

FCC TEST REPORT

Test report
On Behalf of
Streamax Technology Co., Ltd.
For
Vigilant Eye
Model No.: BWC

FCC ID: 2AM6L-BWC

Prepared For: Streamax Technology Co., Ltd.

21-23/F, Building B1, Zhiyuan, No.1001, Xueyuan Avenue, Nanshan District,

Shenzhen, Guangdong, 518055 China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jul. 15, 2022 ~ Aug. 09, 2022

Date of Report: Aug. 09, 2022

Report Number: HK2207153077-14E

TEST RESULT CERTIFICATION

Applicant's name	Streamax	Technology	/ Co	Ltd.
Applicant 3 name	Cucamax	1001110109	· ••.,	Lu.

21-23/F, Building B1, Zhiyuan, No.1001, Xueyuan Avenue,

Nanshan District, Shenzhen, Guangdong, 518055 China

Report No.: HK2207153077-14E

Streamax Technology Co., Ltd. Manufacture's Name:

21-23/F, Building B1, Zhiyuan, No.1001, Xueyuan Avenue,

Nanshan District, Shenzhen, Guangdong, 518055 China

Product description

Trade Mark: N/A

Product name Vigilant Eye

Model and/or type reference : BWC

FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test.....

Date (s) of performance of tests.....: Jul. 15, 2022 ~ Aug. 09, 2022

Date of Issue Aug. 09, 2022

Test Result **Pass**

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

Report No.: HK2207153077-14E

1.	TEST RESULT SUMMARY	
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	5
	1.3. MEASUREMENT UNCERTAINTY	6
2.		
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. OPERATION FREQUENCY EACH OF CHANNEL	8
	2.3. OPERATION OF EUT DURING TESTING	8
	2.4. DESCRIPTION OF TEST SETUP	9
3.	GENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	11
4.	TEST RESULTS AND MEASUREMENT DATA	
	4.1. CONDUCTED EMISSION	
	4.2. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.3. 6DB EMISSION BANDWIDTH	
	4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	25
	4.5. POWER SPECTRAL DENSITY	
	4.6. BAND EDGE	33
	4.7. SPURIOUS EMISSION	48
	4.8. FREQUENCY STABILITY MEASUREMENT	
	4.9. ANTENNA REQUIREMENT	58
5.	PHOTOGRAPHS OF TEST SETUP	59
OTIV	DUOTOS OF THE EUT	C4

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Aug. 09, 2022	Jason Zhou
an/G	Dim. Dim.	mG ml	G anG
NYTEST	AKTES!	TES!"	NY TEST

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
_{NG} 1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3 (Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	Vigilant Eye	TESTING	TESTIN
Model Name:	BWC	MONEY.	O HUM
Series Model:	N/A	WHI AK TESTING	STING
Trade Mark:	N/A		M. HUAK TO
Model Difference:	N/A	HUAKTESTING	
FCC ID:	2AM6L-BWC	WAY TESTIN	HUANTESTIN
Operation Frequency:	IEEE 802.11a/n/ac(HT20)5.745GHz- IEEE 802.11n/ac(HT40)5.755GHz- IEEE 802.11ac(HT80) 5.775GHz	z-5.825GHz 5.795GHz	
Modulation Technology:	IEEE 802.11a/n/ac		HUAK TESTIN
Modulation Type:	OFDM	TING	
Antenna Type:	Internal Antenna	HUAKTES	N TESTING
Antenna Gain:	1.14dBi	TING	(House
Power Source:	DC 5V/2A from Adapter or 3.8V fro	m Battery	3 706
Power Supply:	DC 5V/2A from Adapter or 3.8V fro	m Battery	MAKTES.
Hardware Version	BWC		
Software Version	944_V330	HUAKTESTING	HUAKTESTAV

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

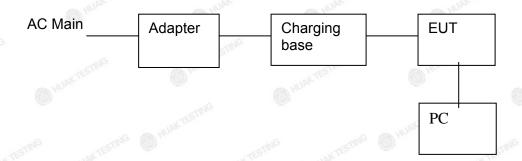
2.2. OPERATION FREQUENCY EACH OF CHANNEL

- Aller		-11/1/2		77	
	02.11n(HT20) ac(HT20)		1n(HT40)/ Iac(HT40)	802.11	lac(HT80)
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
153	5765	159	5790	(9)	HUAKTE
157	5785	9		TNG	
161	5805		700	IN TES	
165	5825	TESTING	AK TESTING (II)		STING

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. OPERATION OF EUT DURING TESTING


В	and IV (5725 - 5850 MF	Hz)
For	⁻ 802.11a/ n HT20/ac H	T 20
Channel Number	Channel	Frequency (MHz)
149	Low	5745
157	Mid	5785
165	High High	5825
Fo	or 802.11n HT40/ac HT	40
Channel Number	Channel	Frequency (MHz)
151	Low	5755
159	High	5795
	For 802.11ac HT 80	
Channel Number	Channel	Frequency (MHz)
155	-	5775

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing and radiation below 1GHz testing:

Operation of EUT during Above1GHz Radiation testing:

Adapter information Model: ROSE-1203000

Input: 200-240V, 50/60Hz, 1A Max

Output: 12VDC, 3A

PC information Model: TP00067A

Input: DC20V, 2.25-3.25A Output: 5VDC, 0.5A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. GENERA INFORMATION

