

TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (1) of (98)

1. Client

Name

: OSKO, Inc.

Address

: 8085 NW 90th Street, Miami, Florida 33166, USA

Date of Receipt

: 2017-02-08

2. Use of Report

3. Name of Product and Model

: Wireless LAN Module

Model Number

: RWM001A

Manufacturer and Country of Origin: OSKO, Inc. / USA

4. Host Product Name

: Medical Image Processing Unit (Flat Panel

Detector)

Host Model Number

Manufacturer

: Edge Air 1417

: OSKO, Inc. / USA

5. FCC ID Number

IC Certificate Number

: QIIRYRWM001A : 10742A-RWM001A

6. Date of Test

: 2017-03-15 ~ 2017-03-18

7. Test Standards

: RSS-102 Issue 5 2015. IEC 62209-2: 2010,

KDB Publication. IEEE 1528: 2013

8. Test Results

: Refer to the test result in the test report

Tested by

Technical Manager

Affirmation

Name: Gyuhyun Shim (Signature)

Name: Jongwon Ma

2020-04-02

KCTL Inc.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (2) of (98)

Report revision history

,		
Date	Revision	Page No
2017-03-30	Originally issued	-
2017-04-07	Change the Product Name, Add IC number	1
2017-04-10	Change the IC number	1
2020-04-02	Change Client information and Model Number	1,4,5

Note: The Report No. KR17-SPF0001-B is superseded by the report No. KR17-SPF0001-C

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document.

This test report is a general report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (3) of (98)

CONTENTS

1.	General information	4
2.	Device information	5
3.	Specific Absorption Rate	9
4.	SAR Measurement Procedures	10
5.	RF Exposure Limits	11
6.	FCC SAR General Measurement Procedures	12
7.	RF Average Conducted Output Power	15
8.	System Verification	17
9.	SAR Test Results	20
10.	Simultaneous Transmission	23
11.	SAR Measurement Variability	24
12.	Measurement Uncertainty	25
13.	Test Equipment Information	
14.	Test System Verification Results	30
15.	Test Results	
App	endixes List	54
App	endix A. Calibration certificate	55
App	endix B. SAR Tissue Specification	92
App	endix C. #Antenna Location & Distance	93
App	endix D. EUT Photo	94
App	endix E. Test Setup Photo	97
Fnd	of test report	98

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (4) of (98)

1. General information

Client : OSKO, Inc.

Address : 8085 NW 90th Street, Miami, Florida 33166, USA

Manufacturer : OSKO, Inc.

Address : 8085 NW 90th Street, Miami, Florida 33166, USA

Contact Person Hanmaru Chon / hanmaru@oskomedical.com

Laboratory : KCTL Inc.

Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132

VCCI Registration No.: R-3327, G-198, C-3706, T-1849

Industry Canada Registration No.: 8035A

KOLAS No.: KT231

1.1 Report Overview

This report details the results of testing carried out on the samples listed in section 2, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of KCTL Inc. Wireless lab or testing done by KCTL Inc. Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by KCTL Inc. Wireless lab.

The information provided by the manufacturer is marked "#" in front of the section.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (5) of (98)

2. Device information

2.1 Basic description

Product Name	Wireless LAN Module					
Product Model Number	RWM001A	RWM001A				
Derivative Model	1417WCC					
Product Manufacturer	OSKO, Inc					
Host Product Name	Medical Image Process	sing Unit (Flat Panel Det	ector)			
Host Model Number	Edge Air 1417					
Host Manufacturer	OSKO, Inc					
Product Serial Number	1417W_SAMPLE 001					
	Band & Mode	Operating Modes	Tx Frequency (MHz)			
D. 1. 0. 0. 1.	WLAN 2.4 GHz	Data	2 412.0 ~ 2 462.0			
Device Overview	U-NII-1	Data	5 180.0 ~ 5 240.0			
	U-NII-3	Data	5 745.0 ~ 5 825.0			
TDWR Information	N/A					

2.2 Summary of SAR Test Results

		Highest Reported		
Band	Equipment Class	1g SAR	? (W/kg)	
		Head	Body	
WLAN 2.4 GHz	DTS	0.11	0.12	
U-NII-1	NII	0.50	0.46	
U-NII-3 NII		0.18	0.16	
Simultaneous SAR per KDB 690783 D01v01r03		1.03	0.81	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

ggi-do, 16677, Korea KR17-SPF0001-C FAX: 82-505-299-8311 Page (6) of (98)

2.3 #Maximum Tune-up power

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Report No.:

2.3.1 #Maximum WLAN and Bluetooth Output Power

				Output Power (dB m)			
Band	Ant	Mode	Channel	Target	Max. Allowed	SAR Test	
		802.11b	All Channel	16.00	17.00	Yes	
	Ant.1	802.11g	All Channel	15.50	16.50	No	
WLAN	Ant.2 Ant.3	802.11n(BW20)	All Channel	15.50	16.50	No	
		802.11n(BW40)	All Channel	12.50	13.50	No	
2.4 GHz	MIMO	802.11n(BW20)	All Channel	15.50	16.50	No	
	(Ant.1+Ant.2)	802.11n(BW40)	All Channel	12.00	13.00	No	
		802.11n(BW20)	All Channel	15.50	16.50	No	
	(Ant.1+Ant.2+ Ant.3)	802.11n(BW40)	All Channel	12.00	13.00	No	

				Out	Output Power (dB m)		
Band	Ant	Mode	Channel	Target	Max. Allowed	SAR Test	
		802.11a	All Channel	15.00	16.00	Yes	
		802.11n(BW20)	All Channel	14.50	15.50	No	
	Ant.1 Ant.2	802.11n(BW40)	All Channel	12.50	13.50	No	
	Ant.2 Ant.3	802.11ac(BW20)	All Channel	14.50	15.50	No	
		802.11ac(BW40)	All Channel	12.50	13.50	No	
		802.11ac(BW80)	All Channel	11.00	12.00	No	
		802.11n(BW20)	All Channel	14.50	15.50	No	
LLNIII		802.11n(BW40)	All Channel	12.50	13.50	No	
U-NII-1	MIMO (Ant.1+Ant.2)	802.11ac(BW20)	All Channel	14.50	15.50	No	
	(* u.u. * * * u.u)	802.11ac(BW40)	All Channel	12.50	13.50	No	
		802.11ac(BW80)	All Channel	11.00	12.00	No	
		802.11n(BW20)	All Channel	15.00	16.00	No	
		802.11n(BW40)	All Channel	13.00	14.00	No	
	MIMO (Ant.1+Ant.2+ Ant.3)	802.11ac(BW20)	All Channel	15.00	16.00	No	
	(/)	802.11ac(BW40)	All Channel	13.00	14.00	No	
		802.11ac(BW80)	All Channel	11.00	12.00	No	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 Report No.: KR17-SPF0001-C Page (7) of (98)

