

Radio Test Report

Report No.:STS2505016W01

Issued for

Dongguan Mingliang Electronic Technology Co., Ltd

No.34, Ludong avenue, Humen town, Dongguan city, China

Product Name: walkie talkie for kids

Brand Name: N/A

Model Name: T18A

Series Model(s): T18B,T18C

FCC ID: 2AONL-T18

Test Standard: FCC Part 95

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name : Dongguan Mingliang Electronic Technology Co., Ltd
Address : No.34, Ludong avenue, Humen town, Dongguan city, China

Manufacturer's Name : Dongguan Mingliang Electronic Technology Co., Ltd
Address : No.34, Ludong avenue, Humen town, Dongguan city, China

Product Description

Product Name : walkie talkie for kids

Brand Name : N/A

Model Name : T18A

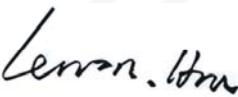
Series Model(s) : T18B,T18C

Test Standards : FCC Part 95

Test Procedure : TIA 603-E

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

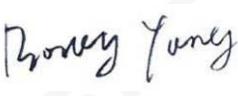
The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the ShenZhen STS Test Services Co., Ltd.


Date of Test :

Date of receipt of test item : 08 May 2025

Date of performance of tests : 08 May 2025~12 May 2025

Date of Issue : 12 May 2025


Test Result : **Pass**

Testing Engineer :

(Lenon Hou)

Technical Manager :

(Skylar Li)

Authorized Signatory :

(Bovey Yang)

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	10
2.5 EQUIPMENTS LIST	11
3. FIELD STRENGTHS AND RADIATED SPURIOUS EMISSION	12
3.1 RADIATED EMISSION LIMITS	12
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	14
3.4 EUT OPERATING CONDITIONS	14
3.5 TEST RESULT	15
4. SPURIOUS EMISSION ON ANTENNA PORT	17
4.1 LIMIT	17
4.2 TEST PROCEDURE	17
4.3 TEST SETUP	17
4.4 EUT OPERATION CONDITIONS	17
4.5 TEST RESULT	18
5. BANDWIDTH TEST	19
5.1 LIMIT	19
5.2 TEST PROCEDURE	19
5.3 TEST SETUP	19
5.4 EUT OPERATION CONDITIONS	19
5.5 TEST RESULTS	20
6. TRANSMITTER OUTPUT POWER AND EFFECTIVE RADIATED POWER (E.R.P)	21
6.1 LIMIT	21
6.2 TEST PROCEDURE	21
6.3 TEST SETUP	22
6.4 TEST RESULTS	22
7. EMISSION MASK	23
7.1 LIMIT	23

Table of Contents

7.2 TEST PROCEDURE	23
7.3 TEST SETUP	23
7.4 EUT OPERATION CONDITIONS	23
7.5 TEST RESULT	24
8. FREQUENCY STABILITY	25
8.1 LIMIT	25
8.2 TEST PROCEDURE	25
8.3 TEST SETUP	25
8.4 EUT OPERATION CONDITIONS	25
8.5 TEST RESULT	26
9. MODULATION LIMIT	27
9.1 LIMIT	27
9.2 TEST PROCEDURE	27
9.3 TEST SETUP	27
9.4 TEST RESULT	28
10. AUDIO LOW PASS FILTER RESPONSE	29
10.1 LIMIT	29
10.2 TEST PROCEDURE	29
10.3 TEST SETUP	29
10.4 TEST RESULT	30
11. AUDIO FREQUENCY RESPONSE	31
11.1 LIMIT	31
11.2 TEST PROCEDURE	31
11.3 TEST SETUP	31
11.4 TEST RESULT	32
APPENDIX 1- PHOTOS OF TEST SETUP	33

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	12 May 2025	STS2505016W01	ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part 95			
Standard Section	Test Item	Judgment	Remark
FCC Part 95.567	Transmitter Output Power and Effective Radiated Power (e.r.p)	PASS	--
FCC Part 95.573	Authorized Bandwidth	PASS	--
FCC Part 95.579	Emission Mask	PASS	--
FCC Part 95.579	Transmitter Radiated Spurious Emission	PASS	--
FCC Part 95.579	Spurious Emission On Antenna Port	PASS	--
FCC Part 95.565	Frequency Stability	PASS	--
FCC Part 95.575	Audio Low Pass Filter Response	PASS	--
FCC Part 95.575	Audio Frequency Response	PASS	--
FCC Part 95.575	Modulation Requirements	PASS	--

NOTE: (1) "N/A" denotes test is not applicable in this Test Report.

(2) All tests are according to TIA 603-E.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add. :101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately **95 %**.

No.	Item	Uncertainty
1	RF output power, conducted	$\pm 0.87\text{dB}$
2	Unwanted Emissions, conducted	$\pm 2.895\text{dB}$
3	All emissions, radiated 9K-30MHz	$\pm 3.80\text{dB}$
4	All emissions, radiated 30M-1GHz	$\pm 4.09\text{dB}$
5	All emissions, radiated 1G-6GHz	$\pm 4.92\text{dB}$
6	All emissions, radiated>6G	$\pm 5.49\text{dB}$

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	walkie talkie for kids		
Brand Name	N/A		
Model Name	T18A		
Series Model(s)	T18B, T18C		
Model Difference	Only difference in model name and appearance color.		
Operation Frequency Range:	462.5625MHz		
Channel Separation	12.5KHz		
Modulation Type	FM		
Emission types	FRS	5K98F3E	
Power Rating	Input: DC 4.5V by 3*AAA		
Adapter	N/A		
Battery	N/A		
Hardware version number	N/A		
Software version number	N/A		
Connecting I/O Port(s)	Please refer to the note 1		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. Table for filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	T18A	Spring	N/A	1.2	Antenna

3. Channel List

Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	462.5625	N/A	N/A	N/A	N/A

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode

For Radiated Emission	
Final Test Mode	Description
Mode 1	TX Mode

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
N/A	N/A	N/A	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
N/A	N/A	N/A	N/A	N/A

Note:

(1) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

2.5 EQUIPMENTS LIST

RF Radiation Test Equipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2025.02.24	2026.02.23
Wireless Communications Test Set	R&S	CMW 500	117239	2024.09.23	2025.09.22
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2025.02.22	2026.02.21
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2024.09.23	2025.09.22
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2024.09.23	2025.09.22
Switch Control Box	N/A	N/A	N/A	N/A	N/A
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A
Video Controller	SKET	FCS C-3	N/A	N/A	N/A
Bilog Antenna	TESEQ	CBL6111D	34678	2024.09.30	2025.09.29
Bilog Antenna	TESEQ	CBL6111D	45873	2024.09.28	2025.09.27
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2024.09.25	2025.09.24
Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1343	2024.9.28	2025.9.27
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A
Turn Table	MF	N/A	N/A	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC Power Supply	Zhaoxin	RXN 605D	20R605D11010081	N/A	N/A
Test SW	EMC Test Software	15.2.0.339			
RF Connected Test Equipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2025.02.24	2026.02.23
Universal Radio communication tester	R&S	CMU200	119907	2025.02.22	2026.02.21
Signal Generator	Agilent	N5182A	MY46240556	2024.09.23	2025.09.22
Signal Analyzer	Agilent	N9020A	MY52440124	2025.02.22	2026.02.21
Intercom comprehensive tester	HP	8920A	348A05658	2025.02.22	2026.02.21
Temperature & Humidity Test Chamber	Safety test	AG80L	171200018	2025.02.22	2026.02.21
Programmable Power Supply	Agilent	E3642A	MY40002025	2024.09.23	2025.09.22
Attenuator	HP	8494B	DC-18G	2025.02.25	2026.02.24
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A

3. FIELD STRENGTHS AND RADIATED SPURIOUS EMISSION

3.1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on 15.205 limit in the followed

In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:

(a) If the equipment operates below 10 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

Particular attention should be paid to harmonics and sub-harmonics of the carrier frequency, as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value need not be reported.