Operation mode:

3.1. TEST ENVIRONMENT AND MODE

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 100%)

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

	Mode	AK TESTING	Data rate	
	802.11a	(i) HOW	6 Mbps	O HOW
G	802.11n(HT20)	-m/G	MCS0	n/G
SON Y	802.11n(HT40)	MAKTES	MCS0	UAKTES
802.11	ac(HT20)/ac(HT40)/ac(HT80)		MCS0	
Final Te	st Mode:			
Operation mode: Keep the EUT in continuous transmitti			smitting	

with modulation

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	IS I HUANTESTI	I STING	/ HUNK TESTIN	/ STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4. TEST RESULTS AND MEASUREMENT DATA

4.1. CONDUCTED EMISSION

4.1.1. Test Specification

TING	TING	ING	ING CTIVE		
Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz	MAN IN	AK TESTING		
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto		
	Frequency range	Limit (d	-1117		
Limits:	(MHz) 0.15-0.5	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56* 56	56 to 46* 46		
	5-30	60	50		
	0 00	AIG .	. OG		
	Reference	e Plane			
Test Setup:	Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No. Test table height=0.8m	EMI Receiver	— AC power		
Test Mode:	TX Mode				
Test Procedure:	 The E.U.T and simple power through a line (L.I.S.N.). This proimpedance for the modern street impedance for the modern street impedance refer to the block photographs). Both sides of A.C. conducted interfered emission, the relative the interface cables ANSI C63.10: 2013 	e impedance stab ovides a 50ohm neasuring equipme ces are also conne ISN that provides with 50ohm term diagram of the line are checkence. In order to fir re positions of equipments must be chang	oilization network of 1/50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum of the maximum ipment and all of ed according to		
Test Result:	PASS				
	000	G G			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

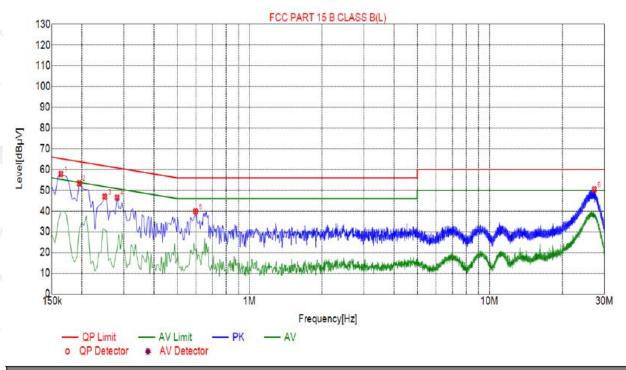
TESTI TESTINO TESTINO

4.1.2. Test Instruments

COMP. 1" NO.10		40000 Y	100000	ASSESS V	105(13)	
	Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESCI 7	HKE-010	Feb. 18, 2022	Feb. 17, 2023	
LISN	R&S	ENV216	HKE-002	Feb. 18, 2022	Feb. 17, 2023	
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 18, 2022	Feb. 17, 2023	
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

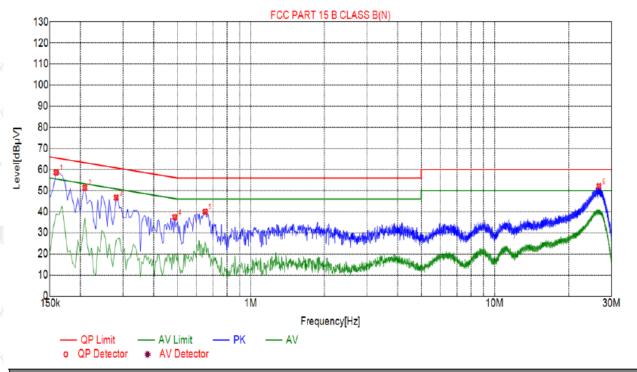


TEST RESULTS

PASS

All the test modes completed for test. only the worst result of (802.11a at 5745MHz) was reported as below:

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)



Sı	Suspected List							
NO.	Freq.	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.1635	57.85	19.98	65.28	7.43	37.87	PK	L
2	0.1950	53.42	20.03	63.82	10.40	33.39	PK	L
3	0.2490	46.93	20.04	61.79	14.86	26.89	PK	L
4	0.2805	46.47	20.04	60.80	14.33	26.43	PK	L
5	0.5955	39.82	20.05	56.00	16.18	19.77	PK	L
6	27.1635	50.42	20.26	60.00	9.58	30.16	PK	L

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре	
1	0.1590	58.58	20.01	65.52	6.94	38.57	PK	N	
2	0.2085	51.34	20.04	63.26	11.92	31.30	PK	N	
3	0.2805	46.67	20.04	60.80	14.13	26.63	PK	N	
4	0.4875	37.43	20.04	56.21	18.78	17.39	PK	N	
5	0.6495	39.97	20.05	56.00	16.03	19.92	PK	N	
6	26.6100	52.09	20.26	60.00	7.91	31.83	PK	N	

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4.2. MAXIMUM CONDUCTED OUTPUT POWER

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Secti	FCC Part15 E Section 15.407(a)				
Test Method:		KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E				
Limit:	Frequency Band (MHz)	Limit MAKTESTIN	HIAK TESTING			
	5725-5850	1 W				
Test Setup:	Power meter	EU	T HUAKTESTING			
Test Mode:	Transmitting mode	Transmitting mode with modulation				
Test Procedure:	KDB789033 D02 Rules v02r01 Se 2. The RF output of meter by RF cat compensated to 3. Set to the maxim EUT transmit co	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 				
Test Result:	PASS					
Remark:	+10log(1/x) X is dut	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power				
Note: The test double and module is the same.						

