

d/b/a Philips Healthcare – a division of Philips

TEST REPORT

SCOPE OF WORK

EMC TESTING - Wearable Biosensor G10

REPORT NUMBER

103732466BOX-015b

ISSUE DATE

[REVISED DATE]

11-January-2019

August 8, 2019

PAGES

67

DOCUMENT CONTROL NUMBER

Non-Specific Radio Report Shell Rev. December 2017 © 2017 INTERTEK

EMISSIONS TEST REPORT

(FULL COMPLIANCE)

Report Number: 103732466BOX-015b Project Number: G103732466

Report Issue Date: 01/11/2019 Report Re-issue Date: 08/08/2019

Model(s) Tested: Wearable Biosensor G10

Model(s) Partially Tested: None

Model(s) Not Tested but declared equivalent by the client: None

Standards: CFR47 FCC Part 15.247 Subpart C: 01/2019,

CFR47 FCC Part 15 Subpart B: 01/2019,

RSS-247 Issue 2 February 2017,

ICES-003 Issue 6 Published: January 2016 Updated: April 2017,

RSS-Gen Issue 5 April 2018, RSS-102 Issue 5 March 2015

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719

USA

Client:

d/b/a Philips Healthcare - a division of Philips North 50 Milk Street 18th Floor Boston, MA 02109 USA

Report prepared by

Report reviewed by

Kouma Sinn / EMC Staff Engineer

Vathana Ven / EMC Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 103732466BOX-015b Issued: 01/11/2019

Table of Contents

1	Introduction and Conclusion	4
2	Test Summary	4
3	Client Information	5
4	Description of Equipment Under Test and Variant Models	5
	System Setup and Method	
6	Maximum Peak Output Power and Human RF exposure	9
7	6 dB Bandwidth and Occupied Bandwidth	15
8	Maximum Power Spectral Density	26
9	Band Edge Compliance	31
10	Transmitter spurious emissions	42
11	Revision History	67

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Maximum Peak Output Power and Human RF exposure CFR47 FCC Part 15 Subpart C:01/2019, Section 15.247 (b)(3) RSS-247 Issue 2 February 2017, RSS-102 Issue 5 March 2015	Pass
7	6 dB Bandwidth and Occupied Bandwidth CFR47 FCC Part 15 Subpart C: 01/2019, Section 15.247 (a)(2) RSS-247 Issue 2 February 2017	Pass
8	Maximum Power Spectral Density CFR47 FCC Part 15 Subpart C: 01/2019, Section 15.247 (e) RSS-247 Issue 2 February 2017	Pass
9	Band Edge Compliance CFR47 FCC Part 15 Subpart C: 01/2019, Section 15.247 (d) RSS-247 Issue 2: 02/2017)	Pass
10	Transmitter spurious emissions CFR47 FCC Part 15 Subpart C: 01/2019, Section 15.247 (d) RSS-247 Issue 2 February 2017	Pass
	AC Mains Conducted Emissions FCC 47CFR Part 15.107: 01/2019 ICES-003 Issue 6 Published: January 2016 Updated: April 2017	N/A
11	Revision History	

Notes: The EUT powers from internal battery with no connection to AC mains. The Bluetooth Low Energy module does not utilize receiver mode in normal operation per client.

3 **Client Information**

This EUT was tested at the request of:

Client: Philips Healthcare - a division of Philips North

> 50 Milk Street 18th Floor Boston, MA 02109

USA

Contact: Wen Lu

Telephone: +1 (978) 659-2406

Fax: None

Email: wen.lu@philips.com

Description of Equipment Under Test and Variant Models

Manufacturer: Philips Healthcare - a division of Philips North

50 Milk Street 18th Floor

Boston, MA 02109

USA

Equipment Under Test				
Description	Manufacturer	Model Number	Serial Number	
Wearable Biosensor	d/b/a Philips Healthcare - a division of Philips North	G10	G10_0009FBB8C02D Lot # 00110918	
Wearable Biosensor*	d/b/a Philips Healthcare - a division of Philips North	G10	0009FBB84000	

^{*}Equipment received on August 1, 2019.

Receive Date:	12/03/2018 and 08/01/2019
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

Philips wearable biosensor G10 Biosensor is a chest-worn sensor that is intended to periodically collect, store, and transmit physiological data to a qualified system for use by healthcare professionals. The physiological data measured by the biosensor includes respiration rate and heart rate. In addition, the biosensor is intended to measure and wirelessly transmit contextual parameters: activity level, activity type, and posture. G10 Biosensor sends the collected patient data wirelessly through Bluetooth to a compatible IT equipment like Seta Bridge Solution or directly to a qualified system. G10 Biosensor is a wireless, single use, single location chest worn device. The biosensor has 120 hours of wear life, after which it will turn off automatically.

Equipment Under Test Power Configuration			
Rated Voltage Rated Current Rated Frequency Number of Phases			
3 VDC Battery	N/A – 120 hours of wear life	N/A	N/A

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Communication Link
2	Idle mode
3	Transmit

Client: d/b/a Philips Healthcare - a division of Philips North / Wearable Biosensor G10

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Test script, Philips G10 – Gecko Test V1.0.2.5, was provided by client for testing

Radio/Receiver Characteristics			
Frequency Band(s)	2402-2480 MHz		
Modulation Type(s)	GMSK		
Maximum Output Power	Low Channel: -2.2 dBm (Conducted),		
	Mid Channel: -2.3 dBm (Conducted),		
	High Channel: -2.9 dBm (Conducted)		
Test Channels	Low Channel: 2402 MHz,		
	Mid Channel: 2440 MHz,		
	High Channel: 2480 MHz		
Occupied Bandwidth	Low Channel: 1.078 MHz,		
	Mid Channel: 1.048 MHz,		
High Channel: 1.068 MHz			
Frequency Hopper: Number of Hopping	21/2		
Channels	N/A		
Frequency Hopper: Channel Dwell Time	N/A		
Frequency Hopper: Max interval between			
two instances of use of the same channel	N/A		
MIMO Information (# of Transmit and			
Receive antenna ports)	1		
Equipment Type	Standalone		
ETSI LBT/Adaptivity	Non-Adaptive		
ETSI Adaptivity Type N/A			
ETSI Temperature Category (I, II, III) N/A			
ETSI Receiver Category (1, 2, 3)	N/A – The EUT normal operation does not utilize receive		
mode.			
Antenna Type and Gain	Integrated, -2 dBi		

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

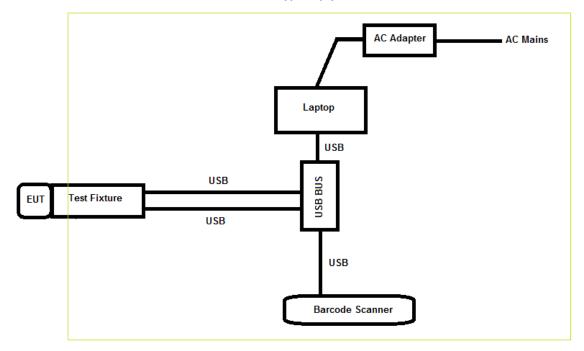
None

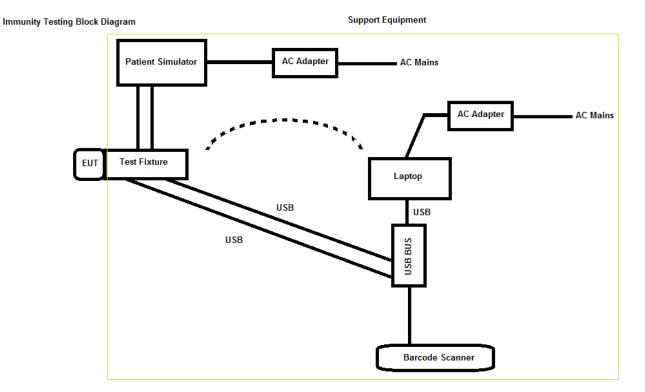
Non-Specific Radio Report Shell Rev. December 2017

5 **System Setup and Method**

	Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination	
	None					

Support Equipment				
Description	Manufacturer	Model Number	Serial Number	
Patient simulator	None	None	None	
Circuit Board	None	None	None	
Laptop	HP	EliteBook 8470p	None	
Barcode Scanner	None	None	None	


5.1 Method:


Configuration as required by Configuration as required by FCC Part 15 Subpart C 15.247: 01/2019, FCC Part 15 Subpart B: 01/2019, RSS 247 Issue 2: 02/2017, ICES 003 Issue 6: 01/2016 updated 06/2016, ANSI C 63.10: 2013, ANSI C 63.4: 2014, and FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

5.2 EUT Block Diagram:

Emissions Testing Block Diagram

Support Equipment

Maximum Peak Output Power and Human RF exposure 6

6.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, RSS-102, ANSI C63.10, and FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

TEST SITE: EMC Lab

<u>The EMC Lab</u> has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	10/15/2018	10/15/2019
ROS005-4'	Control Platform	Rodhe and Schwarz	OSP120	101428	11/20/2018	11/20/2019
None	Coaxial Cable (DUT1)	UTIFLEX MICRO-COAX	UFA210A-1-0787-300300	101709	02/01/2018	02/01/2019
None	20 dB Attenuator (DUT1)	Pasternack	E7004-20	None	02/01/2018	02/01/2019
None	Coaxial Cable (Receiver/RF In	Micro-coax	UFA210A-0-0-0196-300300	101706	02/01/2018	02/01/2019

Software Utilized:

Name	Manufacturer	Version
R&S EMC32/AMS32/WMS32	Rohde & Schwarz	10.30.00

6.3 Results:

The sample tested was found to Comply.