43 + 10 log (Pwatts)

Calculation: Limit (dBm) = EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is P(dBm).

Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

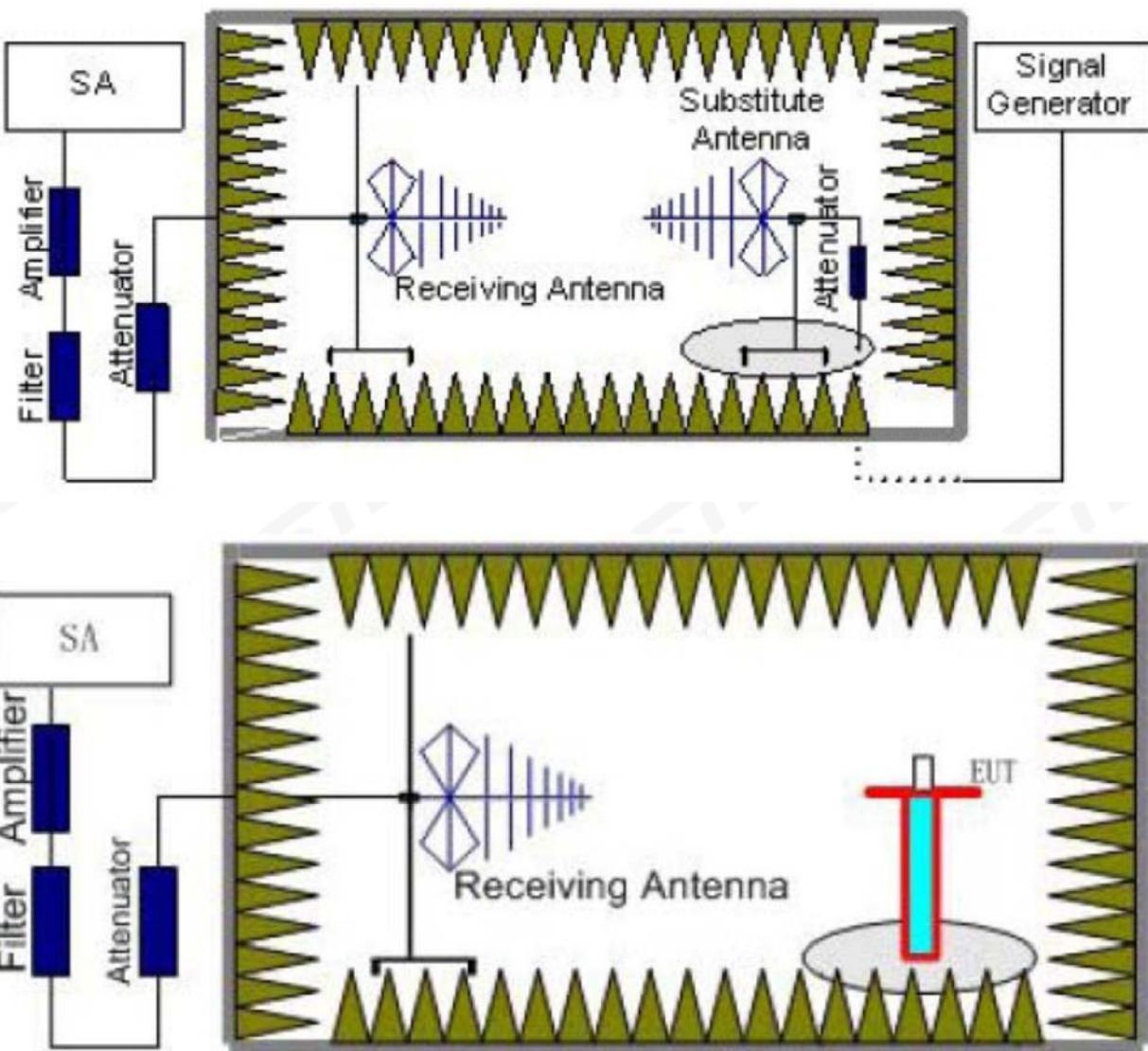
Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	10th carrier harmonic

3.2 TEST PROCEDURE

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels were measured with peak detector.
2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and BW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below:

$$\text{Power(EIRP)} = P_{\text{Mea}} - P_{\text{cl}} + G_a$$


We used signal generator which signal level can up to 33dBm, so we not used power Amplifier for substitution test; The measurement results are amend as described below:

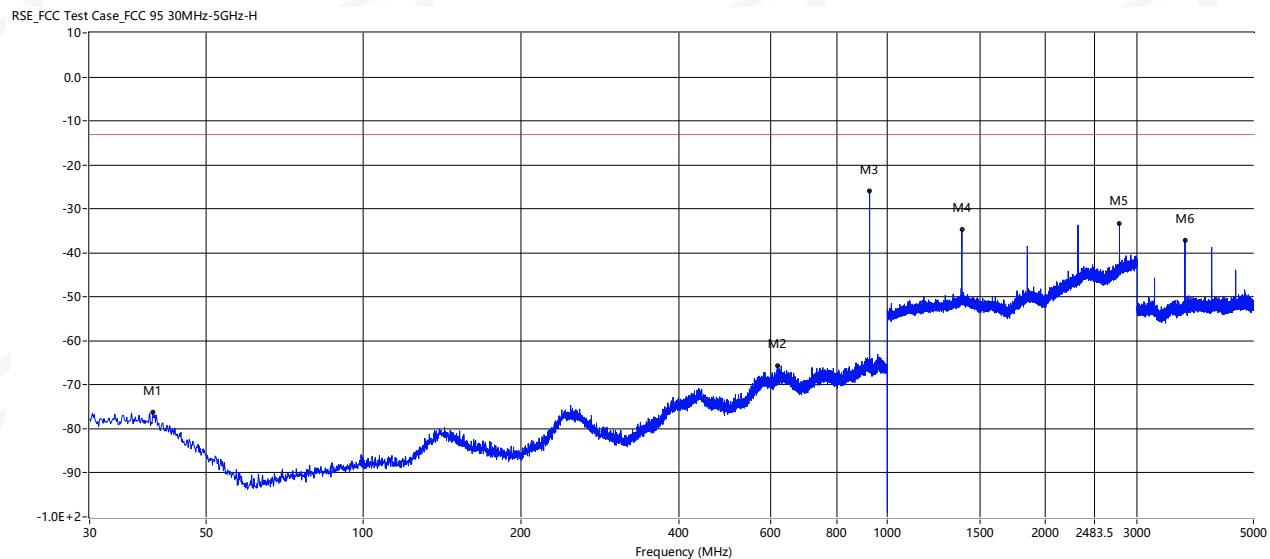
$$\text{Power(EIRP)} = P_{\text{Mea}} - P_{\text{cl}} + G_a$$