4.2.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023
Power meter	Agilent	E4419B	HKE-085	Feb. 18, 2022	Feb. 17, 2023
Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	Feb. 17, 2023
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

	Config	uration Band IV (5725 - 5850	0 MHz)		
Mode Test channel		Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result	
11a	CH149	11.57	30	PASS	
11a	CH157	10.93	30	PASS	
11a	CH165	10.99	30	PASS	
11n HT20	CH149	10.67	30	PASS	
11n HT20	CH157	10.42	30	PASS	
11n HT20	CH165	10.53	30	PASS	
11n HT40	CH151	10.69	30	PASS	
11n HT40	CH159	10.39	30	PASS	
11ac HT20	CH149	10.59	30	PASS	
11ac HT20	CH157	10.25	30	PASS	
11ac HT20	CH165	10.04	30	PASS	
11ac HT40	CH151	10.96	30	PASS	
11ac HT40	CH159	10.26	30	PASS	
11ac HT80	CH155	9.06	30	PASS	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3. 6DB EMISSION BANDWIDTH

4.3.1. Test Specification

Rules v02r01 Section (Limit: >500kHz Test Setup: Spectrum Analyzer Test Mode: Transmitting mode with	eneral UNII Test Procedures New					
Test Setup: Spectrum Analyzer Test Mode: Transmitting mode with	ı C					
Test Setup: Spectrum Analyzer Test Mode: Transmitting mode with						
Test Mode: Transmitting mode with	What I					
	EUT MAN HALMA THE STATE OF THE					
4 KDD700000 D00 O	Transmitting mode with modulation					
Rules v02r01 Section 2. Set to the maximum EUT transmit continum. 3. Make the measuremeter resolution bandwidth Video bandwidth (Video bandwid	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result: PASS	ING MIC TING					

4.3.2. Test Instruments

- Ca	1Ca	160	160	af a	1Ca
RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

AFICATION.

Test data


Band IV (5725	Band IV (5725 - 5850 MHz)					
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result	
11a 🕚	CH149	5745	15.760	0.5	PASS	
11a	CH157	5785	15.760	0.5	PASS	
11a	CH165	5825	15.400	0.5	PASS	
11n HT20	CH149	5745	16.280	0.5	PASS	
11n HT20	CH157	5785	16.520	0.5	PASS	
11n HT20	CH165	5825	16.520	0.5	PASS	
11n HT40	CH151	5755	35.280	0.5	PASS	
11n HT40	CH159	5795	35.120	0.5	PASS	
11ac HT20	CH149	5745	15.160	0.5	PASS	
11ac HT20	CH157	5785	15.720	0.5	PASS	
11ac HT20	CH165	5825	15.120	0.5	PASS	
11ac HT40	CH151	5755	35.120	0.5	PASS	
11ac HT40	CH159	5795	35.120	0.5	PASS	
11ac HT80	CH155	5775	75.200	0.5	PASS	

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	No restriction limits
Test Setup:	EUT NE SESTING
Test Mode:	Spectrum Analyzer Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	N/A WTESTING

4.4.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

4.5. POWER SPECTRAL DENSITY

4.5.1. Test Specification

	E00 D 14E E 0 11 4E 10E ()						
Test Requirement:	FCC Part15 E Section 15.407 (a)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F						
Limit:	≤11.00dBm/MHz for Band I 5150MHz-5250MHz ≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz						
Test Setup:	Enactive Analyzes EUT						
	Spectrum Analyzer						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes 4. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 						
Test Result:	PASS						