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt or 30 dBm.

Client: d/b/a Philips Healthcare - a division of Philips North / Wearable Biosensor G10

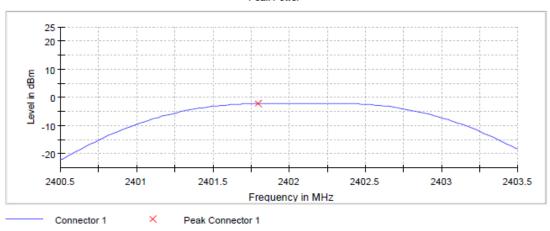
Intertek

Report Number: 103732466BOX-015b Issued: 01/11/2019

6.4 Setup Photographs:

Confidential

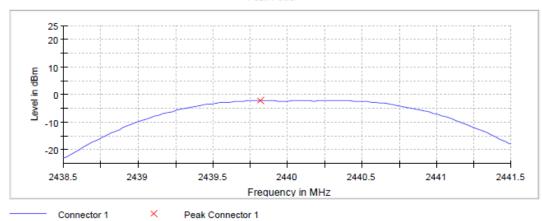
6.5 Plots/Data:


Peak output power (Sweep) (2402 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Combined Uncertainty of absolute Level Measurement (K=2) < 0.8 dB

Result

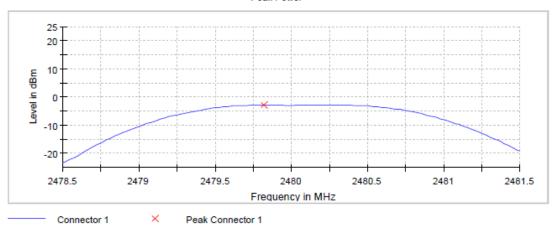
DUT Frequency	Peak	Limit	Result
(MHz)	Power	Max	
	(dBm)	(dBm)	
2402.000000	-2.2	30.0	PASS


Peak output power (Sweep) (2440 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Combined Uncertainty of absolute Level Measurement (K=2) < 0.8 dB

Result

DUT Frequency	Peak	Limit	Result
(MHz)	Power	Max	
	(dBm)	(dBm)	
2440.000000	-2.3	30.0	PASS


Peak output power (Sweep) (2480 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Combined Uncertainty of absolute Level Measurement (K=2) < 0.8 dB

Result

DUT Frequency	Peak	Limit	Result
(MHz)	Power	Max	
` '	(dBm)	(dBm)	
2480.000000	-2.9	30.0	PASS

SAR Exemption Calculation

Maximum Conducted Output Power of Transmitter = -2.2 dBm = 0.60 mW

FCC SAR Exemption per KDB 447498

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, 30 where

f_(GHz) is the RF channel transmit frequency in GHz

= (0.60/5)*(sqrt(2.402))

= 0.186 < 3.0 (below the limit SAR Exempt per FCC)

RSS 102 SAR Exemption

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency		Exe	mption Limits (n	nW)	
(MHz)	At separation	At separation	At separation At separation At separation		At separation
	distance of	distance of	distance of	distance of	distance of
	≤5 mm	10 mm	15 mm	20 mm	25 mm
≤300	≤300 71 mW		132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW
2450	4 mW	7 mW	15 mW	30 mW	52 mW
3500	3500 2 mW		16 mW	32 mW	55 mW
5800	1 mW	6 mW	15 mW	27 mW	41 mW

The exemption limits in Table 1 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

The conducted output power of the transmitter 0.60 mW @ 2402 MHz is less than 2 mW limit specified at 3500 MHz, device meets SAR exclusion.

Test Personnel:	Kouma Sinn 43	Test Date:	12/05/2018
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
	CFR47 FCC Part 15.247		
Product Standard:	RSS-247, RSS-102	Limit Applied:	See report section 6.3
Input Voltage:	Internal Battery		<u> </u>
Pretest Verification w/	<u> </u>	Ambient Temperature:	22 °C
Ambient Signals or			
S S	N/A	Relative Humidity:	15 %
		Atazanak aria Baranara	4040
		Atmospheric Pressure:	1010 mbars

Deviations, Additions, or Exclusions: None

7 6 dB Bandwidth and Occupied Bandwidth

7.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, ANSI C63.10, and FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

TEST SITE: EMC Lab

<u>The EMC Lab</u> has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	10/15/2018	10/15/2019
ROS005-4'	Control Platform	Rodhe and Schwarz	OSP120	101428	11/20/2018	11/20/2019
None	Coaxial Cable (DUT1)	UTIFLEX MICRO-COAX	UFA210A-1-0787-300300	101709	02/01/2018	02/01/2019
None	20 dB Attenuator (DUT1)	Pasternack	E7004-20	None	02/01/2018	02/01/2019
None	Coaxial Cable (Receiver/RF In	Micro-coax	UFA210A-0-0-0196-300300	101706	02/01/2018	02/01/2019

Software Utilized:

Name	Manufacturer	Version
R&S EMC32/AMS32/WMS32	Rohde & Schwarz	10.30.00

Test equipment used on August 1, 2019

Asset Description		Manufacturer	Model	Serial	Cal Date	Cal Due
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	10/15/2018	10/15/2019
HORN3	HORN3 HORN ANTENNA		3115	9610-4980	05/30/2019	05/30/2020
CBLHF2012-2M-1'	2m 9kHz-40GHz Coaxial Cable - SET1	Huber & Suhner	SF102	252675001	02/01/2019	02/01/2020

Software Utilized:

Name	Manufacturer	Version
None		

7.3 Results:

The sample tested was found to Comply.

§15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

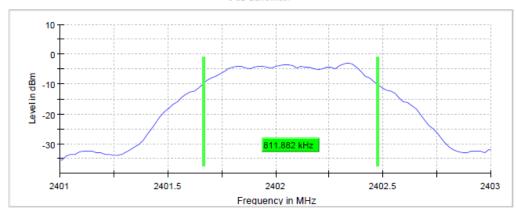
Intertek

Report Number: 103732466BOX-015b Issued: 01/11/2019

7.4 Setup Photographs:

Confidential

7.5 Plots/Data:

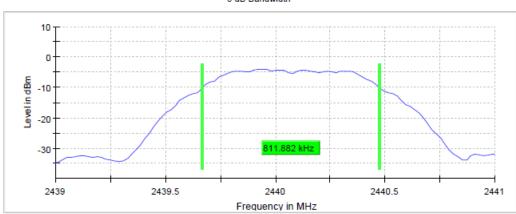

Minimum Emission Bandwidth 6 dB (2402 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 2%

6 dB Bandwidth

DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right	Max Level	Result
` '	` ′	, ,	, ,	, ,	(MHz)	(dBm)	
2402.000000	0.811882	0.500000		2401.663366	2402.475248	-3.1	PASS

Bandwidth

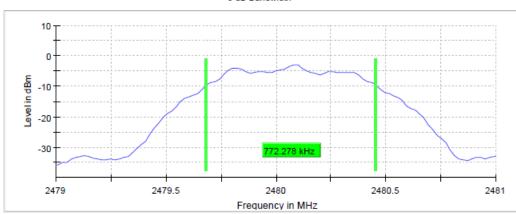

Minimum Emission Bandwidth 6 dB (2440 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 2%

6 dB Bandwidth

DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)	Max Level (dBm)	Result
2440.000000	0.811882	0.500000		2439.663366	2440.475248	-4.1	PASS

Bandwidth

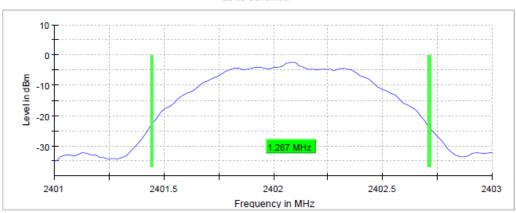

Minimum Emission Bandwidth 6 dB (2480 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 2%

6 dB Bandwidth

DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)	Max Level (dBm)	Result
2480.000000	0.772278	0.500000		2479.683168	2480.455446	-3.0	PASS

Bandwidth

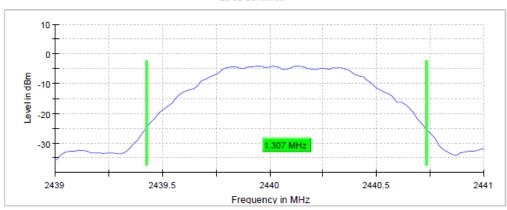

Emission Bandwidth 20 dB (2402 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 2%

20 dB Bandwidth

DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right	Max Level	Result
					(MHz)	(dBm)	
2402.000000	1.267326			2401.445545	2402.712871	-2.3	PASS

Bandwidth

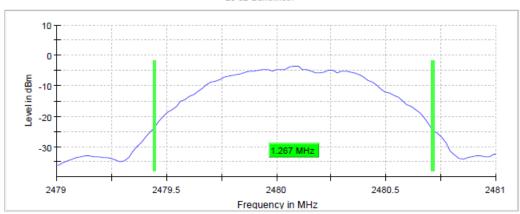

Emission Bandwidth 20 dB (2440 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 2%