www.kctl.co.kr

	_			Out	put Power (d	B m)
Band	Ant	Mode	Channel	Target	Max. Allowed	SAR Test
		802.11a	All Channel	15.00	16.00	Yes
		802.11n(BW20)	All Channel	14.50	15.50	No
	Ant.1 Ant.2	802.11n(BW40)	All Channel	12.50	13.50	No
	Ant.2 Ant.3	802.11ac(BW20)	All Channel	14.50	15.50	No
		802.11ac(BW40)	All Channel	12.50	13.50	No
		802.11ac(BW80)	All Channel	11.00	12.00	No
		802.11n(BW20)	All Channel	14.00	15.00	No
LLAULO		802.11n(BW40)	All Channel	12.50	13.50	No
U-NII-3	MIMO (Ant.1+Ant.2)	802.11ac(BW20)	All Channel	14.00	15.00	No
	(* u.u. * * * u.u)	802.11ac(BW40)	All Channel	12.50	13.50	No
		802.11ac(BW80)	All Channel	12.00	13.00	No
		802.11n(BW20)	All Channel	15.00	16.00	No
		802.11n(BW40)	All Channel	13.00	14.00	No
	MIMO (Ant.1+Ant.2+ Ant.3)	802.11ac(BW20)	All Channel	15.00	16.00	No
	(*	802.11ac(BW40)	All Channel	13.00	14.00	No
		802.11ac(BW80)	All Channel	11.00	12.00	No

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (8) of (98)

2.4 SAR Test Configurations

2.4.1 #DUT Antenna Locations

A diagram showing the location of the device antennas can be found in Appendix C.

2.4.2 SAR Test Exclusion Considerations

Mada	Device Edge for SAR Testing					
Mode	Front	Rear	Left Edge	Right Edge	Тор	Bottom
WLAN	Yes	No	No	No	No	No

Note: This device has been tested on the front only since the front only touches the human body in normal operation condition.

2.5 SAR Test Methods and Procedures

The tests documented in this report were performed in accordance with the following published KDB procedures:

- 248227 D01 802.11 Wi-Fi SAR v02r02
- 447498 D01 General RF Exposure Guidance v06
- 865664 D01 SAR measurement 100 Mb to 6 Gb v01r04
- 865664 D02 RF Exposure Reporting v01r02
- RSS-102 Issue 5 2015

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (9) of (98)

Specific Absorption Rate

3.1 Introduction

The SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational / controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (10) of (98)

4. SAR Measurement Procedures

4.1 SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan & Zoom Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot and Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing1 g and 10 g of simulated tissue. If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly. Area Scan & Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04.

			≤ 3 GHz	> 3 GHz
	Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			½·δ·ln(2) mm 0.5 mm
Maximum probe angle for normal at the measurem			30° ± 1°	20° ± 1°
			≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
Maximum area scan spa	Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			of the test device, in the ation, is smaller than the esolution must be ≤ the asion of the test device with point on the test device.
Maximum zoom scan sp	atial recolu	tion: Av-	≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm*
Waximum 200m Scan Sp	aliai 1650iu	tion. Axzoom, Ayzoom	2 – 3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*
				3 – 4 GHz: ≤ 4 mm
	uni	form grid: ∆z _{Zoom} (n)	≤ 5 mm	4 – 5 GHz: ≤ 3 mm
Maximum zoom scan				5 – 6 GHz: ≤ 2 mm
spatial resolution,		Δz _{Zoom} (1): between 1st		3 – 4 GHz: ≤ 3 mm
normal to phantom surface	graded	two points closest to	≤ 4 mm	4 – 5 GHz: ≤ 2.5 mm
	grid	phantom surface		5 – 6 GHz: ≤ 2 mm
		Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz _Z ₀	oom(n-1) mm
				3 – 4 GHz: ≥ 28 mm
Minimum zoom scan volume		x, y, z	≥ 30 mm	4 – 5 GHz: ≥ 25 mm
				5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 6Hz to 3 6Hz, 3 6Hz to 4 6Hz and 4 6Hz to 6 6Hz.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (11) of (98)

RF Exposure Limits

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Controlled **Uncontrolled Environment Human Exposure Environment General Population** Occupational Partial Peak SAR 1) 1.60 mW/g 8.00 mW/g (Partial) Partial Average SAR 2) 0.08 mW/g 0.40 mW/g (Whole Body) Partial Peak SAR 3) 4.00 mW/g 20.00 mW/g (Hands/Feet/Ankle/Wrist)

- 1) The spatial Peak value of the SAR averaged over any 1g gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2) The spatial Average value of the SAR averaged over the whole body.
- 3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (12) of (98)

6. FCC SAR General Measurement Procedures

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. Test highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 SAR Testing with 802.11 Transmitters

The normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

6.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 – 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (13) of (98)

6.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47-5.85~GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60-5.65~GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency point requirements.

6.2.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

6.2.5 2.4 础 SAR Test Requirement

SAR is measured for 2.4 6Hz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following.

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel; i.e., all channels require testing.
- 2.4 6Hz 802.11g/n OFDM are additionally evaluated for SAR if highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 6Hz band, the Initial Test Configuration Procedures should be followed.

6.2.6 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 6Hz and 5 6Hz band, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel band width, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (14) of (98)

6.2.7 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 6Hz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements.

6.2.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.9 Generic device

This device has been tested on the front only since the front only touches the human body in normal operation condition.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (15) of (98)

7. RF Average Conducted Output Power

7.1 WLAN Average Conducted Output Power

Band	Ant	Mode	Cond	lucted Powers ((dBm)
Dana	Aut	Mode	Low	Mid.	High
		802.11b	16.44	16.90	16.69
	Ant.1	802.11g	15.81	16.18	16.06
	Ant. i	802.11n(BW20)	15.73	16.14	16.02
		802.11n(BW40)	12.80	12.97	13.03
		802.11b	16.14	16.74	16.79
	Ant.2	802.11g	15.78	16.34	16.10
	Ant.2	802.11n(BW20)	15.69	16.13	16.03
WLAN		802.11n(BW40)	12.62	12.79	13.01
2.4 GHz		802.11b	16.13	16.51	16.45
	Ant 2	802.11g	15.76	16.47	15.91
	Ant.3	802.11n(BW20)	15.84	16.33	16.19
		802.11n(BW40)	12.66	12.97	12.92
	MIMO	802.11n(BW20)	15.52	15.96	15.96
	(Ant.1+ Ant.2)	802.11n(BW40)	12.25	12.47	12.45
	MIMO	802.11n(BW20)	15.54	16.11	15.82
	(Ant.1+ Ant.2+Ant.3)	802.11n(BW40)	12.56	12.73	12.69