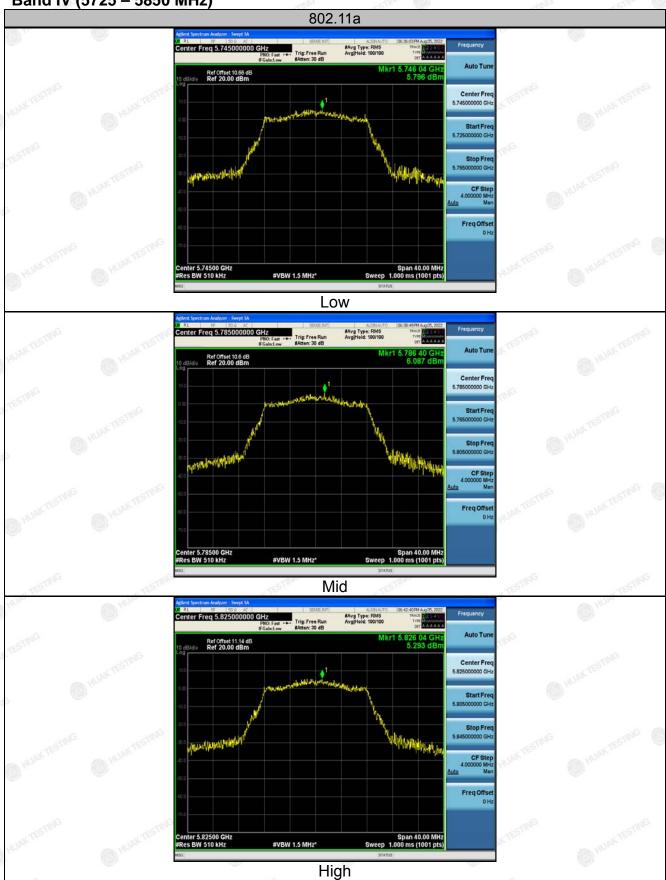
4.5.2. Test Instruments

-C111	-C711	-671	-6/11	-6711	-6711				
RF Test Room									
Equipment Manufacturer Model Serial Number Calibration Calibration Due									
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023				
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023				
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

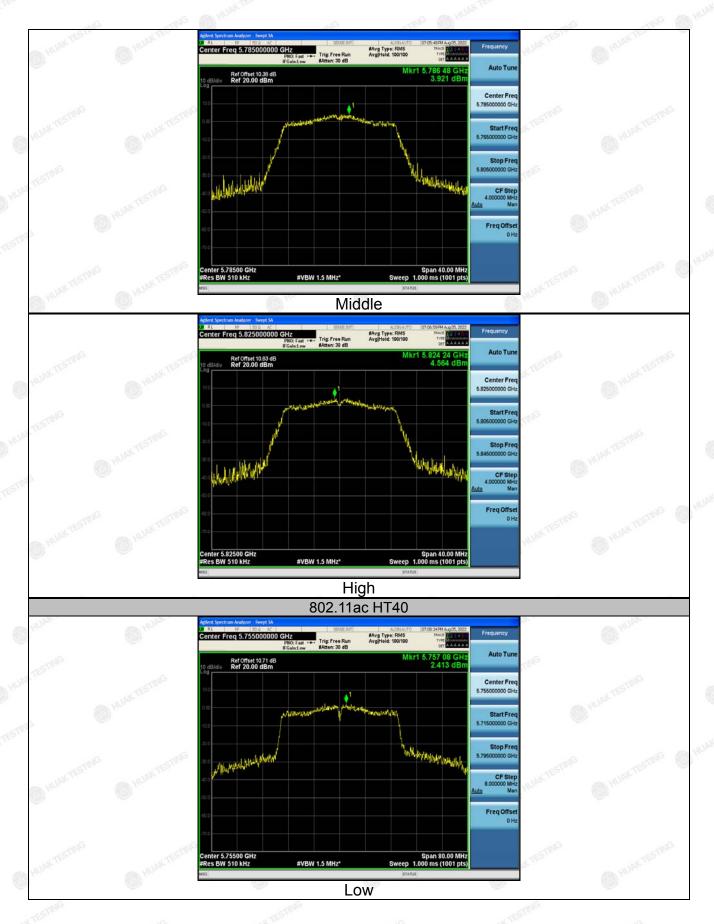
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

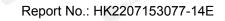
4.5.3. Test data


Configuration Band IV (5725 - 5850 MHz)								
Mode	Test channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result		
11a	CH149	5.8	-0.086	5.714	30	PASS		
11a	CH157	6.09	-0.086	6.004	30	PASS		
11a	CH165	5.29	-0.086	5.204	30	PASS		
11n HT20	CH149	6.36	-0.086	6.274	30	PASS		
11n HT20	CH157	4.22	-0.086	4.134	30	PASS		
11n HT20	CH165	4.81	-0.086	4.724	30	PASS		
11n HT40	CH151	1.64	-0.086	1.554	30	PASS		
11n HT40	CH159	1.7	-0.086	1.614	30	PASS		
11ac HT20	CH149	4.61	-0.086	4.524	30	PASS		
11ac HT20	CH157	3.92	-0.086	3.834	30 HUAN	PASS		
11ac HT20	CH165	4.56	-0.086	4.474	30	PASS		
11ac HT40	CH151	2.41	-0.086	2.324	30	PASS		
11ac HT40	CH159	1.26	-0.086	1.174	30	PASS		
11ac HT80	CH155	1.68	-0.086	1.594	30	PASS		

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.





The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6. BAND EDGE

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407				
Test Method:	ANSI C63.10 2013				
Limit:	(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.				
Test Setup:	Ant. feed point 1.5 m Ground Plane Receiver Amp.				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 				

Test Procedure:	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.
Test Result:	PASS

4.6.2. Test Instruments

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Receiver	R&S	ESRP3	HKE-005	Feb. 18, 2022	Feb. 17, 2023		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	Feb. 17, 2023		
Preamplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	Feb. 17, 2023		
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	Feb. 17, 2023		
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 18, 2022	Feb. 17, 2023		
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 18, 2022	Feb. 17, 2023		
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A		
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 18, 2022	Feb. 17, 2023		
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A		
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A		
Hf antenna	Schwarzbeck	LB-180400-K F	HKE-031	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Tonscend	1-18G	HKE-099	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	46.04	-2.06	43.98	68.2	-24.22	peak
5700	86.53	-1.96	84.57	105.2	-20.63	peak
5720	90.48	-2.87	87.61	110.8	-23.19	peak
5725	100.73	-2.14	98.59	122.2	-23.61	peak