20 dB Bandwidth

DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right	Max Level	Result
					(MHz)	(dBm)	
2440.000000	1.306930			2439.425743	2440.732673	-4.0	PASS

Bandwidth

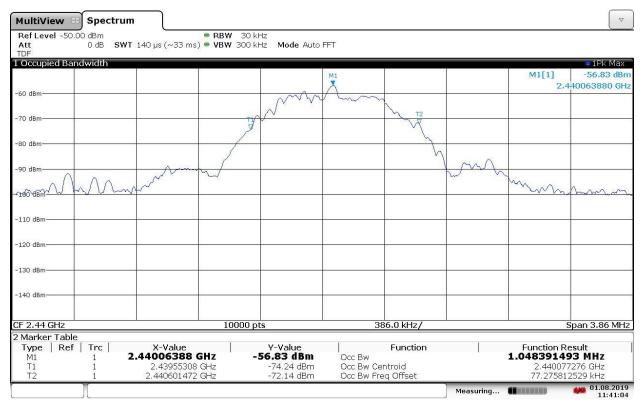

Emission Bandwidth 20 dB (2480 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 2%

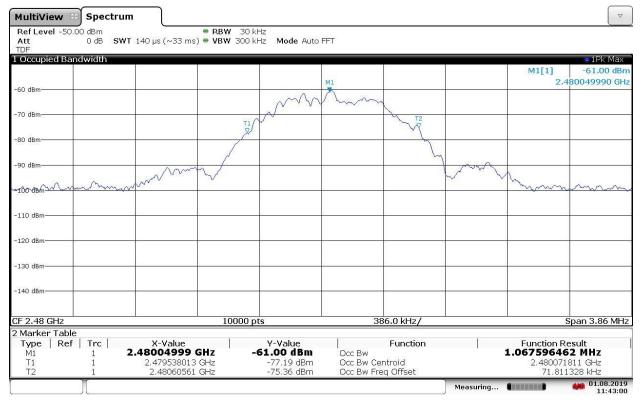
20 dB Bandwidth

DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)	Max Level (dBm)	Result
2480.000000	1.267326			2479.445545	2480.712871	-3.5	PASS

20 dB Bandwidth


Bandwidth

Emission Occupied Bandwidth (Low Channel: 2402 MHz)


11:36:59 01.08.2019

Emission Occupied Bandwidth (Mid Channel: 2440 MHz)

11:41:05 01.08.2019

Emission Occupied Bandwidth (Low Channel: 2480 MHz)

11:43:01 01.08.2019

Test Personnel:	Kouma Sinn 43	Test Date:	12/05/2018, 08/01/2019
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
` ' '	CFR47 FCC Part 15.247		
Product Standard:	RSS-247	Limit Applied:	See report section 7.3
Input Voltage:	Internal Battery		
Pretest Verification w/		Ambient Temperature:	22, 21 °C
Ambient Signals or			
BB Source:	N/A	Relative Humidity:	15, 59 %
			_
		Atmospheric Pressure:	1010, 1009 mbars

Deviations, Additions, or Exclusions: None

Maximum Power Spectral Density 8

8.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, RSS-102, ANSI C63.10, and FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

TEST SITE: EMC Lab

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	10/15/2018	10/15/2019
ROS005-4'	Control Platform	Rodhe and Schwarz	OSP120	101428	11/20/2018	11/20/2019
None	Coaxial Cable (DUT1)	UTIFLEX MICRO-COAX	UFA210A-1-0787-300300	101709	02/01/2018	02/01/2019
None	20 dB Attenuator (DUT1)	Pasternack	E7004-20	None	02/01/2018	02/01/2019
None	Coaxial Cable (Receiver/RF In	Micro-coax	UFA210A-0-0-0196-300300	101706	02/01/2018	02/01/2019

Software Utilized:

Name	Manufacturer	Version
R&S EMC32/AMS32/WMS32	Rohde & Schwarz	10.30.00

8.3 Results:

The sample tested was found to Comply.

§15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

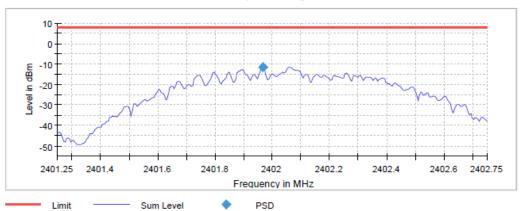
Intertek

Report Number: 103732466BOX-015b Issued: 01/11/2019

8.4 Setup Photographs:

Confidential

8.5 Plots/Data:

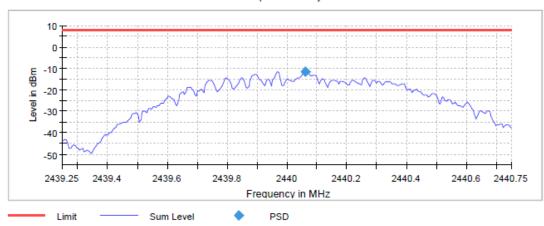

Peak Power Spectral Density (2402 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 1.1 dB

Result

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max	Result
			(dBm)	
2402.000000	2401.967500	-11.515	8.0	PASS

PSD Connector 1


Peak Power Spectral Density (2440 MHz; 0.000 dBm; 1 MHz)

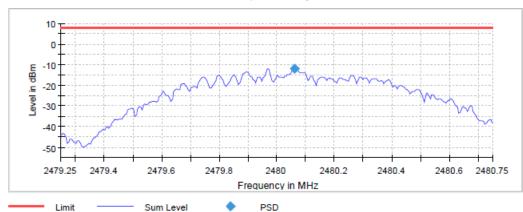
Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 1.1 dB

Result

(MHz)	(MHz)	(dBm)	Max	
2440.000000	2440.062500	-11.586	(dBm)	PASS

Power Spectral Density

PSD Connector 1


Peak Power Spectral Density (2480 MHz; 0.000 dBm; 1 MHz)

Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 1.1 dB

Result

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
2480.000000	2480.062500	-12.012	8.0	PASS

PSD Connector 1

Test Personnel:
Supervising/Reviewing
Engineer:
(Where Applicable)
Product Standard:
Input Voltage:
Pretest Verification w/
Ambient Signals or
BB Source:

Kouma Sinn L/S

N/A

CFR47 FCC Part 15.247

RSS-247
Internal Battery

N/A

Test Date: 12/05/2018

Limit Applied: See report section 8.3

Ambient Temperature: 22 °C

Relative Humidity: 15 %

Atmospheric Pressure: 1010 mbars

Deviations, Additions, or Exclusions: None

Band Edge Compliance 9

Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, ANSI C63.10, and FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

TEST SITE: EMC Lab & 10m ALSE

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Client: d/b/a Philips Healthcare - a division of Philips North / Wearable Biosensor G10

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

```
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = 10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m
```

9.2 **Test Equipment Used:**

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	10/15/2018	10/15/2019
ROS005-4'	Control Platform	Rodhe and Schwarz	OSP120	101428	11/20/2018	11/20/2019
None	Coaxial Cable (DUT1)	UTIFLEX MICRO-COAX	UFA210A-1-0787-300300	101709	02/01/2018	02/01/2019
None	20 dB Attenuator (DUT1)	Pasternack	E7004-20	None	02/01/2018	02/01/2019
None	Coaxial Cable (Receiver/RF In	Micro-coax	UFA210A-0-0-0196-300300	101706	02/01/2018	02/01/2019
145128	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/28/2019	03/28/2020
ETS005	1-18GHz horn antenna	ETS-Lindgren	3117	00218279	05/14/2018	05/14/2019
145-416	Cables 145-420 145-423 145-425 145-408	Huber + Suhner	3m Track B cables	multiple	07/25/2018	07/25/2019

Software Utilized:

Name	Manufacturer	Version
R&S EMC32/AMS32/WMS32	Rohde & Schwarz	10.30.00

Results: 9.3

The sample tested was found to Comply.