Band	Ant	Mode	Cond	Conducted Powers (dBm)			
Dana	Air	WIOGE	Low	Mid.	High		
		802.11a	15.55	15.50	15.16		
		802.11n(BW20)	15.08	14.81	14.88		
	A = 4.4	802.11n(BW40)	13.13	-	13.50		
	Ant.1	802.11ac(BW20)	15.07	14.86	14.87		
		802.11ac(BW40)	13.17	-	12.99		
		802.11ac(BW80)	11.55	-	-		
		802.11a	15.85	15.29	15.87		
		802.11n(BW20)	15.37	15.15	15.34		
	A 4 . 0	802.11n(BW40)	13.31	-	13.30		
	Ant.2	802.11ac(BW20)	15.31	15.27	15.35		
		802.11ac(BW40)	13.25	-	13.21		
		802.11ac(BW80)	11.09	-	-		
	A 2	802.11a	15.66	15.54	15.64		
11 8111 4		802.11n(BW20)	14.85	15.18	15.14		
U-NII-1		802.11n(BW40)	13.10	-	13.02		
	Ant.3	802.11ac(BW20)	14.85	15.11	15.04		
		802.11ac(BW40)	13.18	-	13.06		
		802.11ac(BW80)	11.32	-	-		
		802.11n(BW20)	15.39	15.39	15.44		
	MIMO	802.11n(BW40)	13.01	-	13.10		
	(Ant.1+ Ant.2)	802.11ac(BW20)	15.42	15.39	15.35		
	(AIII. I+ AIII.2)	802.11ac(BW40)	13.01	-	13.07		
		802.11ac(BW80)	11.58	-	-		
		802.11n(BW20)	15.35	15.32	15.47		
	MINAC	802.11n(BW40)	13.69	-	13.87		
	MIMO	802.11n(BW20)	15.53	15.55	15.75		
	(Ant.1+ Ant.2+Ant.3)	802.11n(BW40)	13.25	-	13.54		
		802.11n(BW80)	11.54	-	-		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (16) of (98)

Band	Ant	Mode	Conducted Powers (dBm)			
Dallu	Aiit	Wiode	Low	Mid.	High	
		802.11a	15.67	15.40	15.06	
		802.11n(BW20)	14.17	14.02	14.06	
	A = 4.4	802.11n(BW40)	12.67	-	12.63	
	Ant.1	802.11ac(BW20)	14.11	14.06	14.09	
		802.11ac(BW40)	12.33	-	12.42	
		802.11ac(BW80)	11.46	-	-	
		802.11a	15.22	15.07	15.08	
		802.11n(BW20)	14.19	14.16	14.09	
	A = 4 O	802.11n(BW40)	12.64	-	12.58	
	Ant.2	802.11ac(BW20)	14.13	14.00	14.08	
		802.11ac(BW40)	12.28	-	12.19	
		802.11ac(BW80)	11.50	-	-	
		802.11a	15.13	15.21	15.11	
LLNILO		802.11n(BW20)	14.24	14.16	14.20	
U-NII-3	A = 4 O	802.11n(BW40)	12.63	-	11.52	
	Ant.3	802.11ac(BW20)	14.09	14.01	14.15	
		802.11ac(BW40)	12.28	-	12.24	
		802.11ac(BW80)	11.49	-	-	
		802.11n(BW20)	14.16	13.79	13.13	
	MINAC	802.11n(BW40)	12.88	-	12.51	
	MIMO (Ant.1+ Ant.2)	802.11ac(BW20)	13.82	13.64	13.20	
	(AIII. I+ AIII.2)	802.11ac(BW40)	13.00	-	12.82	
		802.11ac(BW80)	12.07	-	-	
		802.11n(BW20)	14.32	14.32	14.05	
	MINO	802.11n(BW40)	12.86	-	12.90	
	MIMO	802.11n(BW20)	14.30	14.31	14.01	
	(Ant.1+ Ant.2+Ant.3)	802.11n(BW40)	13.06	-	12.74	
		802.11n(BW80)	11.72	=	-	

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported.

	1	
Spectrum Analyzer		EUT

Power Measurement Setup

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (17) of (98)

8. System Verification

8.1 Tissue Verification

The dielectric properties for this Tissue Simulant Liquids were measured by using the SPEAG Model DAK3.5 Dielectric Probe in conjunction with Agilent E5071B Network Analyzer (300 kHz - 8 500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was (22 ± 2) °C.

Freq.	Tissue Type	Limit/M	easured	Permittivity (ρ)	Conductivity (σ)	Temp. (°C)
2 450.0		Recomme	ended Limit	39.20 ± 5 % (37.24 ~ 41.16)	1.80 ± 5 % (1.71 ~ 1.89)	22 ± 2
		Measured	2017-03-16	39.08	1.82	21.22
2 412.0		Recomme	ended Limit	39.27 ± 5 % (37.30 ~ 41.23)	1.77 ± 5 % (1.68 ~ 1.85)	22 ± 2
	HSL	Measured	2017-03-16	39.29	1.76	21.22
2 437.0	HSL	Recomme	ended Limit	39.22 ± 5 % (37.26 ~ 41.18)	1.79 ± 5 % (1.70 ~ 1.88)	22 ± 2
		Measured	2017-03-16	39.14	1.80	21.22
2 462.0		Recomme	ended Limit	39.18 ± 5 % (37.22 ~ 41.14)	1.81 ± 5 % (1.72 ~ 1.90)	22 ± 2
		Measured	2017-03-16	39.07	1.84	21.22
5 200.0		Recomme	ended Limit	36.00 ± 5 % (34.20 ~ 37.80)	4.66 ± 5 % (4.43 ~ 4.89)	22 ± 2
		Measured	2017-03-17	36.26	4.60	21.13
5 180.0	HSL	Recomme	ended Limit	36.02 ± 5 % (34.22 ~ 37.82)	4.64 ± 5 % (4.41 ~ 4.87)	22 ± 2
		Measured	2017-03-17	36.40	4.54	21.13
5 240.0		Recomme	ended Limit	35.96 ± 5 % (34.16 ~ 37.76)	4.70 ± 5 % (4.47 ~ 4.94)	22 ± 2
		Measured	2017-03-17	36.40	4.71	21.13
5 800.0		Recomme	ended Limit	35.30 ± 5 % (33.54 ~ 37.07)	5.27 ± 5 % (5.01 ~ 5.53)	22 ± 2
		Measured	2017-03-18	34.57	5.35	21.26
5 745.0		Recomme	ended Limit	35.36 ± 5 % (33.59 ~ 37.12)	5.22 ± 5 % (4.95 ~ 5.48)	22 ± 2
	HSL	Measured	2017-03-18	34.86	5.34	21.26
5 785.0	1.02		ended Limit	35.32 ± 5 % (33.55 ~ 37.08)	5.26 ± 5 % (4.99 ~ 5.52)	22 ± 2
			2017-03-18	34.64	5.34	21.26
5 825.0		Recomme	ended Limit	35.28 ± 5 % (33.51 ~ 37.04)	5.30 ± 5 % (5.03 ~ 5.56)	22 ± 2
		Measured	2017-03-18	34.45	5.37	21.26