Vertical:

	102.	102	102		4 0.5	102
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	46.45	-2.06	44.39	68.2	-23.81	peak
5700	86.15	-1.96	84.19	105.2	-21.01	peak
5720	92.46	-2.87	89.59	110.8	-21.21	peak
5725	97.45	-2.14	95.31	122.2	-26.89	peak
(60)			(600)			(0)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequenc	y Meter Reading	Factor	Emission Level	Limits	Margin	Data ata K. Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.79	-1.97	96.82	122.2	-25.38	peak
5855	88.63	-2.13	86.5	110.8	-24.3	peak
5875	84.93	-2.65	82.28	105.2	-22.92	peak
5925	49.43	-2.28	47.15	68.2	-21.05	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5850	100.08	-1.97	98.11	122.2	-24.09	peak
5855	88.68	-2.13	86.55	110.8	-24.25	peak
5875	86.56	-2.65	83.91	105.2	-21.29	peak
5925	50.81	-2.28	48.53	68.2	-19.67	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata K.T. va a
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
§ 5650	47.91	-2.06	45.85	68.2	-22.35	peak
5700	86.98	-1.96	85.02	105.2	-20.18	peak
5720	91.86	-2.87	88.99	110.8	-21.81	peak
5725	100.72	-2.14	98.58	122.2	-23.62	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	44.98	-2.06	42.92	68.2	-25.28	peak
5700	86.41	-1.96	84.45	105.2	-20.75	peak
5720	92	-2.87	89.13	110.8	-21.67	peak
5725	98.12	-2.14	95.98	122.2	-26.22	peak
5725	98.12	-2.14	95.98	122.2	-26.22	р

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.03	-1.97	96.06	122.2	-26.14	peak
5855	89.05	-2.13	86.92	110.8	-23.88	peak
5875	86.44	-2.65	83.79	105.2	-21.41	peak
5925	49.37	-2.28	47.09	68.2	-21.11	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

	63.0		N	111		
luency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
1Hz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
850	99.36	-1.97	97.39	122.2	-24.81	peak
855	89.61	-2.13	87.48	110.8	-23.32	peak
875	86.11	-2.65	83.46	105.2	-21.74	peak
925	49.42	-2.28	47.14	68.2	-21.06	peak
	•	0,5393			(6)93	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata K. Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	45.55	-2.06	43.49	68.2	-24.71	peak
5700	85.39	-1.96	83.43	105.2	-21.77	peak
5720	90.35	-2.87	87.48	110.8	-23.32	peak
5725	100.33	-2.14	98.19	122.2	-24.01	peak
Remark: Factor	= Antenna Factor	+ Cable Loss -	- Pre-amplifier.		OKTESTING	"LAK TESTION

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
45.53	-2.06	43.47	68.2	-24.73	peak
84.51	-1.96	82.55	105.2	-22.65	peak
92.06	-2.87	89.19	110.8	-21.61	peak
99.85	-2.14	97.71	122.2	-24.49	peak
	(dBµV) 45.53 84.51 92.06	(dBµV) (dB) 45.53 -2.06 84.51 -1.96 92.06 -2.87	(dBμV) (dB) (dBμV/m) 45.53 -2.06 43.47 84.51 -1.96 82.55 92.06 -2.87 89.19	(dBμV) (dB) (dBμV/m) (dBμV/m) 45.53 -2.06 43.47 68.2 84.51 -1.96 82.55 105.2 92.06 -2.87 89.19 110.8	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 45.53 -2.06 43.47 68.2 -24.73 84.51 -1.96 82.55 105.2 -22.65 92.06 -2.87 89.19 110.8 -21.61

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Detector Turn	Margin	Limits	Emission Level	Factor	Meter Reading	Frequency
Detector Type	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-25.93	122.2	96.27	-1.97	98.24	5850
peak	-23.38	110.8	87.42	-2.13	89.55	5855
peak	-22.94	105.2	82.26	-2.65	84.91	5875
peak	-21.59	68.2	46.61	-2.28	48.89	5925

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	HUAKTES
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
98.39	-1.97	96.42	122.2	-25.78	peak
89.97	-2.13	87.84	110.8	-22.96	peak
84.35	-2.65	81.7	105.2	-23.5	peak
52.3	-2.28	50.02	68.2	-18.18	peak
	(dBµV) 98.39 89.97 84.35	(dBµV) (dB) 98.39 -1.97 89.97 -2.13 84.35 -2.65	(dBμV) (dB) (dBμV/m) 98.39 -1.97 96.42 89.97 -2.13 87.84 84.35 -2.65 81.7	(dBμV) (dB) (dBμV/m) (dBμV/m) 98.39 -1.97 96.42 122.2 89.97 -2.13 87.84 110.8 84.35 -2.65 81.7 105.2	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 98.39 -1.97 96.42 122.2 -25.78 89.97 -2.13 87.84 110.8 -22.96 84.35 -2.65 81.7 105.2 -23.5

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

O'TESTING O'T O'TESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11ac20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stay Town
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	45.99	-2.06	43.93	68.2	-24.27	peak
5700	86.09	-1.96	84.13	105.2	-21.07	peak
5720	90.71	-2.87	87.84	110.8	-22.96	peak
5725	98.39	-2.14	96.25	122.2	-25.95	peak
Remark: Factor	= Antenna Factor	+ Cable Loss =	Pre-amplifier	N. I	V TESTING	ONTESTION