6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power

7. ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.15\text{dBi}$

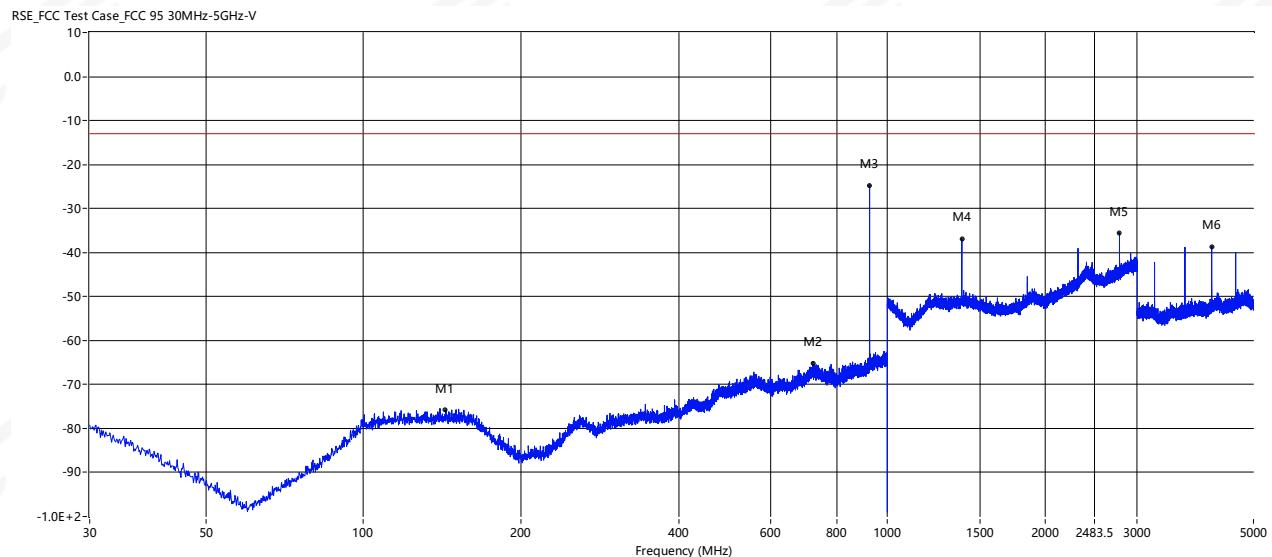
3.3 TEST SETUP

3.4 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULT

Note: All mode has been tested, only shown the worst case in this report.


Temperature:	23.4 °C	Relative Humidity:	60%
Test Mode:	Mode 1	Phase :	Horizontal

Frequency (MHz)	Result (dBm)	Factor (dB)	PK Limit (dBm)	Over Limit (dB)	Table (o)	ANT	EUT	Verdict
39.579	-76.21	-1.84	-13.0	-63.21	62.70	Horizontal	Vertical	Pass
616.607	-65.64	7.07	-13.0	-52.64	0.80	Horizontal	Vertical	Pass
925.189	-25.81	9.23	-13.0	-12.81	241.70	Horizontal	Vertical	Pass
1387.750	-34.75	14.00	-13.0	-21.75	268.80	Horizontal	Vertical	Pass
2775.500	-33.43	20.11	-13.0	-20.43	160.90	Horizontal	Vertical	Pass
3700.500	-37.10	3.66	-13.0	-24.10	0.00	Horizontal	Vertical	Pass

Temperature:	23.4 °C	Relative Humidity:	60%
Test Mode:	Mode 1	Phase:	Vertical

Frequency (MHz)	Result (dBm)	Factor (dB)	PK Limit (dBm)	Over Limit (dB)	Table (o)	ANT	EUT	Verdict
143.369	-75.78	-1.29	-13.0	-62.78	295.90	Vertical	Vertical	Pass
721.367	-65.28	8.22	-13.0	-52.28	278.10	Vertical	Vertical	Pass
925.189	-24.77	9.27	-13.0	-11.77	193.20	Vertical	Vertical	Pass
1387.750	-36.84	13.73	-13.0	-23.84	301.20	Vertical	Vertical	Pass
2775.750	-35.60	19.31	-13.0	-22.60	250.60	Vertical	Vertical	Pass
4163.000	-38.67	3.94	-13.0	-25.67	1.10	Vertical	Vertical	Pass

4. SPURIOUS EMISSION ON ANTENNA PORT

4.1 LIMIT

43 + 10 log (Pwatts)

Calculation: Limit (dBm) = EL-43-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

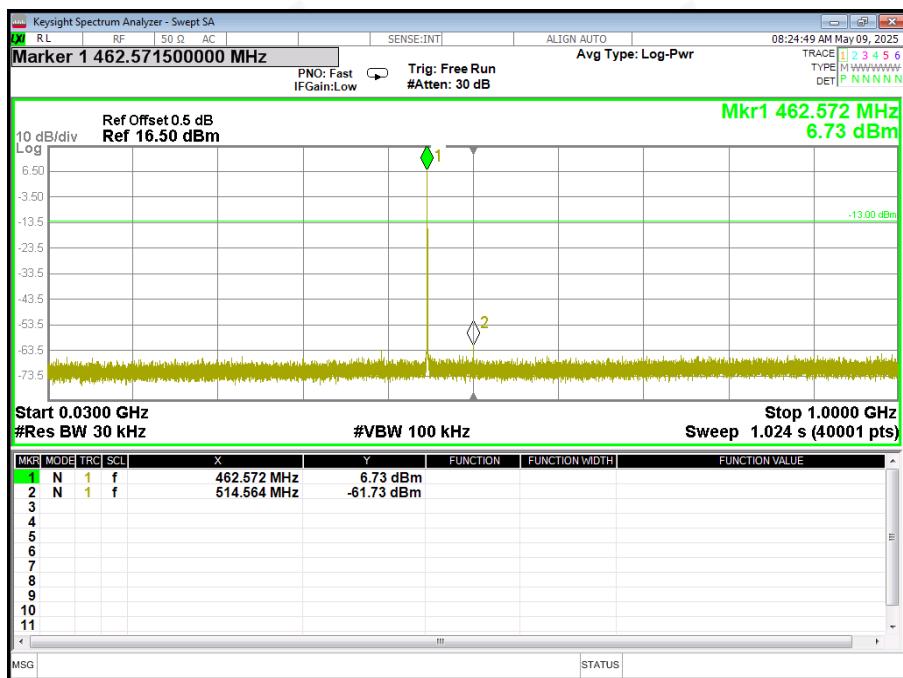
In this application, the EL is P(dBm).

Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13 dBm

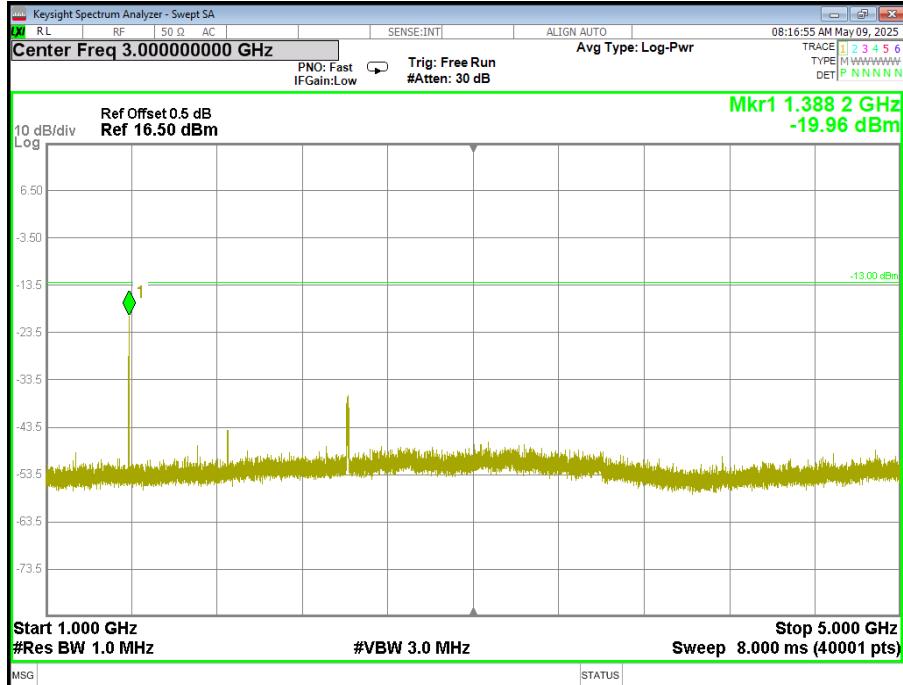
4.2 TEST PROCEDURE

1. The EUT was connected to the spectrum analyzer through sufficient attenuation.
2. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range.
3. Set EUT as digital data mode.
4. Set RBW 30kHz, VBW 100 kHz in the frequency band 30MHz to 1GHz, while set RBW=1MHz. VBW=3MHz from the 1GHz to 10th Harmonic.

4.3 TEST SETUP


4.4 EUT OPERATION CONDITIONS

TX mode.



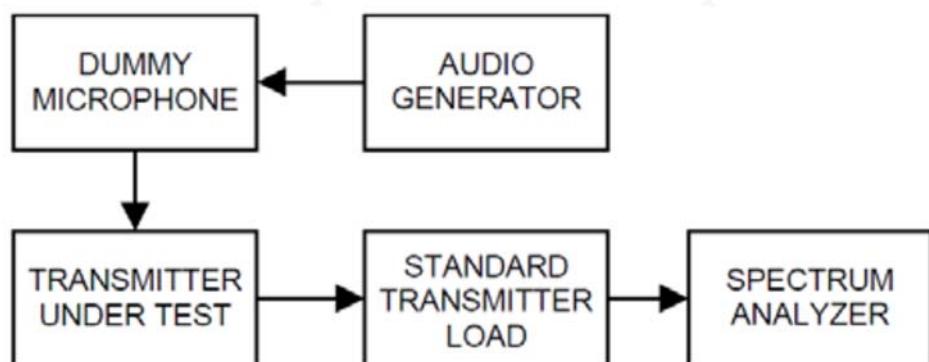
4.5 TEST RESULT

462.5625MHz 30MHz-1GHz

462.5625MHz 1GHz-5GHz

5. BANDWIDTH TEST

5.1 LIMIT

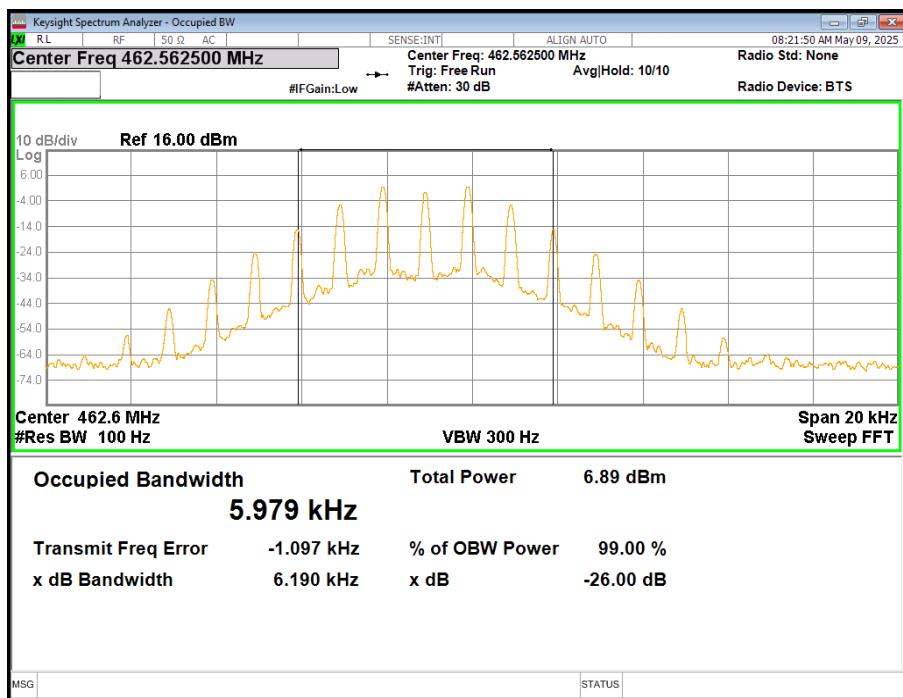

FRS:

Each FRS transmitter type must be designed such that the occupied bandwidth does not exceed 12.5 kHz.

5.2 TEST PROCEDURE

1. The EUT was connected to the spectrum analyzer through sufficient attenuation.
2. Set EUT as digital data mode.
3. Set SPA Center Frequency=fundamental frequency, RBW=100Hz, VBW=1KHz, span =15KHz.
4. Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth.

5.3 TEST SETUP


5.4 EUT OPERATION CONDITIONS

TX mode.

5.5 TEST RESULTS

Operation Mode	Test Channel	Test Frequency(MHz)	99% Occupied Bandwidth(KHz)	26dB Bandwidth (KHz)	Limits (KHz)	Result
FRS	1	462.5625	5.979	6.19	12.5	Pass

6. TRANSMITTER OUTPUT POWER AND EFFECTIVE RADIATED POWER (E.R.P)

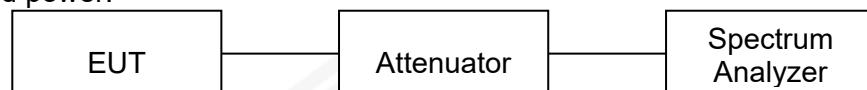
6.1 LIMIT

FRS:

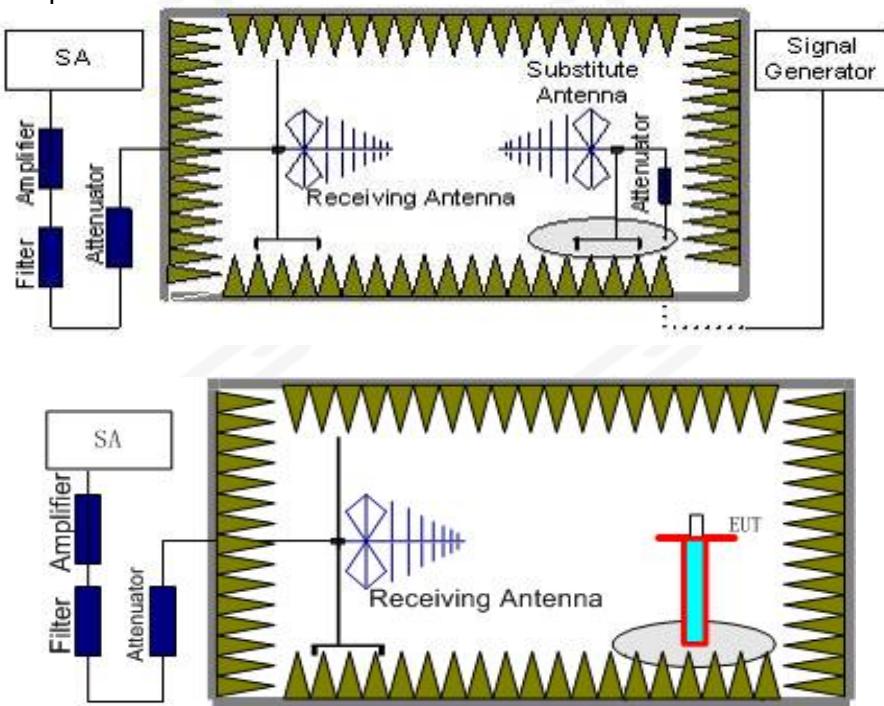
Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

6.2 TEST PROCEDURE

The procedure of conducted power is as follows:


Measurements shall be made to establish the radio frequency power delivered by the transmitter to the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted below: If the power output is adjustable, measurements shall be made for the highest and lowest power levels. The EUT connect to the Spectrum Analyzer through 30 dB attenuator.

The procedure of effective radiated power is as follows:


1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels were measured with peak detector.
2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and BW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below:
$$\text{Power(EIRP)} = P_{Mea} - P_{Ag} - P_{cl} + G_a$$
We used signal generator which signal level can up to 33dBm, so we not used power Amplifier for substitution test; The measurement results are amend as described below:
$$\text{Power(EIRP)} = P_{Mea} - P_{cl} + G_a$$
6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power
7. ERP can be calculated from EIRP by subtracting the gain of the dipole,
$$\text{ERP} = \text{Reading} - \text{Cable loss} + \text{Antenna Gain} - 2.15$$

6.3 TEST SETUP

Conducted power:

Effective radiated power:

6.4 TEST RESULTS

Conducted Power:

Operation Mode	Test Channel	Test Frequency(MHz)	Test Results (dBm)	Test Results (W)	Limit (W)	Result
FRS	1	462.5625	6.82	0.0048	2	Pass

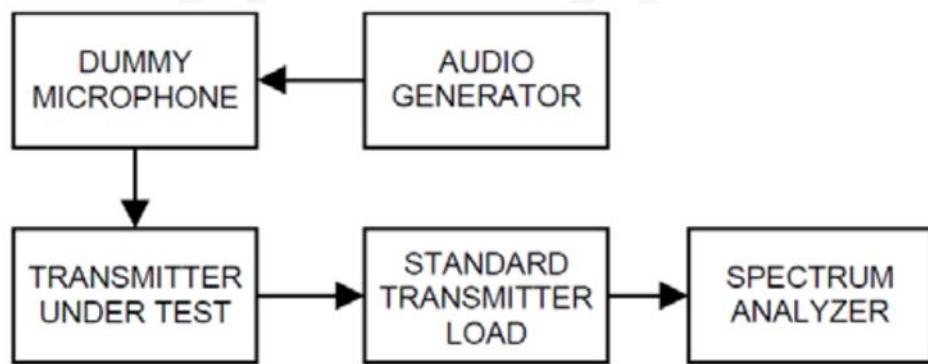
Effective radiated power:

Operation Mode	Test Channel	Test Frequency(MHz)	Reading (dBm)	Cable Loss(dB)	Antenna Gain(dBi)	ERP (dBm)	ERP (W)	Limit (W)	Polarization	Result
FRS	1	462.5625	3.5	1.49	6.00	5.86	0.0039	2	V	Pass
			3.26	1.49	6.00	5.62	0.0036	2	H	Pass

Note:ERP=Reading - Cable loss + Antenna Gain - 2.15

7. EMISSION MASK

7.1 LIMIT

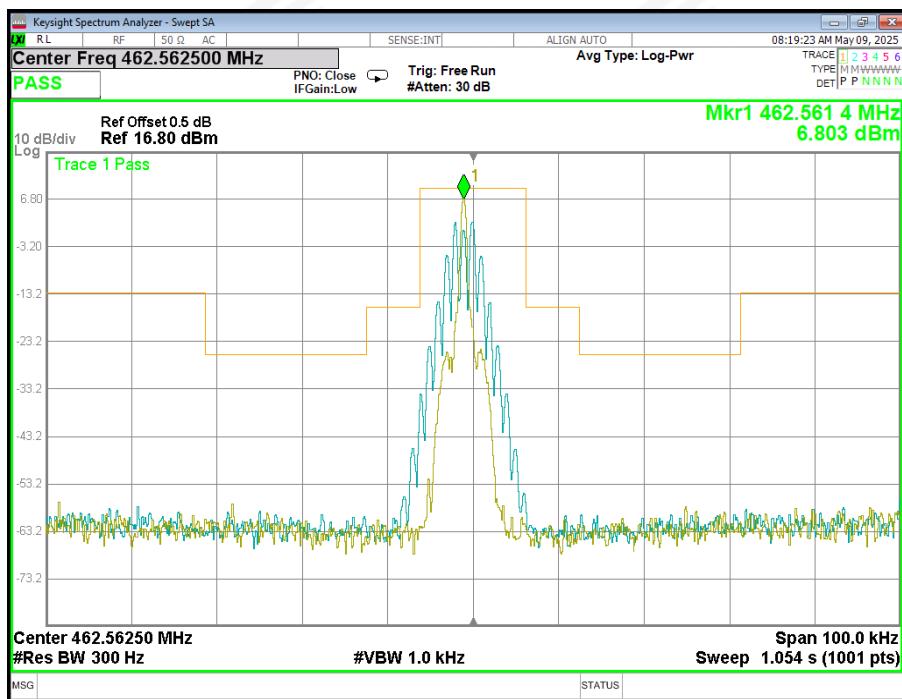

FRS:

- a. 25 dB, measured with a bandwidth of 300 Hz, in the band 6.25 kHz to 12.5 kHz removed from the channel centre frequency;
- b. 35 dB, measured with a bandwidth of 300 Hz, in the band 12.5 kHz to 31.25 kHz removed from the channel centre frequency; and
- c. 43 dB + $10 \log_{10}$ (transmitter power in watts) dB, measured with a bandwidth of 30 kHz for frequencies beyond 31.25 kHz removed from the channel centre frequency.

7.2 TEST PROCEDURE

1. The EUT was connected to the spectrum analyzer through sufficient attenuation.
2. Set EUT as digital data mode.
3. Set SPA Center Frequency=fundamental frequency, RBW=300Hz, VBW=1KHz, span =100KHz.