<Table 1. Measurement result of Head Tissue electric parameters>

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

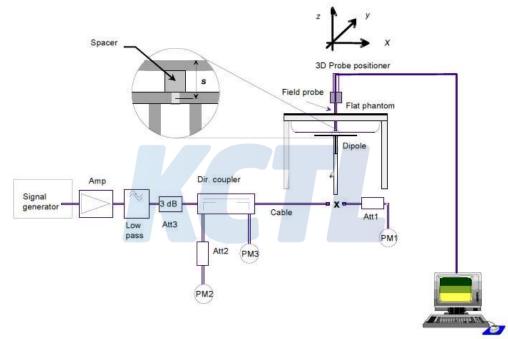
Report No.: KR17-SPF0001-C Page (18) of (98)

Freq.	Tissue Type	Limit/Measured		Permittivity (ρ)	Conductivity (σ)	Temp. (°C)
2 450.0		Recomme	ended Limit	52.70 ± 5 % (50.07 ~ 55.34)	1.95 ± 5 % (1.85 ~ 2.05)	22 ± 2
		Measured	2017-03-15	52.16	2.00	21.28
2 412.0		Recommended Limit		52.75 ± 5 % (50.11 ~ 55.39)	1.91 ± 5 % (1.82 ~ 2.01)	22 ± 2
	MSL	Measured	2017-03-15	52.27	1.96	21.28
2 437.0	IVISL	Recomme	ended Limit	52.72 ± 5 % (50.08 ~ 55.35)	1.94 ± 5 % (1.84 ~ 2.03)	22 ± 2
		Measured	2017-03-15	52.20	1.99	21.28
2 462.0		Recomme	ended Limit	52.68 ± 5 % (50.05 ~ 55.32)	1.97 ± 5 % (1.87 ~ 2.07)	22 ± 2
		Measured	2017-03-15	52.10	2.01	21.28
5 200.0		Recomme	ended Limit	49.01 ± 5 % (46.56 ~ 51.46)	5.30 ± 5 % (5.04 ~ 5.57)	22 ± 2
		Measured	2017-03-16	48.81	5.19	21.22
5 180.0	MSL	MSL Recomme		49.04 ± 5 % (46.59 ~ 51.49)	5.28 ± 5 % (5.01 ~ 5.54)	22 ± 2
		Measured	2017-03-16	48.86	5.17	21.22
5 240.0		Recomme	ended Limit	48.96 ± 5 % (46.51 ~ 51.41)	5.35 ± 5 % (5.08 ~ 5.61)	22 ± 2
		Measured	2017-03-16	48.57	5.27	21.22
5 800.0		Recomme	ended Limit	48.20 ± 5 % (45.79 ~ 50.61)	6.00 ± 5 % (5.70 ~ 6.30)	22 ± 2
		Measured	2017-03-16	47.24	6.13	21.22
5 745.0		Recomme	ended Limit	48.27 ± 5 % (45.86 ~ 50.69)	5.94 ± 5 % (5.64 ~ 6.23)	22 ± 2
	MSL	Measured	2017-03-16	47.42	6.03	21.22
5 785.0	_		ended Limit	48.22 ± 5 % (45.81 ~ 50.63)	5.98 ± 5 % (5.68 ~ 6.28)	22 ± 2
		Measured	2017-03-16	47.19	6.10	21.22
5 825.0		Recomme	ended Limit	48.17 ± 5 % (45.76 ~ 50.57)	6.03 ± 5 % (5.73 ~ 6.33)	22 ± 2
		Measured	2017-03-16	47.28	6.15	21.22

<Table 2. Measurement result of Body Tissue electric parameters>

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr


Report No.: KR17-SPF0001-C Page (19) of (98)

8.2 Test System Verification

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10% from the t arget SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the Table 2. During the tests, the ambient temperature of the laboratory was in the range (22 \pm 2) °C, the relative burnidity was in the range (50 \pm 20)% and the liquid depth Above the ear/grid refer

During the tests, the ambient temperature of the laboratory was in the range (22 \pm 2) °C, the relative humidity was in the range(50 \pm 20)% and the liquid depth Above the ear/grid reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Verification Kit	Probe S/N	Frequency (MHz)	Tissue Type	Limit/Measured (Normalized to 1 W)				
D2450V2	EX3DV4	2 450.0	HSL	Recommended Limit (Normalized)		52.00 ± 10 % (46.80 ~ 57.20)		
SN: 895	SN: 3865			Measured	2017-03-16	53.60		
D2450V2 SN: 895	EX3DV4 SN: 3865	2 450.0	MSL	(Norm	nded Limit alized)	50.80 ± 10 % (45.72 ~ 55.88)		
014. 000	011. 0000			Measured	2017-03-15	51.20		
D5GHzV2 SN: 1134	EX3DV4 SN: 3865	5 200.0	HSL		nded Limit alized)	76.90 ± 10 % (69.21 ~ 84.59)		
SIN. 1134	SIN. 3000			Measured	2017-03-17	76.60		
D5GHzV2 SN: 1134	EX3DV4 SN: 3865	5 200.0	MSL		nded Limit alized)	74.80 ± 10 % (67.32 ~ 82.28)		
SIN. 1134	SIN. 3000			Measured	2017-03-16	71.60		
D5GHzV2 SN: 1134	EX3DV4 SN: 3865	5 800.0	HSL	Recommended Limit (Normalized)		77.70 ± 10 % (69.93 ~ 85.47)		
SIN. 1134	SIN. 3000			Measured 2017-03-18		80.20		
D5GHzV2 SN: 1134	EX3DV4 SN: 3865	5 800.0	MSL	Recommended Limit (Normalized)		76.70 ± 10 % (69.03 ~ 84.37)		
3IN. 1134	SIN. 3000			Measured	2017-03-16	72.40		

<Table 3. System Verification Result>

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (20) of (98)

9. SAR Test Results

9.1 Standalone Head SAR Test Results

	WLAN 2.4 6Hz Band												
Mode	EUT Position	Distance (mm)	Frequency (Mt/z)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Plot No.			
Ant.1 802.11b	Front	0	2 437.0	16.90	17.00	1.023	1.00	0.083	0.085	1			
Ant.2 802.11b	Front	0	2 437.0	16.74	17.00	1.062	1.00	0.099	0.105	2			
Ant.3 802.11b	Front	0	2 437.0	16.51	17.00	1.119	1.00	0.083	0.093	3			

	U-NII-1											
Mode	EUT Position	Distance (mm)	Frequency (Mt/z)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Plot No.		
Ant.1 802.11a	Front	0	5 200.0	15.50	16.00	1.122	1.01	0.231	0.262	4		
Ant.2 802.11a	Front	0	5 200.0	15.29	16.00	1.178	1.01	0.419	0.499	5		
Ant.3 802.11a	Front	0	5 200.0	15.54	16.00	1.112	1.01	0.242	0.272	6		