15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

Client: d/b/a Philips Healthcare - a division of Philips North / Wearable Biosensor G10

Intertek

Report Number: 103732466BOX-015b	Issued: 01/11/2019

9.4 Setup Photograph:

Confidential

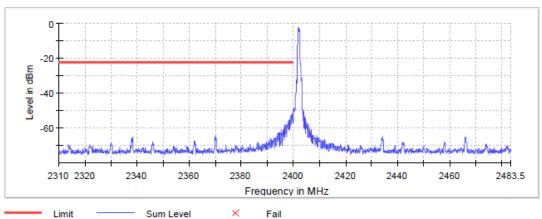
9.5 Plots/Data:

Band Edge low (2402 MHz; 0.000 dBm; 1 MHz)

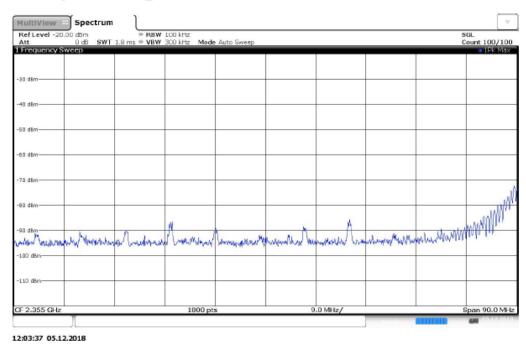
Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 0.6 dB

Result

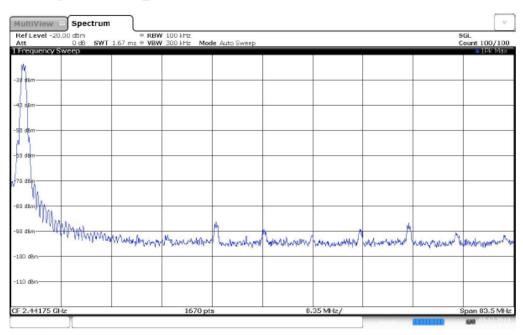
DUT Frequency (MHz)	Result	
2402.000000	PASS	


Inband Peak

Frequency	Level			
(MHz)	(dBm)			
2402.075000	-2.4			


Measurements

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	Result
2399.525000	-51.3	28.9	-22.4	PASS
2399.575000	-51.5	29.1	-22.4	PASS
2399.475000	-51.8	29.4	-22.4	PASS
2399.625000	-51.8	29.4	-22.4	PASS
2399.675000	-52.1	29.7	-22.4	PASS
2399.975000	-52.5	30.0	-22.4	PASS
2399.425000	-52.9	30.5	-22.4	PASS
2398.975000	-53.1	30.6	-22.4	PASS
2399.725000	-53.1	30.7	-22.4	PASS
2399.025000	-53.1	30.7	-22.4	PASS
2398.925000	-53.7	31.3	-22.4	PASS
2399.075000	-53.8	31.3	-22.4	PASS
2398.875000	-53.8	31.3	-22.4	PASS
2399.375000	-54.0	31.5	-22.4	PASS
2399.775000	-54.3	31.9	-22.4	PASS



Band Edge Connector 1_0

Band Edge Connector 1_1

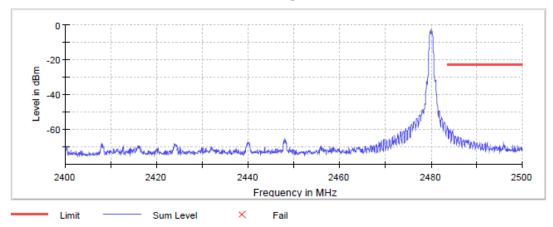
12:03:50 05.12.2018

Band Edge high (2480 MHz; 0.000 dBm; 1 MHz)

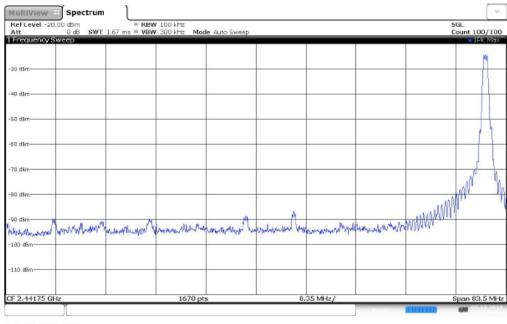
Measurement uncertainty calculated in accordance with ETSI TR 100 028-1. Expanded Uncertainty (K=2) < 0.6 dB

Result

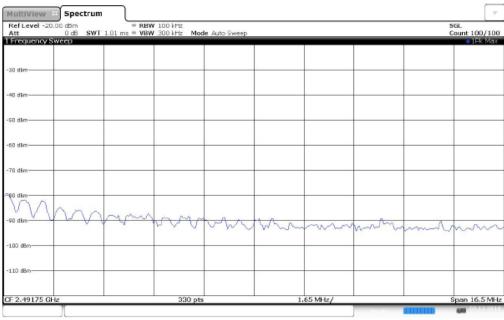
DUT Frequency (MHz)	Result
2480.000000	PASS


Inband Peak

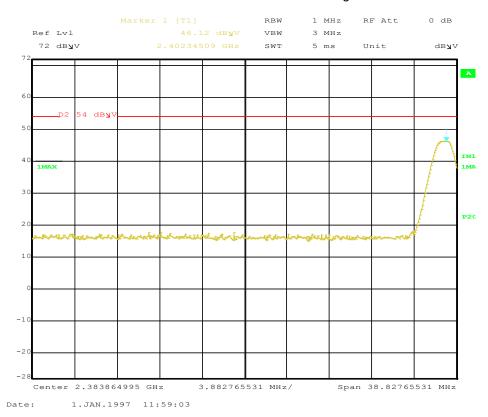
Frequency	Level
(MHz)	(dBm)
2480.075000	-3.0

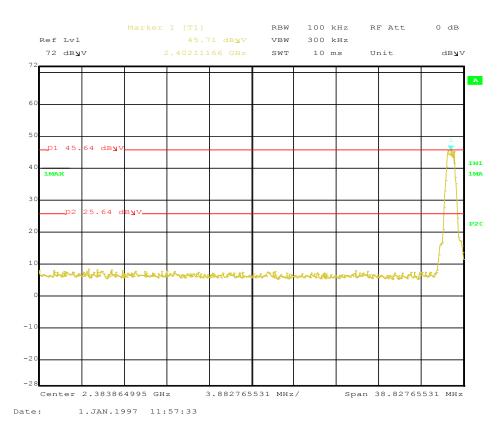

Measurements

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2483.575000	-58.1	35.2	-23.0	PASS
2483.625000	-58.3	35.3	-23.0	PASS
2483.675000	-58.6	35.6	-23.0	PASS
2483.525000	-59.0	36.1	-23.0	PASS
2483.725000	-60.0	37.0	-23.0	PASS
2484.175000	-60.6	37.7	-23.0	PASS
2484.125000	-60.7	37.8	-23.0	PASS
2484.075000	-60.8	37.8	-23.0	PASS
2484.225000	-60.9	37.9	-23.0	PASS
2484.775000	-61.0	38.0	-23.0	PASS
2484.725000	-61.1	38.2	-23.0	PASS
2484.825000	-61.2	38.2	-23.0	PASS
2484.025000	-61.5	38.6	-23.0	PASS
2483.775000	-61.6	38.6	-23.0	PASS
2484.325000	-61.7	38.8	-23.0	PASS

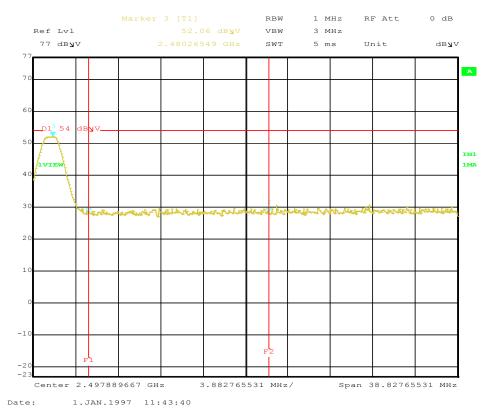


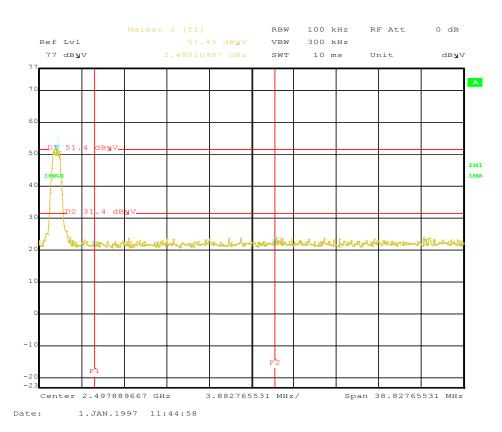
Band Edge Connector 1_0


12:08:24 05.12.2018


Band Edge Connector 1_1

12:08:35 05.12.2018


Radiated Emissions Lower Band Edge



Notes: Worst-case – Z-axis with EMI receiving antenna in horizontal polarity.

Radiated Emissions Upper Band Edge

Notes: Worst-case – Z-axis with EMI receiving antenna in horizontal polarity.

Intertek

Report Number: 103732466BOX-015b Issued: 01/11/2019

Kouma Sinn 43 Test Personnel: Test Date: 12/05/2018, 12/16/2018 Supervising/Reviewing Engineer: (Where Applicable) CFR47 FCC Part 15.247 Product Standard: RSS-247 Limit Applied: See report section 9.3 Input Voltage: Internal Battery Ambient Temperature: 22, 19 °C Pretest Verification w/ Ambient Signals or Relative Humidity: 15, 26 % BB Source: N/A Atmospheric Pressure: 1010, 1005 mbars

Deviations, Additions, or Exclusions: None

10 Transmitter spurious emissions

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C 15.247, FCC Part 15 Subpart B, RSS 247 ICES 003, ANSI C 63.10, and ANSI C 63.4.