7.3 TEST SETUP

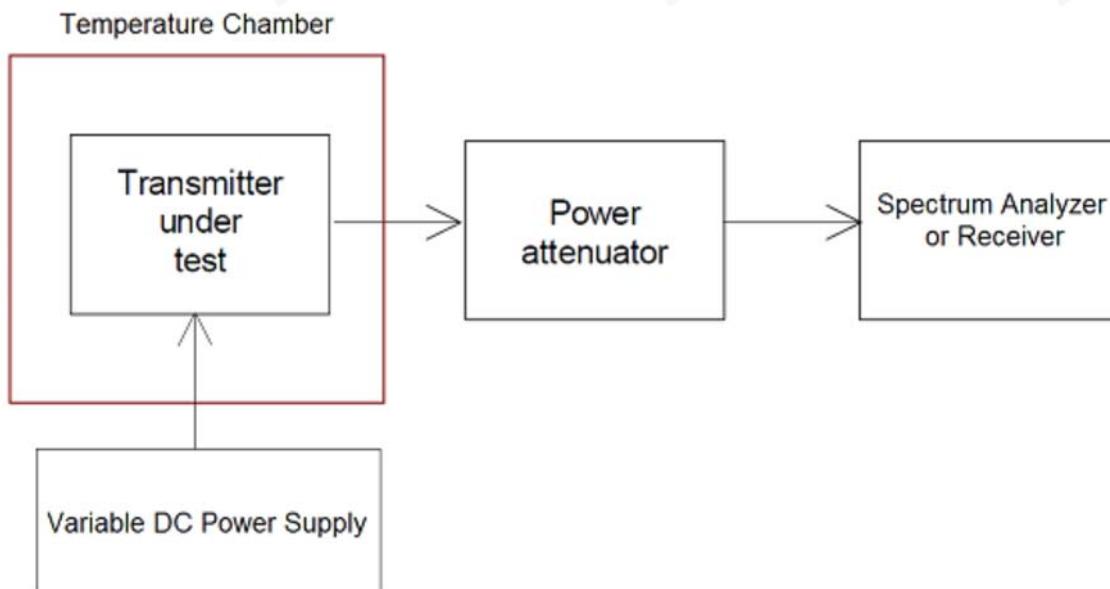

7.4 EUT OPERATION CONDITIONS

TX mode.

7.5 TEST RESULT

Mode 1

8. FREQUENCY STABILITY


8.1 LIMIT

The carrier frequency stability shall not exceed ± 2.5 ppm.

8.2 TEST PROCEDURE

1. The frequency stability shall be measured with variation of ambient temperature from -30°C to $+50^{\circ}\text{C}$
2. For battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacturer.
3. Vary primary supply voltage from 4.05V to 4.95V.
4. The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer. The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

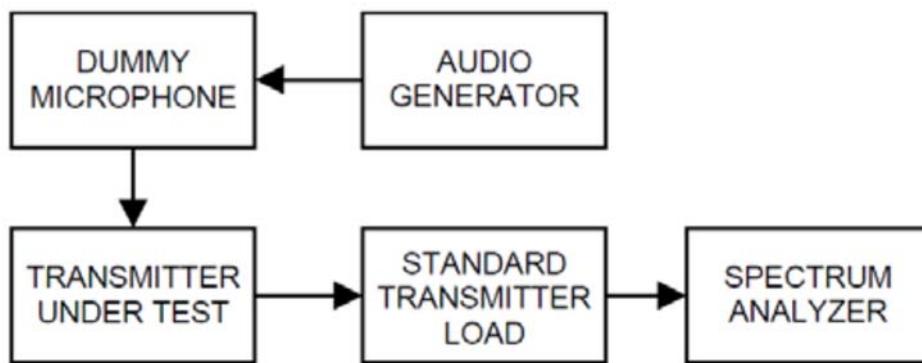
TX mode.

8.5 TEST RESULT

FRS Channl 1(462.5625MHz)						
Voltage	Temperature (°C)	Nominal Frequency (MHz)	Measured Frequency (MHz)	Frequency error (ppm)	Limit	Result
Normal Voltage	-30	462.5625	462.5618	-1.5133	±2.5ppm	Pass
	-20	462.5625	462.5618	-1.5133		
	-10	462.5625	462.5616	-1.9457		
	0	462.5625	462.5618	-1.5133		
	10	462.5625	462.5618	-1.5133		
	20	462.5625	462.5617	-1.7295		
	30	462.5625	462.5615	-2.1619		
	40	462.5625	462.5617	-1.7295		
	50	462.5625	462.5619	-1.2971		
Maximum Voltage	20	462.5625	462.5616	-1.9457		
BEP	20	462.5625	462.5617	-1.7295		

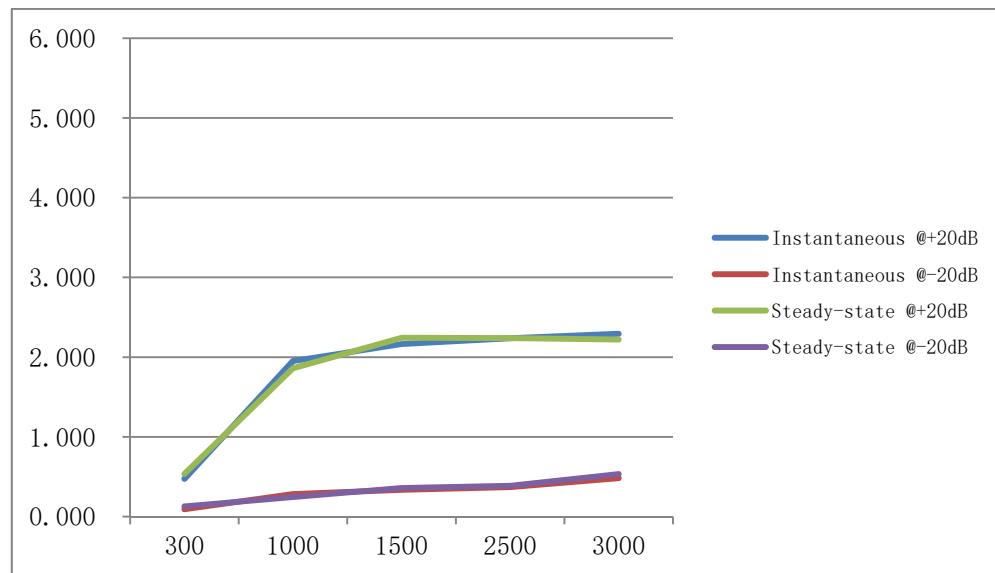
9. MODULATION LIMIT

9.1 LIMIT


FRS:

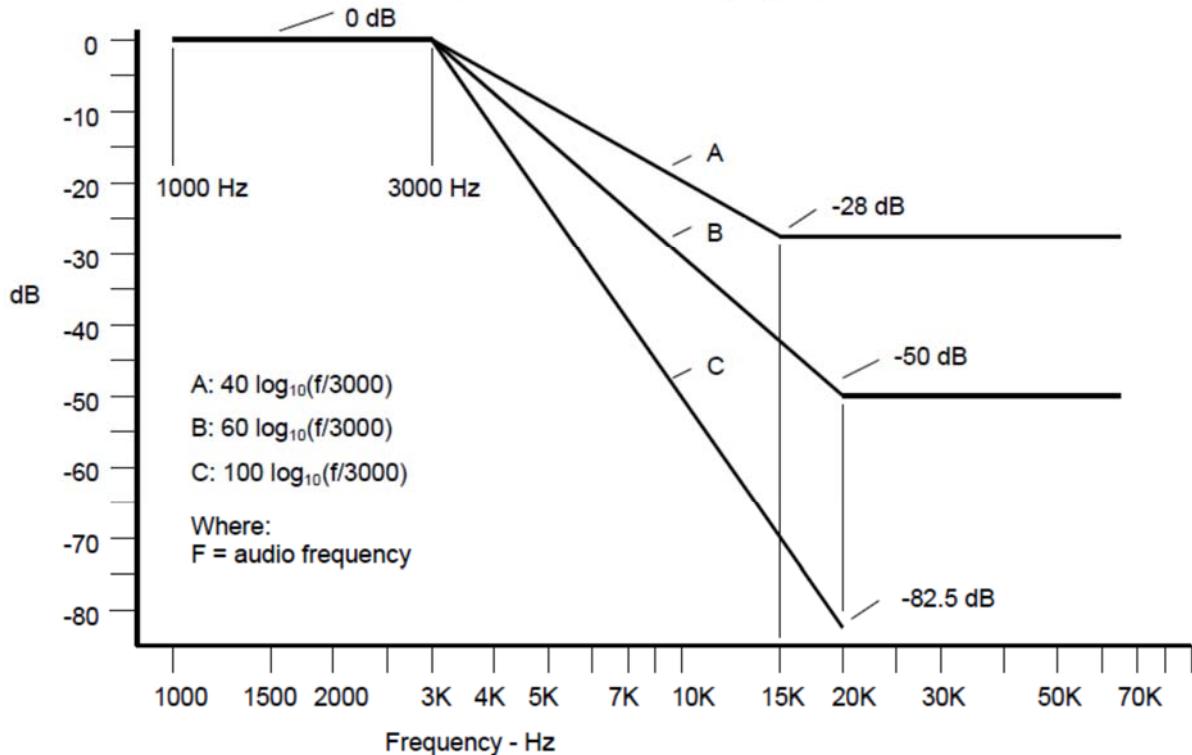
Each FRS transmitter type must be designed such that the peak frequency deviation does not exceed 2.5 kHz, and the highest audio frequency contributing substantially to modulation must not exceed 3.125 kHz.

9.2 TEST PROCEDURE


1. Connect the equipment as illustrated.
2. Adjust the transmitter per the manufacturer's procedure for full rated system deviation
3. Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤ 0.25 Hz to $\geq 15,000$ Hz. Turn the de-emphasis function off
4. Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, this level is as a reference (0dB) and vary the input level from -20 to +20dB.
5. Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
6. Repeat step 4-5 with input frequency changing to 300Hz, 1004Hz, 1500Hz and 2500Hz in sequence.

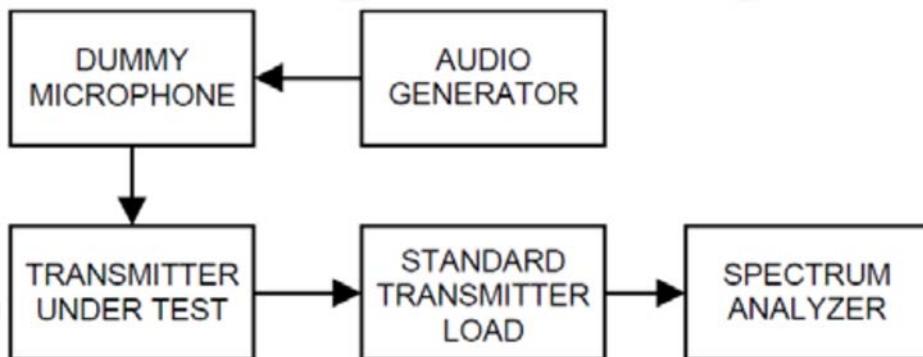
9.3 TEST SETUP

9.4 TEST RESULT


FRS_Channel 1(462.5625MHz)						
Audio Frequency (Hz)	Instantaneous		Steady-state		Limit (kHz)	Result
	Deviation (@+20dB) (kHz)	Deviation (@-20dB) (kHz)	Deviation (@+20dB) (kHz)	Deviation (@-20dB) (kHz)		
300	0.474	0.092	0.537	0.128	±2.5	Pass
1000	1.952	0.284	1.861	0.246		
1500	2.164	0.335	2.243	0.359		
2500	2.237	0.370	2.238	0.386		
3000	2.292	0.482	2.221	0.534		

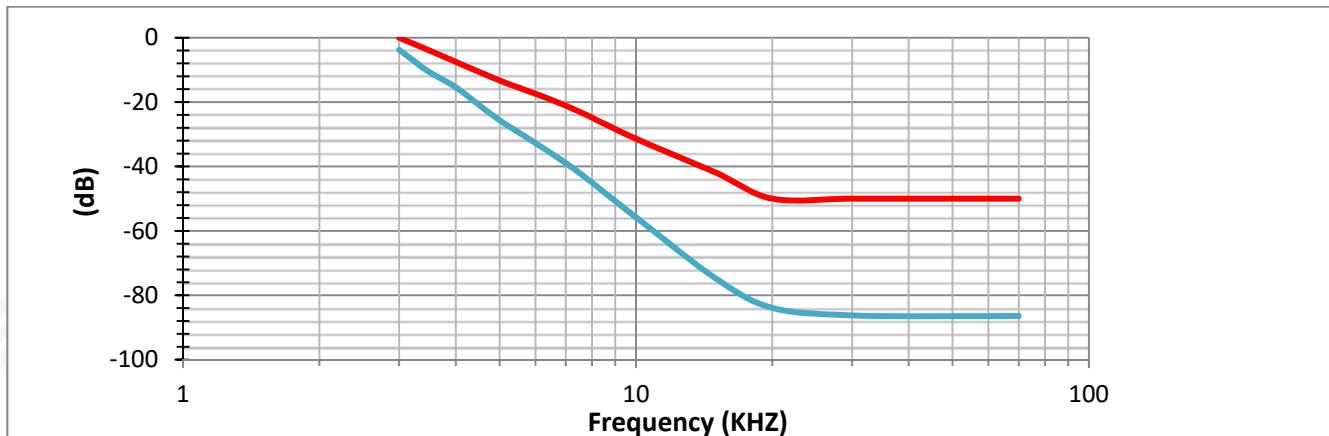
10. AUDIO LOW PASS FILTER RESPONSE

10.1 LIMIT


The filter must be between the modulation limiter and the modulated stage of the transmitter. At any frequency (f in kHz) between 3 and 20 kHz, the filter must have an attenuation of at least $60 \log_{10}(f/3)$ dB greater than the attenuation at 1 kHz. Above 20 kHz, it must have an attenuation of at least 50 dB greater than the attenuation at 1 kHz