	U-NII-3											
Mode	EUT Position	Distance (mm)	Frequency (Mt/z)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Plot No.		
Ant.1 802.11a	Front	0	5 785.0	15.40	16.00	1.148	1.01	0.052	0.060	7		
Ant.2 802.11a	Front	0	5 785.0	15.07	16.00	1.239	1.01	0.113	0.141	8		
Ant.3 802.11a	Front	0	5 785.0	15.21	16.00	1.199	1.01	0.149	0.180	9		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (21) of (98)

9.2 Standalone Body SAR Test Results

	WLAN 2.4 6Hz Band												
Mode	EUT Position	Distance (mm)	Frequency (Mt/z)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Plot No.			
Ant.1 802.11b	Front	0	2 437.0	16.90	17.00	1.023	1.00	0.090	0.092	10			
Ant.2 802.11b	Front	0	2 437.0	16.74	17.00	1.062	1.00	0.109	0.116	11			
Ant.3 802.11b	Front	0	2 437.0	16.51	17.00	1.119	1.00	0.031	0.035	12			

	U-NII-1												
Mode	EUT Position	Distance (mm)	Frequency (Mt/z)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor	Duty Cycle Compensate Factor	Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Plot No.			
Ant.1 802.11a	Front	0	5 200.0	15.50	16.00	1.122	1.01	0.163	0.185	13			
Ant.2 802.11a	Front	0	5 200.0	15.29	16.00	1.178	1.01	0.385	0.458	14			
Ant.3 802.11a	Front	0	5 200.0	15.54	16.00	1.112	1.01	0.148	0.166	15			

				U-NII-	3					
Mode	EUT Position	Distance (mm)	Frequency (M½)	Measured Conducted Power (dBm)	Max. Tune-up Power (dBm)	Power Scaling Factor		Measured 1g SAR (W/kg)	Scaled 1g SAR (W/kg)	Plot No.
Ant.1 802.11a	Front	0	5 785.0	15.40	16.00	1.148	1.01	0.067	0.078	16
Ant.2 802.11a	Front	0	5 785.0	15.07	16.00	1.239	1.01	0.096	0.120	17
Ant.3 802.11a	Front	0	5 785.0	15.21	16.00	1.199	1.01	0.131	0.159	18

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (22) of (98)

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. Liquid tissue depth was at least 15 cm.
- 5. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.

WLAN & Bluetooth Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 6Hz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 6Hz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.
- 2. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance.
- 3. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n then ac) is selected.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. WLAN transmission was verified using a spectrum analyzer.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 Report No.: KR17-SPF0001-C Page (23) of (98)

www.kctl.co.kr

10. Simultaneous Transmission

10.1 #Simultaneous Transmission Configurations

No	Scenario	Operation
1	WLAN 2.4 에z (Ant.1 + Ant.2 + Ant.3)	Yes
2	WLAN 5.2 에z (Ant.1 + Ant.2 + Ant.3)	Yes
3	WLAN 5.8 에z (Ant.1 + Ant.2 + Ant.3)	Yes

Notes:

- It does not to transmit simultaneously the 2.4 GHz WLAN and 5 GHz WLAN.

			WLAN		
-	re Condition osition	2.4 础 Ant.1	2.4 ⊞ Ant.2	2.4 础 Ant.3	Summation
		[①]	[2]	[3]	[1+2+3]
Head	Front	0.085	0.105	0.093	0.283
Body	Front	0.092	0.116	0.035	0.243
			WLAN		
-	re Condition osition	5.2 础 Ant.1	5.2 础 Ant.2	5.2 础 Ant.3	Summation
		[1]	[2]	[3]	[1+2+3]
Head	Front	0.262	0.499	0.272	1.033
Body	Front	0.185	0.458	0.166	0.809
•	re Condition osition	5.8 册 Ant.1	5.8 础 Ant.2	5.8 册 Ant.3	Summation
		[①]	[②]	[3]	[1+2+3]
Head	Front	0.060	0.141	0.180	0.381
Body	Front	0.078	0.120	0.159	0.357

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (24) of (98)

11. SAR Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once
- 3) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Band	Frequency (Mt)	EUT Position	Separation Distance (mm)	Measured 1 g SAR (W/kg)	Repeated 1g SAR (W/kg)	Ratio		
N/A								

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (25) of (98)

12. Measurement Uncertainty

All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria

Uncertainty of SAR equipments for measurement 300 MHz to 3 GHz (Head)

d	ь	c	D	e = f(d,k)	g	$i = c \times g/e$	k
Source of Uncertainty	Description IEEE P1528 HEAD	Tolerance/ Uncertainty value	Probability Distribution	Div.	Cl	Standard uncertainty	Vi or Veff
	(0.3 ~ 3 GHz)	± %			(1 g)	± %, (1 g)	
Measurement System							
Probe calibration(k-1)	E.2.1	6.30	N	1	- 1	6.30	**
Axial isotropy	E.2.2	0.50	R.	1.73	0.71	0.20	-00
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	-00
Linearity	E.2.4	0.60	R	1.73	- 1	0.35	-00
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	
System detection limits	E.2.5	1.00	R	1.73	- 1	0.58	80
Readout electronics	E.2.6	0.30	N	1	1	0.30	-
Response time	E.2.7	0.80	R	1.73	1	0.46	- 00
Integration time	E.2.8	2.60	R	1.73	1	1.50	-
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	90
RF ambient conditions-reflections	E.6.1	3.00	R	1.73	1	1.73	-
Probe positioner mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	**
Probe positioning with respect to phantom shell	E.6.3	2.90	R	1.73	1	1,67	100
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	:+0
Test Sample Related	303/10	100 100			TV6VE	Industrial Control	1000
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	.5
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	80
Phantom and Tissue Par	ameters						
Phantom uncertainty (shape and thickness tolerances)	E.3.1	6.10	R	1.73	1	3.52	03
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5
Liquid conductivity-deviation from target values	E.3,2	5.00	R	1.73	0.64	1.85	ec
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	00
Combined standard uncertainty				RSS		11.00	165
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		22.00	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (26) of (98)

Uncertainty of SAR equipments for measurement 3 GHz to 6 GHz(Head)