TEST SITE: EMC Lab & 10m ALSE

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \ dB\mu V$ $AF = 7.4 \ dB/m$ $CF = 1.6 \ dB$ $AG = 29.0 \ dB$ $FS = 32 \ dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

```
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = 10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m
```

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

10.2 Test Equipment Used:

Test equipment used from 30-1000 MHz

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DS40'	Temp, humidity, pressure gauge	Digi Sense	68000-49	181717625	11/06/2018	11/06/2019
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	10/15/2018	10/15/2019
None	10 dB	HRS	AT-110v	000646	VBU	Verified
145130	Cable,SMA-SMA,1 meter,9kHz-40GHz, (Cable Kit 6)	Huber+Suhner	Sucoflex 102EA	3153/2EA	09/13/2018	09/13/2019

Software Utilized:

Name	Manufacturer	Version
R&S EMC32/AMS32/WMS32	Rohde & Schwarz	10.30.00

Test equipment used from 1-25 GHz

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
BAR1'	Digital 4 Line Barometer	Mannix	0ABA116	BAR1	04/30/2018	04/30/2019
ETS005'	1-18GHz horn antenna	ETS-Lindgren	3117	00218279	05/14/2018	05/14/2019
REA002'	2.5GHz High Pass Filter	Reactel, Inc	7HS-2.5G/18G-S11	06-1	02/22/2018	02/22/2019
145-416'	Cables 145-420 145-423 145-425 145-408	Huber + Suhner	3m Track B cables	multiple	07/25/2018	07/25/2019
BONN001'	1-18GHz low noise pre-amp	Bonn	BLMA 0118-M	1811749	06/10/2018	06/10/2019
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/22/2018	03/22/2019
HORN2'	HORN ANTENNA	EMCO	3115	9602-4675	04/02/2018	04/02/2019
CBL030'	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	11/15/2018	11/15/2019
CBLSHF204'	Cable, SMA - SMA, 9kHz -40GHz, (Cable Kit 5)	Huber + Suhner	Sucoflex 102EA	234714001	11/15/2018	11/15/2019
PRE8'	PREAMPLFIER 1- 40 GHz	MITEQ	NSP4000-NF	507145	10/25/2018	10/25/2019
145130'	Cable,SMA-SMA,1 meter,9kHz- 40GHz, (Cable Kit 6)	Huber+Suhner	Sucoflex 102EA	3153/2EA	09/13/2018	09/13/2019
145108'	EMI Test Receiver (20Hz - 40GHz)	Rohde & Schwarz	ESIB40	100209	06/01/2018	06/01/2019
REA008'	band reject filter 2.4GHz	Reactel, Inc	12RX7-2441.75-x140 S	17-01	07/13/2018	07/13/2019

Software Utilized:

Name	Manufacturer	Version
R&S EMC32/AMS32/WMS32	Rohde & Schwarz	10.30.00
EMI Boxborough.xls	Intertek	08/27/2010

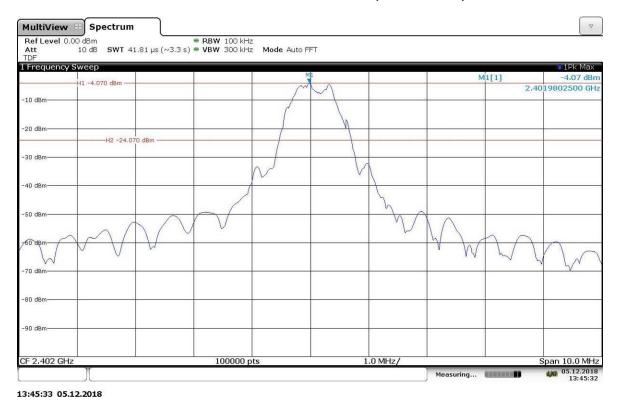
10.3 Results:

The sample tested was found to Comply.

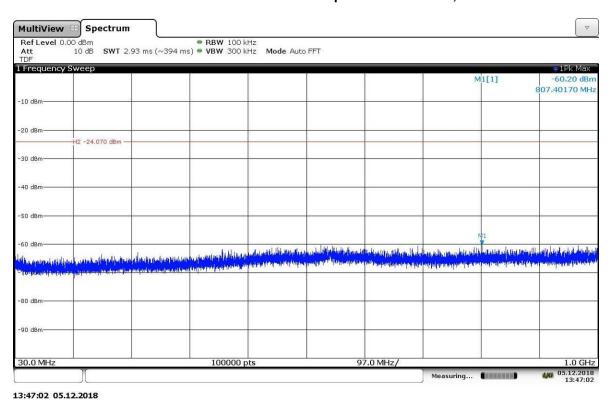
15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

Client: d/b/a Philips Healthcare - a division of Philips North / Wearable Biosensor G10

Intertek

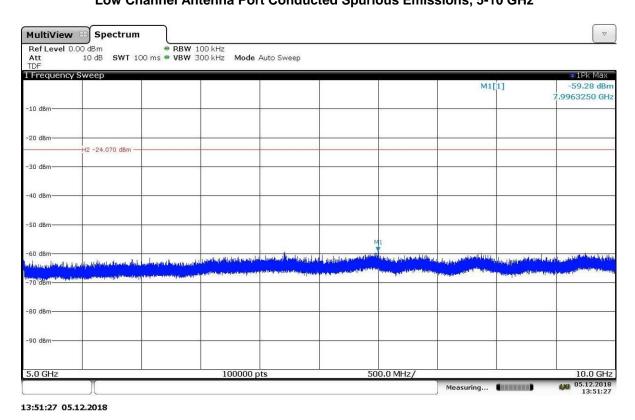

Report Number: 103732466BOX-015b Issued: 01/11/2019

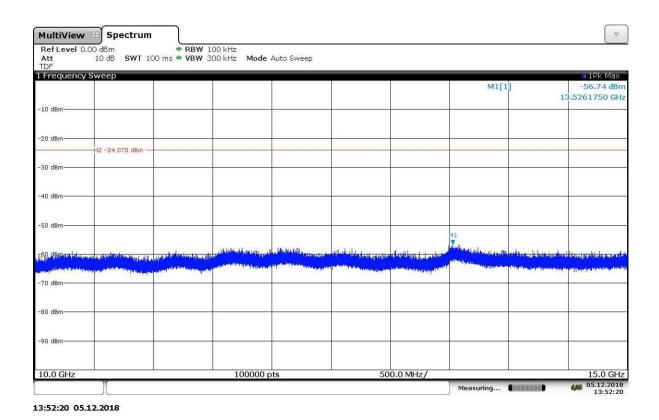
10.4 Setup Photographs:

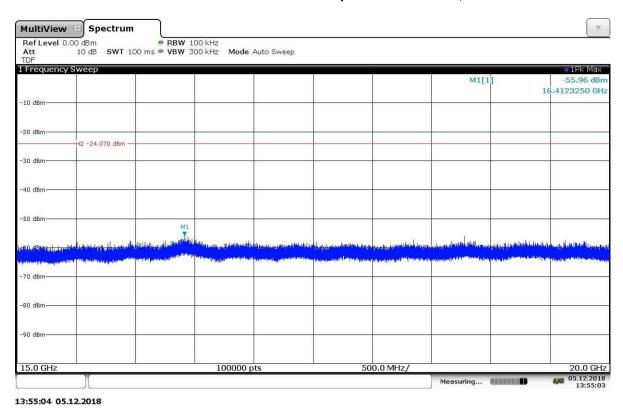

Confidential

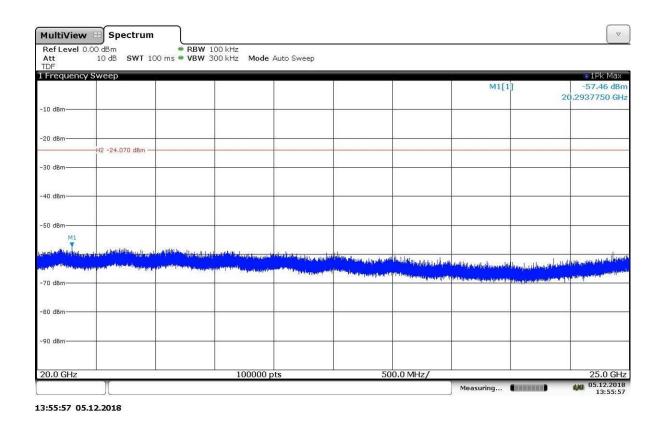
10.5 Plots/Data:

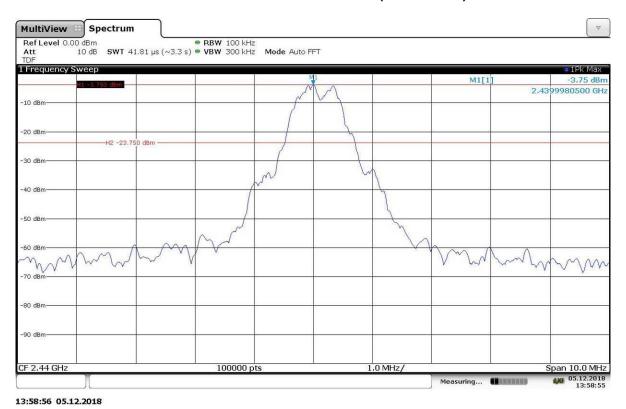
Limit: 20 dB down from the carrier (Low Channel)