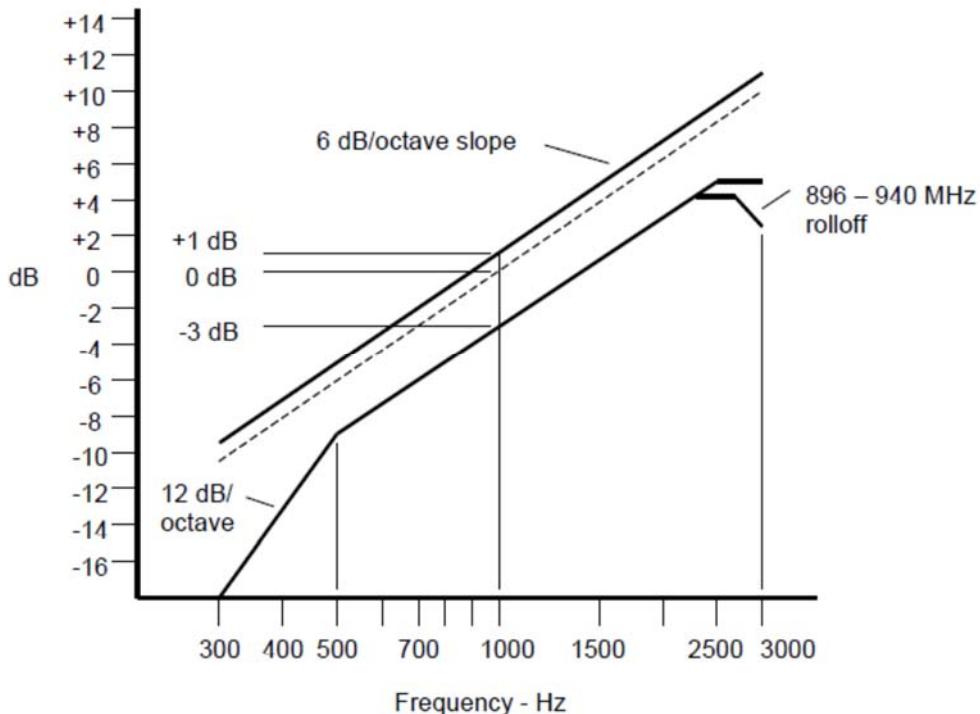
10.2 TEST PROCEDURE

1. Configure the EUT as shown in figure
2. Apply a 1000 Hz tone from the audio signal generator and adjust the level per manufacturer's specifications. Record the dB level of the 1000 Hz tone as LEVREF.
3. Set the audio signal generator to the desired test frequency between 3000 Hz and the upper low pass filter limit. Record the dB level at the test frequency as LEVFREQ
4. Calculate the audio frequency response at the test frequency as:
low pass filter response = LEVFREQ - LEVREF


10.3 TEST SETUP

10.4 TEST RESULT

FRS_Channel 1(462.5625MHz)			
Audio Frequency(KHz)	Limit	Response Attenuation(dB)	Result
3	0	-3.79	PASS
3.5	-4	-10.71	
4	-7.5	-15.39	
5	-13.3	-25.64	
7	-21.1	-38.93	
10	-31.4	-55.80	
15	-41.9	-74.76	
20	-50	-83.93	
30	-50	-86.26	
50	-50	-86.50	
70	-50	-86.46	

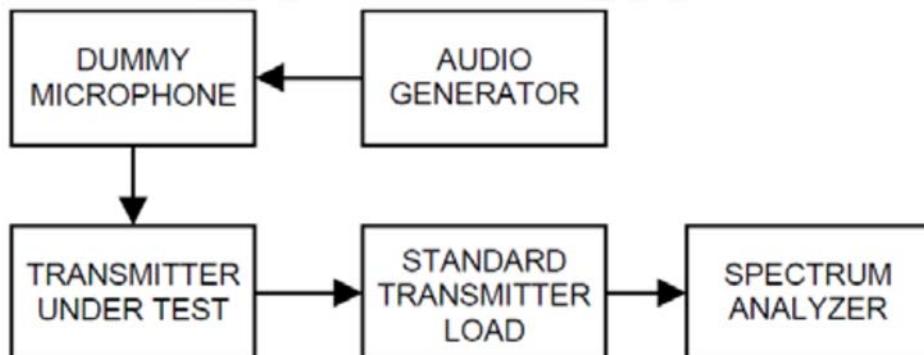


11. AUDIO FREQUENCY RESPONSE

11.1 LIMIT

FCC Part 2.1047(a):

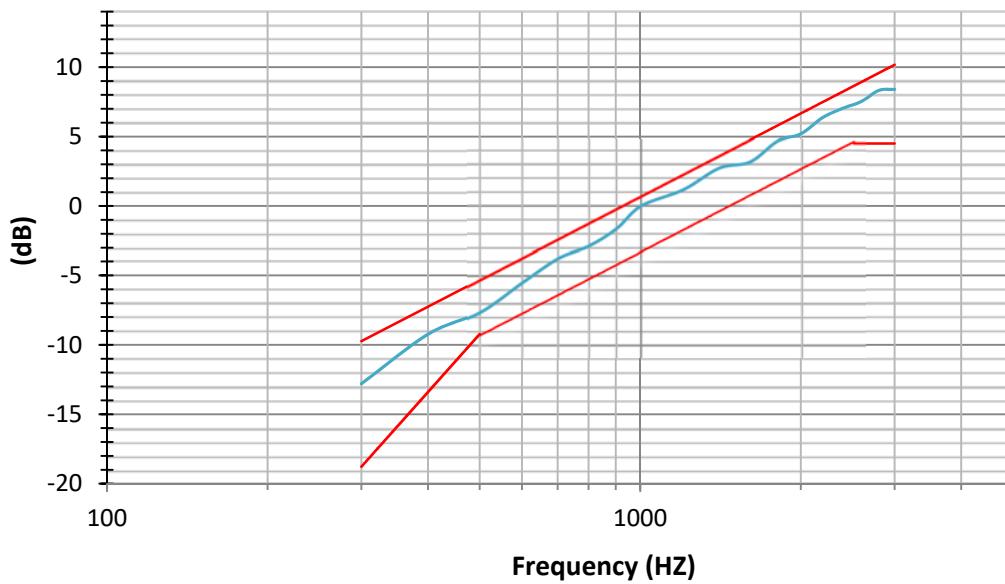
Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.



An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range

11.2 TEST PROCEDURE

1. Configure the EUT as shown in figure
2. Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference.
3. Vary the Audio frequency from 300Hz to 3 kHz and record the frequency deviation.
4. Audio Frequency Response = $20\log_{10} (VFREQ/VREF)$.


11.3 TEST SETUP

11.4 TEST RESULT

FRS_Channl 1(462.5625MHz)		
Audio Frequency(Hz)	Audio Frequency Response(dB)	Result
300	-12.80	PASS
400	-9.24	
500	-7.64	
600	-5.49	
700	-3.75	
800	-2.87	
900	-1.63	
1000	0.00	
1200	1.17	
1400	2.73	
1600	3.17	
1800	4.67	
2000	5.19	
2200	6.38	
2400	7.04	
2600	7.53	
2800	8.32	
3000	8.40	

APPENDIX 1- PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

*****END OF THE REPORT*****