Vertical:

(MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 5650 44.81 -2.06 42.75 68.2 -25.45 p 5700 84.41 -1.96 82.45 105.2 -22.75 p 5720 90.45 -2.87 87.58 110.8 -23.22 p	- Detector Type		Margin	Limits	Emission Level	Factor	Meter Reading	Frequency
5700 84.41 -1.96 82.45 105.2 -22.75 p 5720 90.45 -2.87 87.58 110.8 -23.22 p		٦٢	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
5720 90.45 -2.87 87.58 110.8 -23.22 p	peak		-25.45	68.2	42.75	-2.06	44.81	5650
TES TEST	peak	THE ME	-22.75	105.2	82.45	-1.96	84.41	5700
	peak	9	-23.22	110.8	87.58	-2.87	90.45	5720
5725 97.41 -2.14 95.27 122.2 -26.93 p	peak	5	-26.93	122.2	95.27	-2.14	97.41	5725

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Freque	ncy Meter Reading	Factor	Emission Level	Limits	Margin	Data ata TESTING
(MHz) (dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.21	-1.97	97.24	122.2	-24.96	peak
5855	89.16	-2.13	87.03	110.8	-23.77	peak
5875	85.81	-2.65	83.16	105.2	-22.04	peak
5925	48.16	-2.28	45.88	68.2	-22.32	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAKTEE
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.03	-1.97	97.06	122.2	-25.14	peak
5855	89.63	-2.13	87.5	110.8	-23.3	peak
5875	87.06	-2.65	84.41	105.2	-20.79	peak
5925	50.34	-2.28	48.06	68.2	-20.14	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ac40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	45.75	-2.06	43.69	68.2	-24.51	peak
5700	85.1	-1.96	83.14	105.2	-22.06	peak
5720	90.07	-2.87	87.2	110.8	-23.6	peak
5725	100.01	-2.14	97.87	122.2	-24.33	peak
CTING	r = Antenna Factor +	-6	ING TESTIN	122.2	-24.33	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	44.04	-2.06	41.98	68.2	-26.22	peak
5700	84.54	-1.96	82.58	105.2	-22.62	peak
5720	91.12	-2.87	88.25	110.8	-22.55	peak
5725	99.92	-2.14	97.78	122.2	-24.42	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

TES	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
NG	5850	97.37	-1.97	95.4	122.2	-26.8	peak
	5855	88.74	-2.13	86.61	110.8	-24.19	peak
	5875	85.05	-2.65	82.4	105.2	-22.8	peak
	5925	48.49	-2.28	46.21	68.2	-21.99	peak

Vertical:

HUAKTE	Margin	Limits	Emission Level	Factor	Meter Reading	Frequency
Detector Type	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-24.19	122.2	98.01	-1.97	99.98	5850
peak	-22.9	110.8	87.9	-2.13	90.03	5855
peak	-21.86	105.2	83.34	-2.65	85.99	5875
peak	-19.82	68.2	48.38	-2.28	50.66	5925

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ac80 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turks
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	55.5	-2.06	53.44	68.2	-14.76	peak
5700	86.53	-1.96	84.57	105.2	-20.63	peak
5720	93.49	-2.87	90.62	110.8	-20.18	peak
5725	111.09	-2.14	108.95	122.2	-13.25	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAR
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	56.97	-2.06	54.91	68.2	-13.29	peak
5700	89.98	-1.96	88.02	105.2	_{>} -17.18	peak
5720	92.22	-2.87	89.35	110.8	-21.45	peak
5725	112.4	-2.14	110.26	122.2	-11.94	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at ST Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.17	-1.97	107.2	122.2	-15	peak
5855	93.03	-2.13	90.9	110.8	-19.9	peak
5875	85.41	-2.65	82.76	105.2	-22.44	peak
5925	51.45	-2.28	49.17	68.2	-19.03	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAK PER
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	110.7	-1.97	108.73	122.2	-13.47	peak
5855	95.08	-2.13	92.95	110.8	-17.85	peak
5875	89.84	-2.65	87.19	105.2	-18.01	peak
5925	56.25	-2.28	53.97	68.2	-14.23	peak