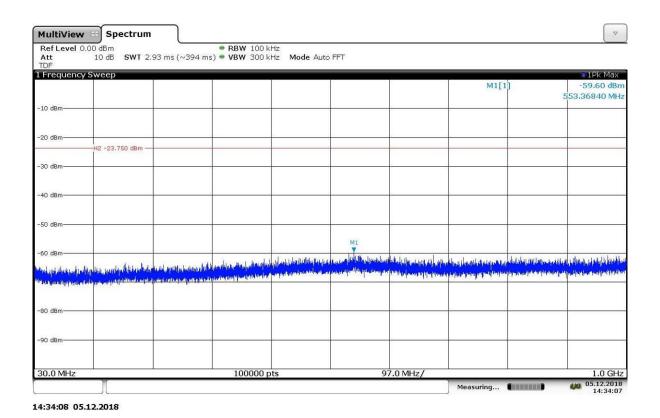

Low Channel Antenna Port Conducted Spurious Emissions, 30 MHz-1000 MHz

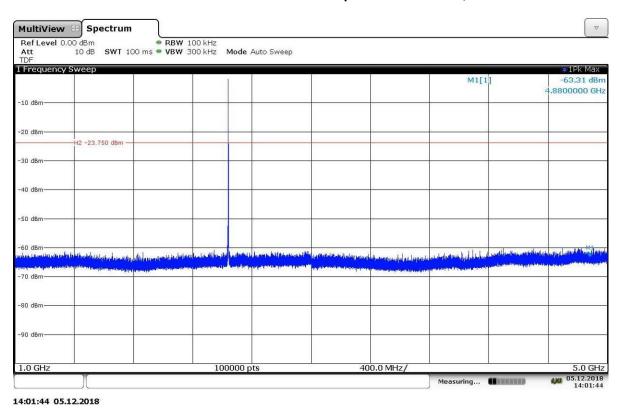

Low Channel Antenna Port Conducted Spurious Emissions, 1-5 GHz

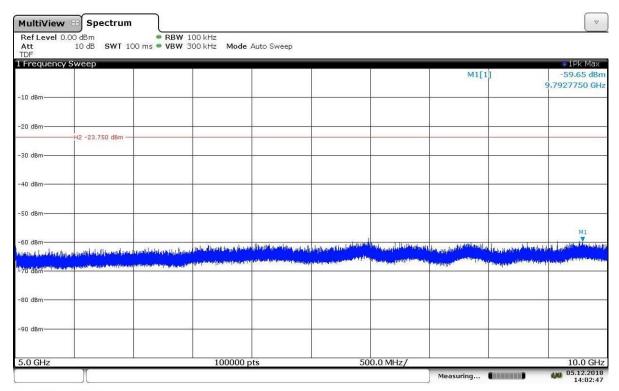

Low Channel Antenna Port Conducted Spurious Emissions, 5-10 GHz


Low Channel Antenna Port Conducted Spurious Emissions, 10-15 GHz

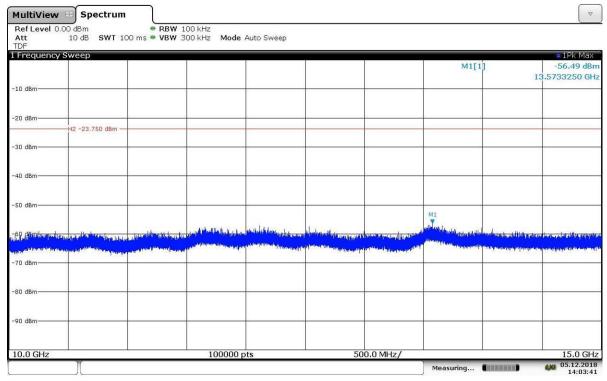

Low Channel Antenna Port Conducted Spurious Emissions, 15-20 GHz


Low Channel Antenna Port Conducted Spurious Emissions, 20-25 GHz

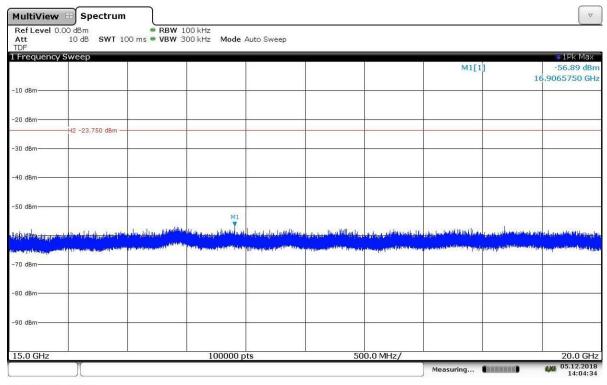

Limit: 20 dB down from the carrier (Mid Channel)


Mid Channel Antenna Port Conducted Spurious Emissions, 30 MHz-1000 MHz

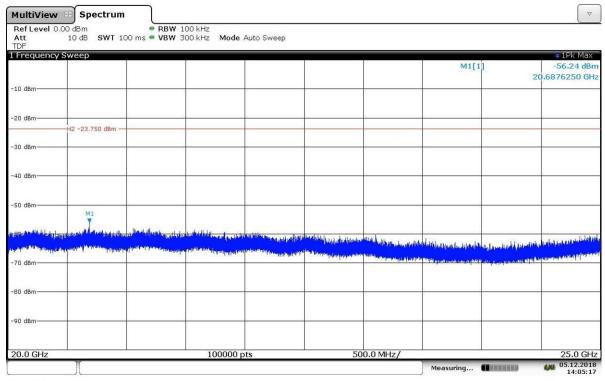
Mid Channel Antenna Port Conducted Spurious Emissions, 1-5 GHz



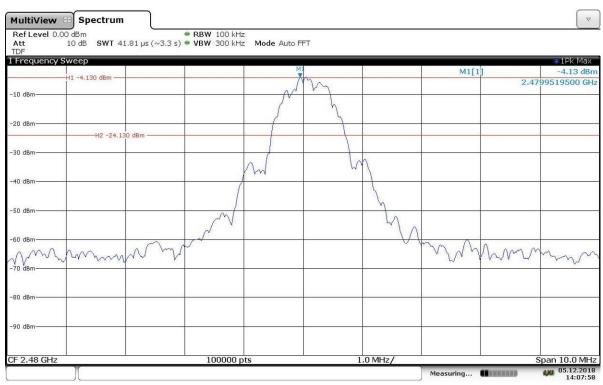
Mid Channel Antenna Port Conducted Spurious Emissions, 5-10 GHz


14:02:47 05.12.2018

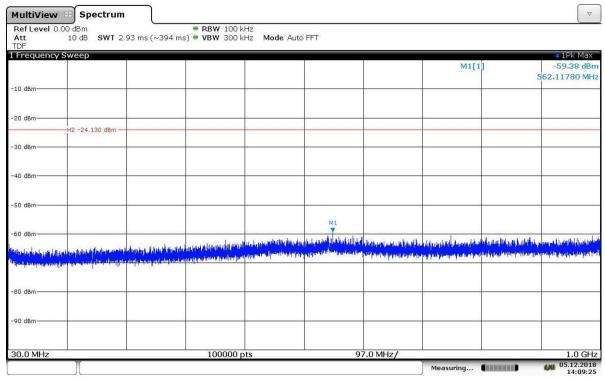
Mid Channel Antenna Port Conducted Spurious Emissions, 10-15 GHz


14:03:41 05.12.2018

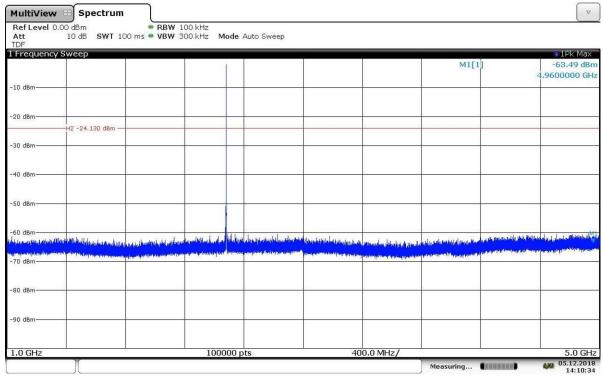
Mid Channel Antenna Port Conducted Spurious Emissions, 15-20 GHz


14:04:34 05.12.2018

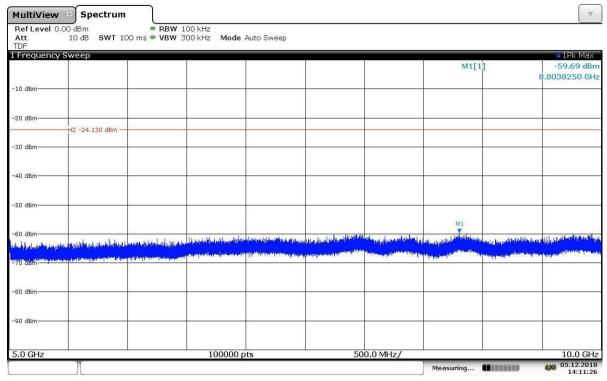
Mid Channel Antenna Port Conducted Spurious Emissions, 20-25 GHz


14:05:18 05.12.2018

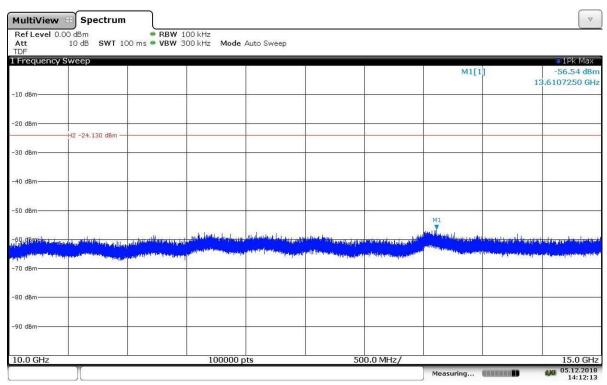
Limit: 20 dB down from the carrier (High Channel)