A	b	c	D	e = f(d,k)	g	$i = c \times g / e$	k
Source of Uncertainty	Description IEEE P1528 HEAD	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff
	(3 ~ 6 GHz)	± %			(1 g)	± %, (1 g)	
Measurement System	i di nere	The second					
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6,30	
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	**
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00
Linearity	E.2.4	0.60	R	1.73	1	0.35	
Boundary effect	E.2.3	2.00	R	1.73	1	1.15	40
System detection limits	E.2.5	1.00	R	1.73	1	0.58	100
Readout electronics	E.2.6	0.30	N	1	1	0.30	-0
Response time	E.2.7	0.80	R	1.73	1	0.46	••
Integration time	E.2.8	2.60	R	1.73	1	1.50	110
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	100
RF amoient conditions-	E.6.1	3.00	R	1.73	- 4	1.73	+0
Probe positioner mechanical tolerance	E,6.2	0.80	R	1.73	1	0.46	ig
Probe positioning with respect to phantom shell	E.6.3	6.70	R	1,73	- 1	3.87	107
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	4.00	R	1.73	1	2.31	60
Test Sample Related						33494-16	
Test sample positioning	E.4.2	4.63	N	1	1	4.63	9
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	60
Phantom and Tissue Pa	rameters	1 WHy/1		3 1 3 3		1000000	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	6.60	R	1.73	(i	3.81	00
Liquid conductivity-measurement uncertainty	E.3.3	1.50	N	1	0.64	0.96	5
Liquid permittivity-measurement uncertainty	E.3.3	2.23	N	1	0.6	1.34	5
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	#0
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	100
Combined standard uncertainty				RSS		11.75	225
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		23.50	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (27) of (98)

Uncertainty of SAR equipments for measurement 300 MHz to 3 GHz (Body)

A	Ь	c	D	e = f(d,k)	g	$i = c \times g/e$	k
Source of Uncertainty	Description IEEE P1528 BODY	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff
	(0.3 ~ 3 GHz)	± %			(1 g)	±%, (1 g)	
Measurement System				THE RELATION		Name of the last	
Probe calibration(k=1)	E.2.1	6.30	N	į.	1	6.30	60
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	10
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	60
Linearity	E.2.4	0.60	R	1.73	1	0.35	**
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	- 00
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00
Readout electronics	E.2.6	0.30	N	1	- 1	0.30	80
Response time	E.2.7	0.80	R	1.73	1	0.46	80
Integration time	E.2.8	2.60	R	1.73	1	1,50	-
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	100
KF ambient conditions-	E.6.1	3.00	R	1.73	1	1.73	99
reflections Probe positioner mechanical tolerance	E,6.2	0.40	R	1.73	1	-0.23	-
Probe positioning with respect to phantom shell	E,6,3	2.90	R	1.73	L	1.67	
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	
Test Sample Related					110/2/2		
Test sample positioning	E.4.2	4.71	N	- 1	1	4.71	9
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	- 5
Output power variation—SAR drift measurement	6.6.2	5,00	R	1.73	1	2.89	**
Phantom and Tissue Par	rameters	and the			E 10-1		
Phantom uncertainty (shape and thickness tolerances)	E.3,1	7.50	R	1.73	i.	4.33	00
Liquid conductivity-measurement uncertainty	E.3,3	1.53	N	1	0.64	0.98	5
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	-
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	10
Combined standard uncertainty				RSS		11.29	183
Expanded uncertainty				The Law		1/35-341	
(95% CONFIDENCE INTERVAL)				K=2		22.57	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (28) of (98)

Uncertainty of SAR equipments for measurement 3 GHz to 6 GHz (Body)

A	b	C	D	e = f(d,k)	g	$i = c \times g/e$	k
Source of Uncertainty	Description IEEE P1528 BODY	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff
	(3 ~ 6 GHz)	±%			(1 g)	±%, (1 g)	
Measurement System		4 1					
Probe calibration(k=1)	E.2.1	6.30	N	1	- 1	6.30	80
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	**
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	90
Linearity	E.2.4	0.60	R	1.73	1	0.35	00
Boundary effect	E.2.3	2.00	R	1.73	- 1	1.15	-9
System detection limits	E.2.5	1.00	R	1.73	- 1	0.58	90
Readout electronics	E.2.6	0.30	N	1	1	0.30	10
Response time	E.2.7	0.80	R	1.73	1	0.46	**
Integration time	E.2.8	2.60	R	1.73	E)	1.50	is
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	10
RF amorent conditions-	E.6.1	3.00	R	1.73	1	1.73	-0
Probe positioner mechanical tolerance	E.6.2	0.80	R	1.73	I;	0.46	.95
Probe positioning with respect to phantom shell	E.6.3	6.70	R	1.73	1	3.87	100
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	4.00	R	1.73	1	2.31	
Test Sample Related							
Test sample positioning	E.4.2	4.63	N	1	1_	4.63	9
Device holder uncertainty	E.4.I	3.60	N	1	1	3.60	5
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	80
Phantom and Tissue Pa	rameters		III SEETWI	ALEXA D		MI WELL	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	7.90	R	1.73	18	4.56	000
Liquid conductivity-measurement uncertainty	E.3.3	1.50	N	1.	0.64	0.96	5
Liquid permittivity-measurement uncertainty	E.3.3	2.23	N	E	0.6	1.34	5
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1,73	0.64	1.85	80
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	80
Combined standard uncertainty				RSS		12.02	246
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		24.03	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (29) of (98)

13. Test Equipment Information

Test Platform	SPEAG DASY5 System									
Version	DASY5 : Version 52.8.8.1222 / SEMCAD : Version 14.6.10 (7331)									
Location	KCTL Inc, 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea									
Manufacture	SPEAG									
Hardware Reference										
Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration						
Shield Room	Shield Room	None	N/A	N/A						
DASY5 Robot	TX90XL Speag	F12/5L7FA1/A/01	N/A	N/A						
DASY5 Controller	TX90XL Speag	F12/5L7FA1/C/01	N/A	N/A						
Phantom	2mm Oval Phantom ELI 5	1178	N/A	N/A						
Mounting Device	Mounting Device	None	N/A	N/A						
DAE	DAE4	1342	2016.07.26	2017.07.26						
Probe	EX3DV4	3865	2016.08.30	2017.08.30						
Signal Generator	E4438C	MY42080486	2017.01.06	2018.01.06						
Dual Power Meter	E4419B	GB43312301	2016.07.12	2017.07.12						
Power Sensor	8481H	3318A19377	2016.07.20	2017.07.20						
Power Sensor	8481H	3318A19379	2016.07.20	2017.07.20						
Power Amplifier	2055 BBS3Q7E9I	1005D/C0521	2016.05.18	2017.05.18						
Power Amplifier	5190FE	1012	2016.07.12	2017.07.12						
Dual Directional Coupler	772D	2839A00719	2016.07.12	2017.07.12						
Low Pass Filter	LA-30N	36543	2016.07.14	2017.07.14						
Low Pass Filter	LA-60N	40058	2016.07.12	2017.07.12						
Dipole Validation Kits	D2450V2	895	2016.07.25	2018.07.25						
Dipole Validation Kits	D5GHzV2	1134	2015.05.22	2017.05.22						
Network Analyzer	E5071B	MY42403524	2017.01.06	2018.01.06						
Dielectric Assessment kit	DAK-3.5	1078	2016.08.25	2017.08.25						
Humidity/Barometer/ Temp. Data Recorder	MHB-382SD	73871	2016.07.15	2017.07.15						