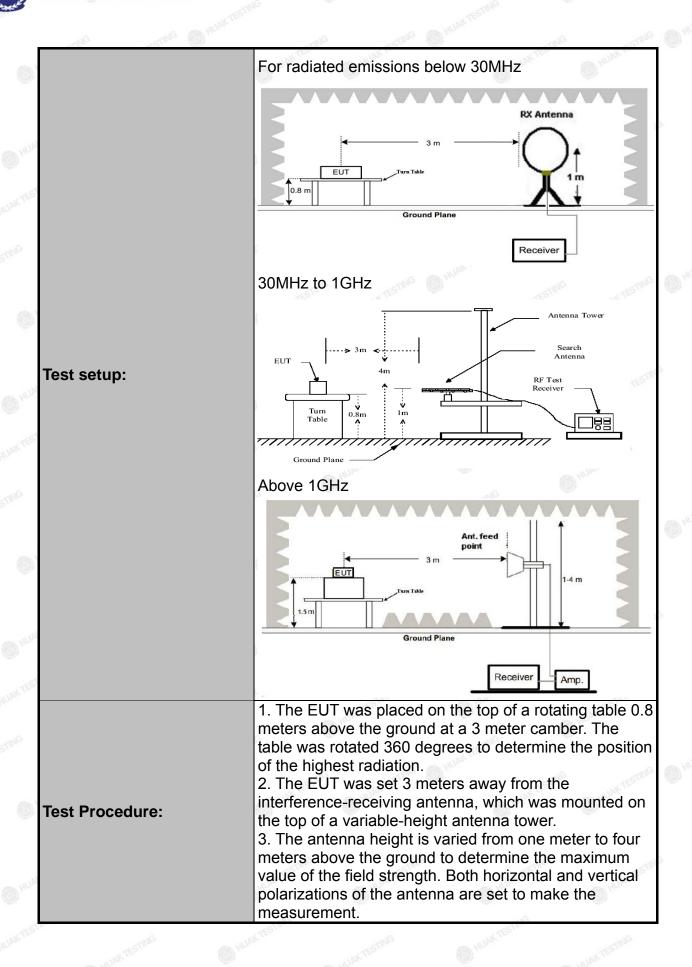
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.7. SPURIOUS EMISSION

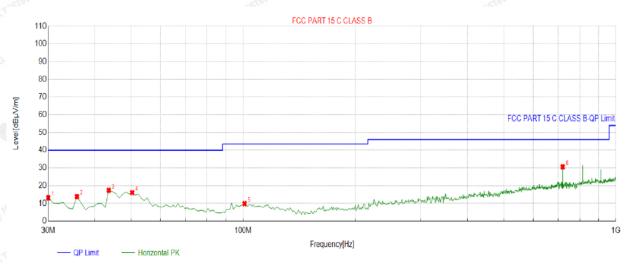
4.7.1.1. Test Specification


Test Requirement:	FCC CFR47	Part 15 Se	ction 15.	.407 & 1	5.209 & 15.205
Test Method:	KDB 789033	D02 v02r0	1 (HUAN	(1) HUAN
Frequency Range:	9kHz to 40G	Hz		CSTING	
Measurement Distance:	3 m	AK TESTING	(a) HILL	DAK	AK TESTING
Antenna Polarization:	Horizontal &	Vertical		.svG	(a) HO.
Operation mode:	Transmitting	mode with	modulat	ion	
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value
Limit:	band: All em shall not exce (2) For transband: All em shall not exce (3) For transband: All emishall not exce (4) For transband: (i) All emissed Bm/MHz at edge increasabove or below the 15.6 dBm/MH and from 5 increasing linedge.	issions out eed an e.i.r smitters op issions outseed an e.i.r smitters op issions outseed an e.i.r smitters op issions shall 75 MHz or sing linearlow the band edged at 5 MHz about the allow the al	side of to the control of the contro	he 5.15- 7 dBm/M in the he 5.15- 7 dBm/M in the 5 7 dBm/M in the 5 ded to a bove or dBm/M and from sing linea or below below the 7 dBm/M	5.15-5.25 GHz 5.35 GHz band MHz. 5.25-5.35 GHz 5.35 GHz band MHz. 6.47-5.725 GHz 6.725 GHz band

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

60)

Test Procedure:	 For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test results:	PASS

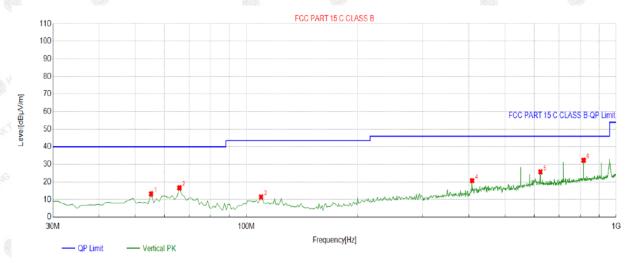


4.7.2. Test Data

Remark: All the test modes completed for test. The worst case of Radiated Emission is CH 149; the test data of this mode was reported.

Below 1GHz

Horizontal



QP Detector

Suspe	Suspected List									
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolovity	
NO. [MHz]	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	30.0000	-16.31	29.45	13.14	40.00	26.86	100	346	Horizontal	
2	35.8258	-15.65	29.48	13.83	40.00	26.17	100	190	Horizontal	
3	43.5936	-14.98	32.38	17.40	40.00	22.60	100	90	Horizontal	
4	50.3904	-14.34	30.40	16.06	40.00	23.94	100	26	Horizontal	
5	100.8809	-15.01	24.94	9.93	43.50	33.57	100	8	Horizontal	
6	720.3604	-3.12	33.72	30.60	46.00	15.40	100	306	Horizontal	

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

QP Detector

Suspe	Suspected List									
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolovity	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	55.2452	-14.19	27.36	13.17	40.00	26.83	100	186	Vertical	
2	65.9259	-14.92	31.53	16.61	40.00	23.39	100	347	Vertical	
3	109.6196	-14.60	26.08	11.48	43.50	32.02	100	257	Vertical	
4	407.7077	-9.01	29.75	20.74	46.00	25.26	100	130	Vertical	
5	624.2342	-4.10	29.87	25.77	46.00	20.23	100	323	Vertical	
6	816.4865	-1.23	33.59	32.36	46.00	13.64	100	138	Vertical	