14:07:59 05.12.2018

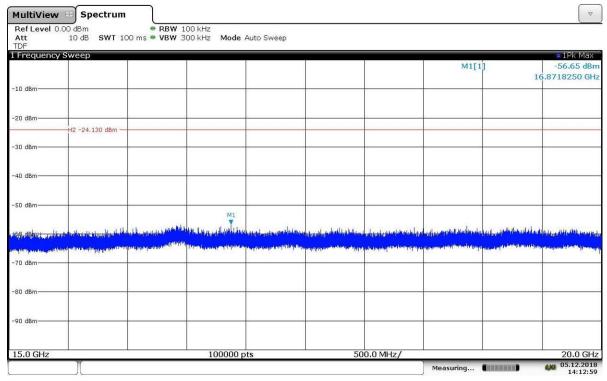
High Channel Antenna Port Conducted Spurious Emissions, 30-1000 MHz


14:09:26 05.12.2018

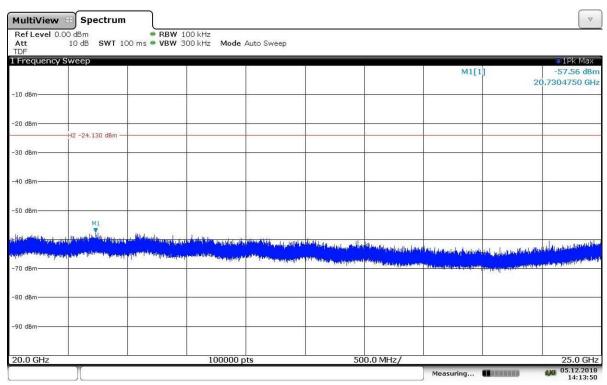
High Channel Antenna Port Conducted Spurious Emissions, 1-5 GHz


14:10:35 05.12.2018

High Channel Antenna Port Conducted Spurious Emissions, 5-10 GHz


14:11:27 05.12.2018

High Channel Antenna Port Conducted Spurious Emissions, 10-15 GHz


14:12:14 05.12.2018

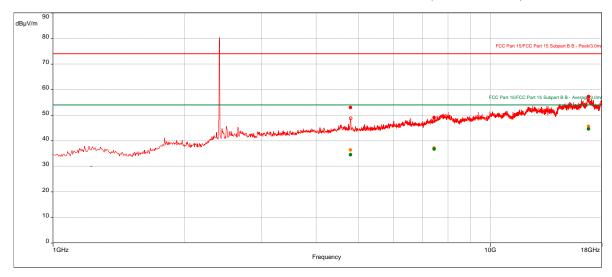
High Channel Antenna Port Conducted Spurious Emissions, 15-20 GHz

14:12:59 05.12.2018

High Channel Antenna Port Conducted Spurious Emissions, 20-25 GHz


14:13:51 05.12.2018

Transmit @ low channel, X-axis - 30 MHz-25 GHz


Test Information:

Date and Time	12/21/2018 4:06:39 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ low channel, X-axis 1-18 GHz

Graph:

- Level (RMS data for substitution)

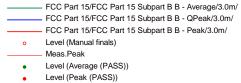
Results:

Peak (PASS) (3)

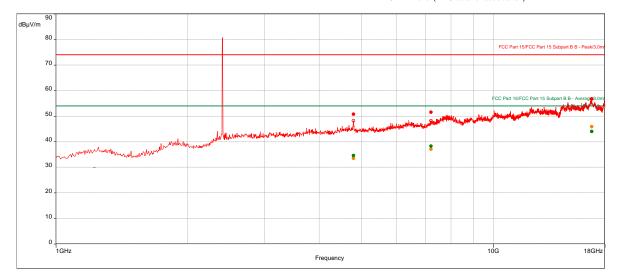
T Cak (I ACC) (3)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4792.105263	52.97	74.00	-21.03	180.00	1.33	Vertical	1000000.00	-11.59
7438.421053	49.01	74.00	-24.99	343.00	1.30	Horizontal	1000000.00	-6.78
16777.10526	57.23	74.00	-16.77	292.00	1.57	Vertical	1000000.00	3.78

Average (PASS) (3)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4792.105263	34.49	54.00	-19.51	180.00	1.33	Vertical	1000000.00	-11.59
7438.421053	36.71	54.00	-17.29	343.00	1.30	Horizontal	1000000.00	-6.78
16777.10526	44.54	54.00	-9.46	292.00	1.57	Vertical	1000000.00	3.78


Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.

Transmit @ low channel, Y-axis - 30 MHz-25 GHz


Test Information:

Date and Time	12/21/2018 5:57:09 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ low channel, Y-axis 1-18GHz

Graph:

- Level (RMS data for substitution)

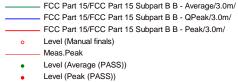
Results:

Peak (PASS) (3)

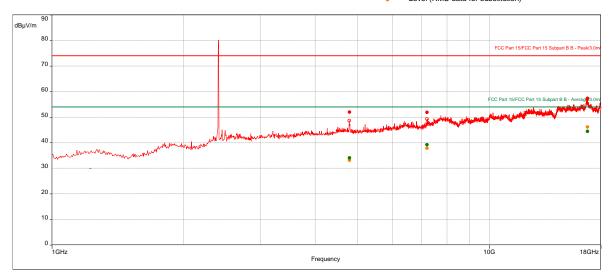
T Cak (T ACC) (<u> </u>							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)		(dB)
4789.210526	50.70	74.00	-23.30	128.00	1.00	Vertical	1000000.00	-11.60
7205.263158	51.52	74.00	-22.48	47.00	1.25	Vertical	1000000.00	-7.65
16802.10526	56.64	74.00	-17.36	121.00	3.54	Vertical	1000000.00	3.71

Average (PASS) (3)

Average (i Ao	0) (3)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)		(dB)
4789.210526	34.57	54.00	-19.43	128.00	1.00	Vertical	1000000.00	-11.60
7205.263158	38.23	54.00	-15.77	47.00	1.25	Vertical	1000000.00	-7.65
16802.10526	43.98	54.00	-10.02	121.00	3.54	Vertical	1000000.00	3.71


Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.

Transmit @ low channel, Z-axis 1-18 GHz - 30 MHz-25 GHz


Test Information:

Date and Time	12/21/2018 6:18:59 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ low channel, Z-axis 1-18GHz

Graph:

- Level (RMS data for substitution)

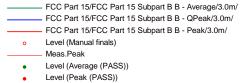
Results:

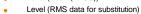
Peak (PASS) (3)

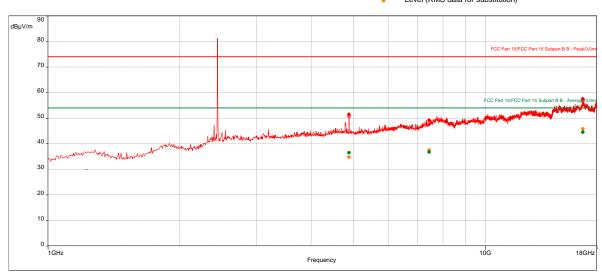
T Cak (T ACC) (3)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4788.421053	51.96	74.00	-22.04	181.00	1.21	Vertical	1000000.00	-11.60
7205.263158	51.81	74.00	-22.19	18.00	1.30	Vertical	1000000.00	-7.65
16775.78947	57.36	74.00	-16.64	334.00	2.92	Horizontal	1000000.00	3.78

Average (PASS) (3)

Average (i Ao	0) (3)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4788.421053	34.03	54.00	-19.97	181.00	1.21	Vertical	1000000.00	-11.60
7205.263158	39.20	54.00	-14.80	18.00	1.30	Vertical	1000000.00	-7.65
16775.78947	44.38	54.00	-9.62	334.00	2.92	Horizontal	1000000.00	3.78


Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.


Transmit @ mid channel, X-axis 1-18 GHz - 30 MHz-25 GHz


Test Information:

Date and Time	12/21/2018 4:28:29 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ mid channel, X-axis 1-18GHz

Graph:

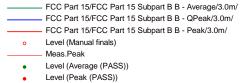
Results:

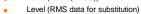
Peak (PASS) (3)

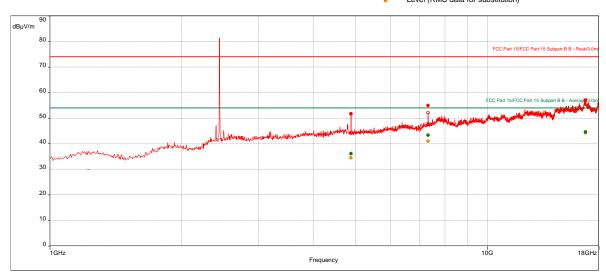
1 can (1 7100) (0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4879.473684	51.46	74.00	-22.54	276.00	1.29	Horizontal	1000000.00	-11.85
7438.421053	49.14	74.00	-24.86	173.00	3.42	Vertical	1000000.00	-6.78
16715	57.45	74.00	-16.55	313.00	3.73	Vertical	1000000.00	4.01

Average (PASS) (3)

Average (i Ao	0) (0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4879.473684	36.43	54.00	-17.57	276.00	1.29	Horizontal	1000000.00	-11.85
7438.421053	36.68	54.00	-17.32	173.00	3.42	Vertical	1000000.00	-6.78
16715	44.46	54.00	-9.54	313.00	3.73	Vertical	1000000.00	4.01


Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.


