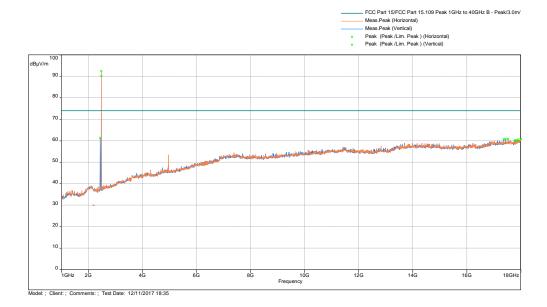
Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.880	51.0	54	-3.0	RMS	Pass

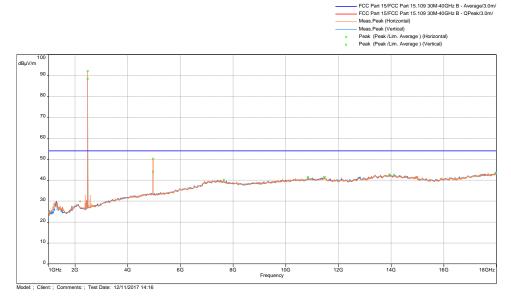
Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz


Note: FS@3m = RA + AF + CF - Preamp

Results	Complies


Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 2480MHz Charge Mode

Radiated Spurious Emissions 30 MHz - 1000 MHz

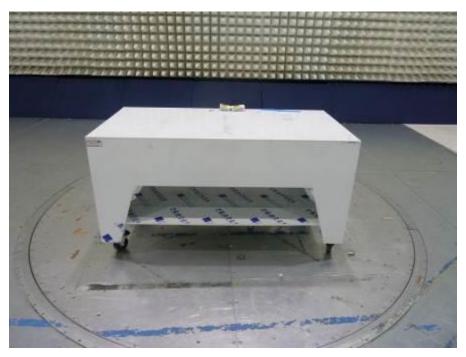


Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

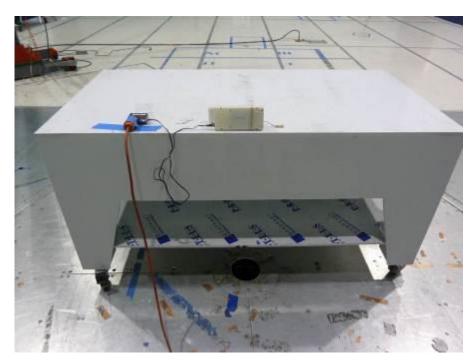
Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

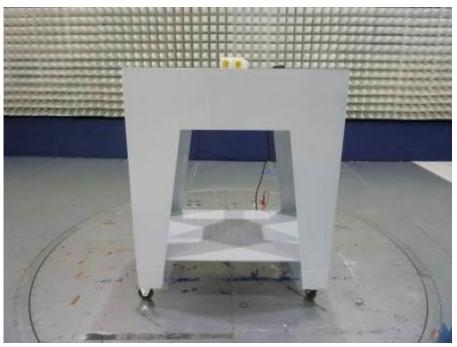
Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
4.960	50.3	54	-3.7	RMS	Pass

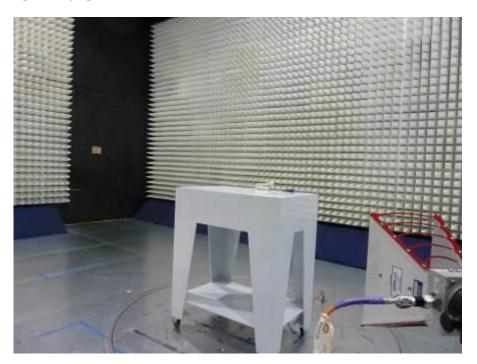
Note: Radiated emission measurements were performed up to 25GHz. No Emissions were identified when scanned from 18-25 GHz

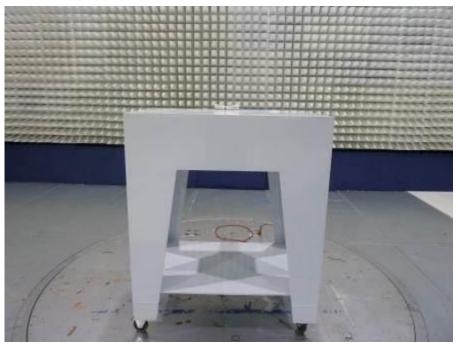

Note: FS@3m = RA + AF + CF - Preamp

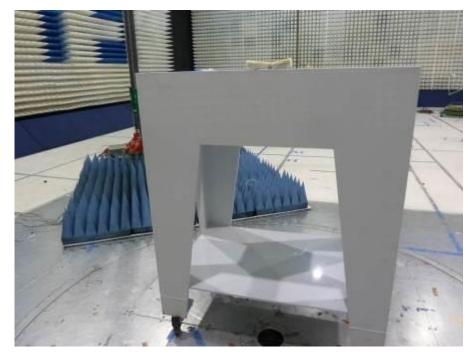
Results Complies


4.5.8 Test setup photographs


The following photographs show the testing configurations used.







EMC Report for Radial Medical, Inc. on the Radial Medical Compression System
File: 103319970MPK-009 Page 77 of 79

5.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Asset #	Cal Int	Cal Due
Spectrum Analyzer	Rohde and Schwarz	FSV	ITS 01534	12	05/16/18
Pyramidal Horn Antenna	EMCO	3160-09	ITS 00571	#	#
Pre-Amplifier (18-40GHz)	Miteq	TTA1840-35-S-M	ITS 01393	12	04/18/18
Pre-Amplifier (1-18GHz)	Miteq	AMF-4D-001180-24-10P	ITS 00526	12	01/04/18
Horn Antenna	ETS-Lindgren	3115	ITS 00982	12	02/03/18
EMI Receiver	Rohde and Schwarz	ESU	ITS 00961	12	07/10/18
BI-Log Antenna	Teseq	CBL 6111D	ITS 01058	12	08/11/18
Pre-Amplifier	Sonoma Instrument	310	ITS 00942	12	01/19/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01462	12	08/19/18
Notch Filter	Micro-Tronics	BRM50702	ITS 01166	12	02/08/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01465	12	08/19/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01470	12	08/19/18
Attenuator	Narda	FSCM99899	ITS 01583	12	08/31/18
RF Cable	Megaphase	EMC1-K1K1-236	ITS 01538	12	06/13/18
RF Cable	Megaphase	TM40-K1K1-19	ITS 01154	12	01/26/18
Transient Limiter	COM-POWER	LIT-153A	ITS 01452	12	06/19/18
RF Cable	Megaphase	TM40-K1K1-59 RF	ITS 01156	12	01/26/18

[#] No Calibration required

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile
			Conducted Restricted Band Edge_Avg
Tile	Quantum Change	3.4.K.22	Conducted Restricted Band Edge_Peak Conducted Restricted Band_1-26GHz
			Conducted Restricted Band_30M-1GHz
			Conducted Spurious_30M-26GHz
BAT-EMC	Nexio	3.16.0.64	Radial Medical 12-4-17.bpp
RS Commander	Rohde Schwarz	1.6.4	Not Applicable (Screen grabber)

6.0 **Document History**

Revision/ Job Number	Writer Initials	Reviewers Initials	Date	Change
1.0 / G103319970	AC	KV	December 21, 2017	Original document

Page 79 of 79