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

×3	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
	—		· ·
TNG		STING	STING
	CGTHIG COL	WAKET STING	HUAKTE
	HIVE -	HEAR IL	HUAK'IL

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

LOW CH 149 (802.11 a Mode with 5.8G)/5745

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	61.73	-4.59	57.14	74 🌑 🗥	-16.86	peak
3647	43.77	-4.59	39.18	54	-14.82	AVG
11570	50.45	4.21	54.66	74	-19.34	peak
11570	32.5	4.21	36.71	54	-17.29	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	60.72	-4.59	56.13	74	-17.87	peak
3647	44.65	-4.59	40.06	54	-13.94	AVG
11570	50.84	4.21	55.05	74	-18.95	peak
11570	38.8	4.21	43.01	54	-10.99	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.79	-4.59	55.2	74	-18.8	peak
3647	43.93	-4.59	39.34	54	-14.66	AVG
11570	50.06	4.21	54.27	74	-19.73	peak
11570	34.43	4.21	38.64	54	-15.36	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	A MIAK TESTA
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	61.19	-4.59	56.6	74	-17.4	peak
3647	45.71	-4.59	41.12	54	-12.88	AVG
11570	51.92	4.21	56.13	74	-17.87	peak
11570	39.34	4.21	43.55	54	-10.45	AVG
"IAK" ATE I	HOPE	"IAR	ADM HOME		"IAR"	ALL HOME

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

AFICATION.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	60.45	-4.59	55.86	74	-18.14	peak
3647	43.61	-4.59	39.02	54	-14.98	AVG
11650	50.26	4.84	55.1	74	-18.9	peak
11650	32.92	4.84	37.76	54	-16.24	AVG
"IAK FEET	HUAI	11014	FE HUARAL		MAKES	THE HURITIA

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

- INIC	- Miles		TOP CONTRACTOR OF THE PARTY OF	-1010		Non-
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
3647	60.75	-4.59	56.16	74	-17.84	peak
3647	45.13	-4.59	40.54	54	-13.46	AVG
11650	51.13	4.84	55.97	74 TEST	-18.03	peak
11650	38.69	4.84	43.53	54	-10.47	AVG
10%	70,	102	= 70,		10%	- 10

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed. (7)All modes of operation were investigated and the worst-case of reported.

4.8. FREQUENCY STABILITY MEASUREMENT

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	N/A WEETER HOLDER TESTING HUMPTES THE

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	4.25V	5744.950	-40	5824.980	-20
5.8G Band	5V HUMET	5744.973	-27	5824.992	-8
HUAKTEL	5.75V	5745.020	20	5824.951	-49

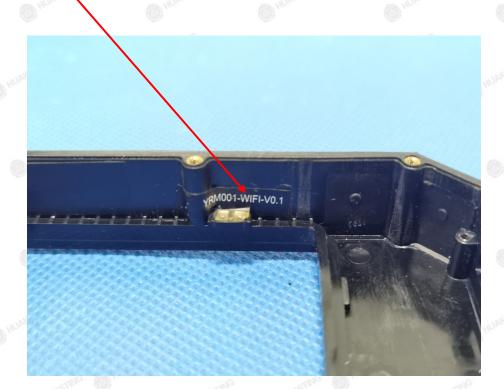
Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
3	-30	5744.972	-28	5824.957	-43
HUAKTES	-20	5744.976	-24	5825.004	4 111/21
	-10	5745.009	9	5825.016	16
TESTING	O HUAK	5744.970	-30	5824.967	-33
5.8G Band	10	5745.047	47	5825.046	46
	20	5745.023	23	5825.007	7
STING LANTESTI	30	5744.977	-23	5824.968	-32
O HO	40	5745.033	33	5825.012	12
	50	5744.966	-34	5824.980	-20

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.9. ANTENNA REQUIREMENT

Standard Applicable

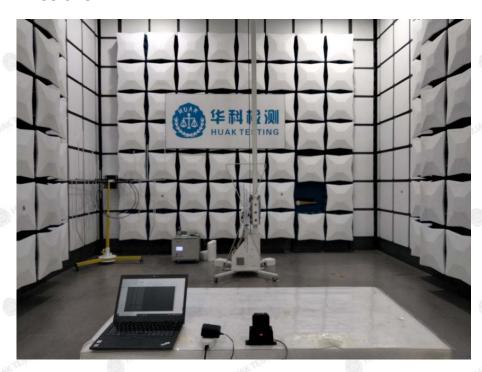
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

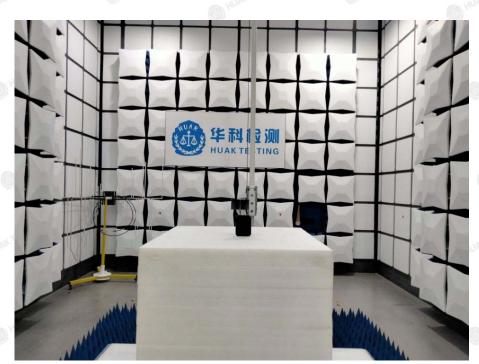

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna, need professional installation. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1.14dBi.





5. PHOTOGRAPHS OF TEST SETUP

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.