Transmit @ mid channel, Y-axis 1-18 GHz - 30 MHz-25 GHz


Test Information:

Date and Time	12/21/2018 5:35:42 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ mid channel, Y-axis 1-18GHz

Graph:

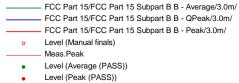
Results:

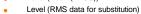
Peak (PASS) (3)

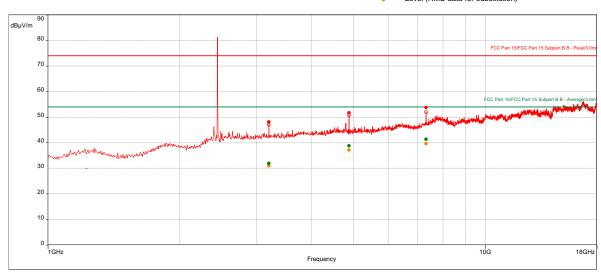
1 can (1 7100) (0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4880.789474	51.70	74.00	-22.30	322.00	1.00	Vertical	1000000.00	-11.86
7319.473684	54.96	74.00	-19.04	321.00	1.00	Vertical	1000000.00	-7.34
16776.84211	57.10	74.00	-16.90	299.00	3.46	Horizontal	1000000.00	3.78

Average (PASS) (3)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4880.789474	36.10	54.00	-17.90	322.00	1.00	Vertical	1000000.00	-11.86
7319.473684	43.33	54.00	-10.67	321.00	1.00	Vertical	1000000.00	-7.34
16776.84211	44.54	54.00	-9.46	299.00	3.46	Horizontal	1000000.00	3.78


Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.


Transmit @ mid channel, Z-axis 1-18 GHz - 30 MHz-25 GHz


Test Information:

Date and Time	12/21/2018 6:41:16 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ mid channel, Z-axis 1-18GHz

Graph:

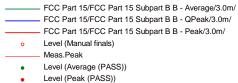
Results:

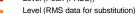
Peak (PASS) (3)

1 can (1 /100) (0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
3199.473684	48.06	74.00	-25.94	216.00	1.45	Vertical	1000000.00	-15.98
4880	51.70	74.00	-22.30	10.00	1.45	Horizontal	1000000.00	-11.86
7320.789474	53.71	74.00	-20.29	17.00	1.00	Vertical	1000000.00	-7.33

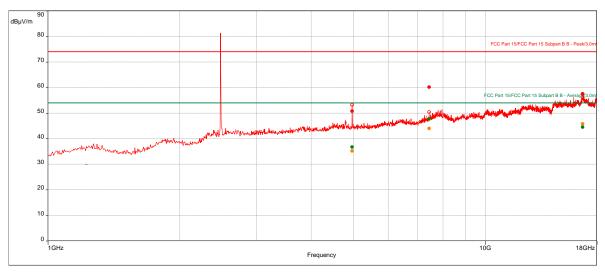
Average (PASS) (3)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
3199.473684	31.92	54.00	-22.08	216.00	1.45	Vertical	1000000.00	-15.98
4880	38.76	54.00	-15.24	10.00	1.45	Horizontal	1000000.00	-11.86
7320.789474	41.30	54.00	-12.70	17.00	1.00	Vertical	1000000.00	-7.33


Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.


Transmit @ high channel, X-axis - 30 MHz-25 GHz

Test Information:


Date and Time	12/21/2018 4:50:39 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ high channel, X-axis 1-18GHz

Graph:

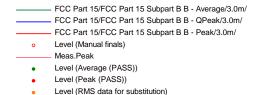
Results:

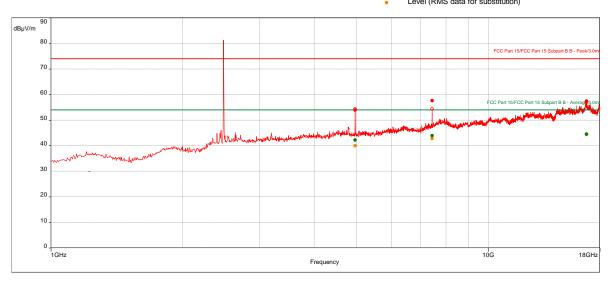
Dook (DASS) (2)

1 cak (1 A33) (3)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4959.736842	50.75	74.00	-23.25	357.00	2.19	Horizontal	1000000.00	-11.80
7439.473684	60.19	74.00	-13.81	253.00	1.30	Horizontal	1000000.00	-6.77
16704.47368	57.50	74.00	-16.50	359.00	2.96	Vertical	1000000.00	4.05

Average (PASS) (3)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4959.736842	36.72	54.00	-17.28	357.00	2.19	Horizontal	1000000.00	-11.80
7439.473684	47.69	54.00	-6.31	253.00	1.30	Horizontal	1000000.00	-6.77
16704.47368	44.49	54.00	-9.51	359.00	2.96	Vertical	1000000.00	4.05


Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.


Transmit @ high channel, Y-axis - 30 MHz-25 GHz

Test Information:

Date and Time	12/21/2018 5:13:11 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ high channel, Y-axis 1-18GHz

Graph:

Results:

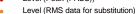
Peak (PASS) (3)

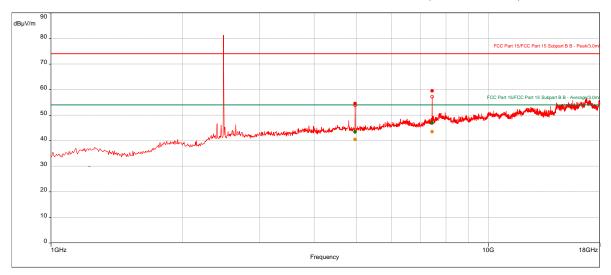
_ Feak (FASS) (S)								
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
4960	53.93	74.00	-20.07	32.00	1.53	Vertical	1000000.00	-11.80
7441.052632	57.55	74.00	-16.45	359.00	1.46	Vertical	1000000.00	-6.76
16768.42105	57.38	74.00	-16.62	291.00	1.38	Horizontal	1000000.00	3.80

Average (PASS) (3)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
4960	42.18	54.00	-11.82	32.00	1.53	Vertical	1000000.00	-11.80
7441.052632	43.90	54.00	-10.10	359.00	1.46	Vertical	1000000.00	-6.76
16768.42105	44.47	54.00	-9.53	291.00	1.38	Horizontal	1000000.00	3.80

Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.


Transmit @ high channel, Z-axis - 30 MHz-25 GHz


Test Information:

Date and Time	12/21/2018 8:51:49 PM
Client and Project Number	Philips
Engineer	Kouma Sinn
Temperature	20 C
Humidity	34 %
Atmospheric Pressure	985mbar
Comments	12-21-18_G10_Tx @ high channel, Z-axis 1-18GHz

Graph:

Results:

Peak (PASS) (2)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)		(dB)
4959.736842	54.52	74.00	-19.48	32.00	1.00	Vertical	1000000.00	-11.80
7439.473684	59.44	74.00	-14.56	33.00	1.00	Vertical	1000000.00	-6.77

Average (PASS) (2)

7 trolago (1 7 to	<u> </u>							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)		(dB)
4959.736842	43.37	54.00	-10.63	32.00	1.00	Vertical	1000000.00	-11.80
7439.473684	46.91	54.00	-7.09	33.00	1.00	Vertical	1000000.00	-6.77

Notes: Scanned from 1-18 GHz using Nexio software (see plot above) and repeated test manually from 10-18 GHz at 10 cm to make sure there's no emissions present since the noise floor is high in this frequency range. Manually scan was performed from 1-2.4 GHz and 18-25 GHz.at 10 cm. No emissions were detected.

Intertek

Report Number: 103732466BOX-015b Issued: 01/11/2019

Test Personnel: Kouma Sinn Test Date: __12/05/2018, 12/21/2018 Supervising/Reviewing Engineer: (Where Applicable) CFR47 FCC Part 15.247 RSS-247 Product Standard: Limit Applied: See report section 10.3 Internal Battery Input Voltage: Ambient Temperature: 22, 20 °C Pretest Verification w/ Ambient Signals or BB Source: Relative Humidity: 15, 34 % Atmospheric Pressure: __1010, 985 mbars

Deviations, Additions, or Exclusions: None

11 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	01/11/2019	103732466BOX-015b	KPS 43	VFV 151	Original Issue
1	05/31/2019	103732466BOX-015b	KPS 43	VFV V5V	See Note # 1
2	08/01/2019	103732466BOX-015b	KPS 43	VFV V5V	See Note # 2
3	08/08/2019	103732466BOX-015b	KPS 43	VFV V5V	See Note # 3

Note # 1: a) Removed extra output power plots, b) Reported output power as conducted power, c) Recalculated the SAR exemption using conducted output power, d) Removed extra bandwidth plots, e) Removed extra power spectral density plots.

Note # 2: Added the occupied bandwidth data.

Note # 3: Removed the FCC KDB 558074 old version and updated the new one under 'Method' section. And also removed test setup photos for confidentiality.