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (30) of (98)

Test System Verification Results

Procedure Name: d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ S/m}$; $\varepsilon_r = 39.08$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

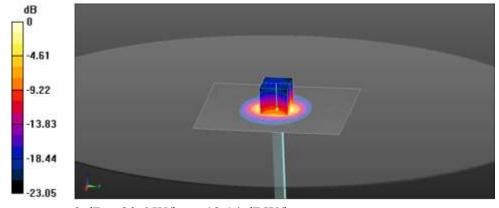
• Probe: EX3DV4 - SN3865; ConvF(7.81, 7.81, 7.81); Calibrated: 2016-08-30;

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

Measurement SW: DASY52, Version 52.8 (8);


System Performance Check (without Area Scan)/d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (101x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.4 W/kg

System Performance Check (without Area Scan)/d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.1 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.17 W/kgMaximum value of SAR (measured) = 20.6 W/kg

0 dB = 20.6 W/kg = 13.14 dBW/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (31) of (98)

Procedure Name: d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.001 \text{ S/m}$; $\varepsilon_r = 52.158$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(7.86, 7.86, 7.86); Calibrated: 2016-08-30;

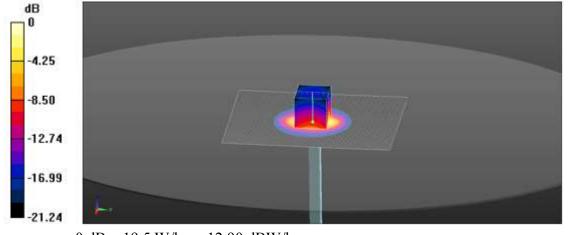
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

• Measurement SW: DASY52, Version 52.8 (8);

System Performance Check (without Area Scan)/d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (101x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 19.8 W/kg


System Performance Check (without Area Scan)/d=10 mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.02 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (32) of (98)

Procedure Name: d=10mm, Pin=100mW, f=5200MHz

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.6 \text{ S/m}$; $\varepsilon_r = 36.259$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(5.06, 5.06, 5.06); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

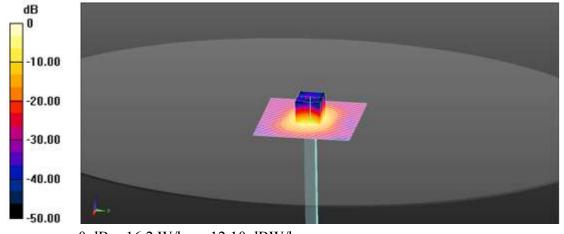
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/d=10mm, Pin=100mW, f=5200MHz/Area Scan (91x91x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.6 W/kg

Configuration/d=10mm, Pin=100mW, f=5200MHz/Zoom Scan (7x7x12)/Cube 0: Measurement


grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.34 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (33) of (98)

Procedure Name: d=10mm, Pin=100mW, f=5200MHz

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.189 \text{ S/m}$; $\varepsilon_r = 48.805$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.61, 4.61, 4.61); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

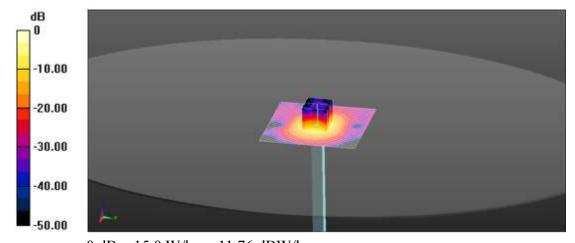
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/d=10mm, Pin=100mW, f=5200MHz/Area Scan (91x91x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 15.2 W/kg

Configuration/d=10mm, Pin=100mW, f=5200MHz/Zoom Scan (7x7x12)/Cube 0: Measurement


grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 58.01 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 29.7 W/kg

SAR(1 g) = 7.16 W/kg; SAR(10 g) = 2.04 W/kg

Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (34) of (98)

Procedure Name: d=10mm, Pin=100mW, f=5800MHz

Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 5.347 \text{ S/m}$; $\varepsilon_r = 34.574$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3865; ConvF(4.55, 4.55, 4.55); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

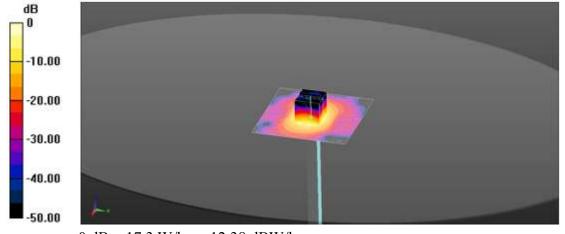
• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

• Measurement SW: DASY52, Version 52.8 (8);

Configuration/d=10mm, Pin=100mW, f=5800MHz/Area Scan (91x91x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.8 W/kg


Configuration/d=10mm, Pin=100mW, f=5800MHz/Zoom Scan (7x7x12)/Cube 0: Measurement

grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.52 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 38.9 W/kg

SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.27 W/kgMaximum value of SAR (measured) = 17.3 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR17-SPF0001-C Page (35) of (98)

Procedure Name: d=10mm, Pin=100mW, f=5800MHz

Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 6.127 \text{ S/m}$; $\varepsilon_r = 47.239$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.29, 4.29, 4.29); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

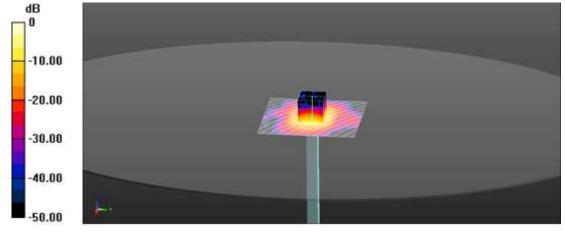
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/d=10mm, Pin=100mW, f=5800MHz/Area Scan (91x91x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.4 W/kg

Configuration/d=10mm, Pin=100mW, f=5800MHz/Zoom Scan (7x7x12)/Cube 0: Measurement


grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 56.04 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 7.24 W/kg; SAR(10 g) = 2.02 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (36) of (98)

15. Test Results

1)

Procedure Name: 802.11b_f.2 437_Front_0 mm_Ant 1

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.795$ S/m; $\varepsilon_r = 39.139$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(7.81, 7.81, 7.81); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

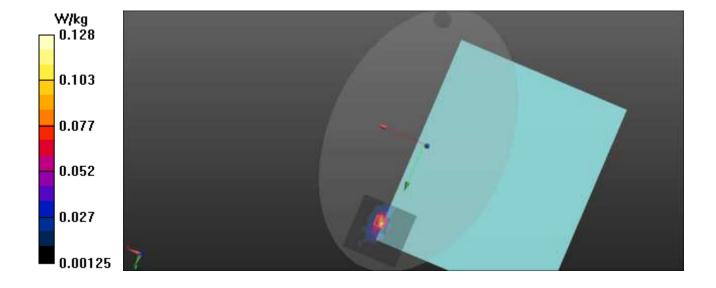
• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b_f.2 437_Front_0 mm_Ant 1/Area Scan (101x101x1):

Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.135 W/kg


Configuration/802.11b_f.2 437_Front_0 mm_Ant 1/Zoom Scan (8x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.647 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.199 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.037 W/kgMaximum value of SAR (measured) = 0.128 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (37) of (98)

2)

Procedure Name: 802.11b_f.2 437_Front_0 mm_Ant 2

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.795$ S/m; $\varepsilon_r = 39.139$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

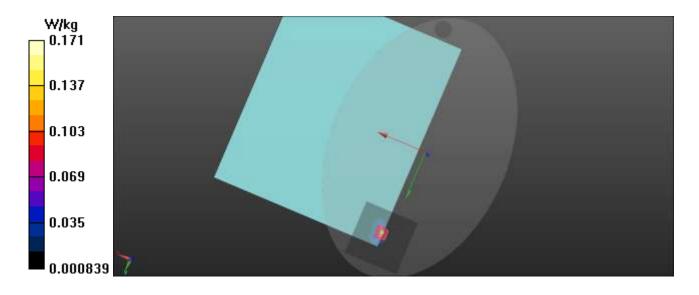
• Probe: EX3DV4 - SN3865; ConvF(7.81, 7.81, 7.81); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

• Measurement SW: DASY52, Version 52.8 (8);


Configuration/802.11b_f.2 437_Front_0 mm_Ant 2/Area Scan (101x101x1):

Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.157 W/kg

Configuration/802.11b_f.2 437_Front_0 mm_Ant 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.686 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.099 W/kg; SAR(10 g) = 0.038 W/kgMaximum value of SAR (measured) = 0.171 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (38) of (98)

3)

Procedure Name: 802.11b_f.2 437_Front_0 mm_Ant 3

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.795$ S/m; $\varepsilon_r = 39.139$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(7.81, 7.81, 7.81); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

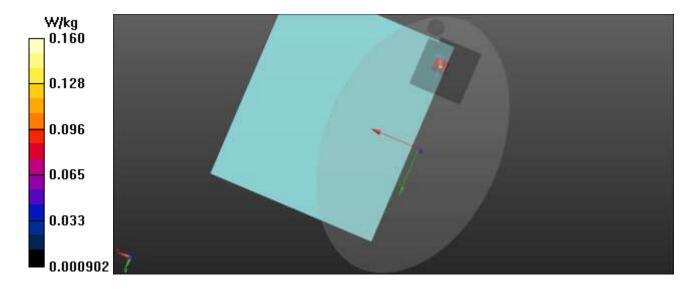
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b_f.2 437_Front_0 mm_Ant 3/Area Scan (101x101x1):

Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0377 W/kg

Configuration/802.11b_f.2 437_Front_0 mm_Ant 3/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.987 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.030 W/kg

Maximum value of SAR (measured) = 0.160 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (39) of (98)

4)

Procedure Name: 802.11a_f.5 200_Front_0 mm_Ant 1

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.6 \text{ S/m}$; $\varepsilon_r = 36.259$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(5.06, 5.06, 5.06); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

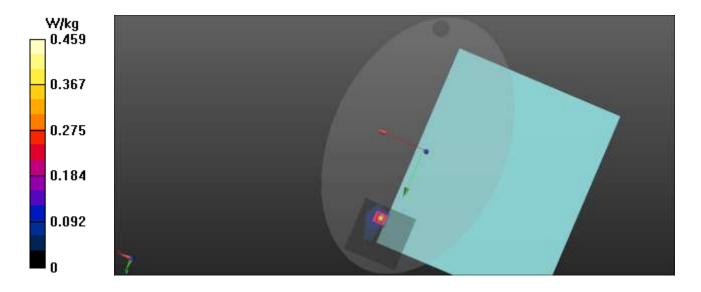
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 200_Front_0 mm_Ant 1/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.441 W/kg

Configuration/802.11a_f.5 200_Front_0 mm_Ant 1/Zoom Scan (9x9x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.368 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.231 W/kg; SAR(10 g) = 0.070 W/kg

Maximum value of SAR (measured) = 0.459 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (40) of (98)

5)

Procedure Name: 802.11a f.5 200 Front 0 mm Ant 2

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.6 \text{ S/m}$; $\varepsilon_r = 36.259$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(5.06, 5.06, 5.06); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

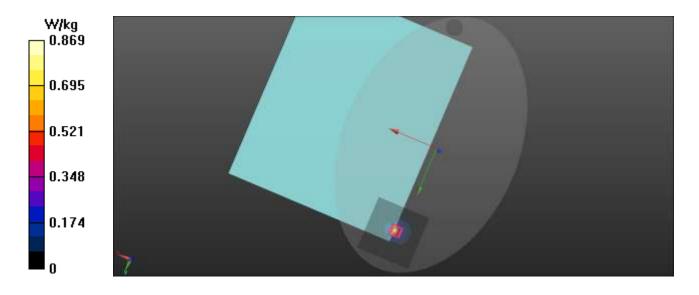
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 200_Front_0 mm_Ant 2/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.887 W/kg

Configuration/802.11a_f.5 200_Front_0 mm_Ant 2/Zoom Scan (8x8x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.329 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 0.419 W/kg; SAR(10 g) = 0.128 W/kg

Maximum value of SAR (measured) = 0.869 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (41) of (98)

6)

Procedure Name: 802.11a_f.5 200_Front_0 mm_Ant 3

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.6 \text{ S/m}$; $\varepsilon_r = 36.259$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(5.06, 5.06, 5.06); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

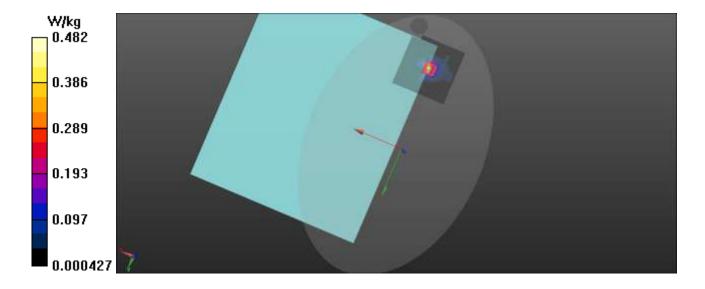
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 200_Front_0 mm_Ant 3/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.485 W/kg

Configuration/802.11a_f.5 200_Front_0 mm_Ant 3/Zoom Scan (9x9x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.024 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.242 W/kg; SAR(10 g) = 0.083 W/kg

Maximum value of SAR (measured) = 0.482 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (42) of (98)

7)

Procedure Name: 802.11a_f.5 785_Front_0 mm_Ant 1

Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 5.341$ S/m; $\varepsilon_r = 34.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.55, 4.55, 4.55); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

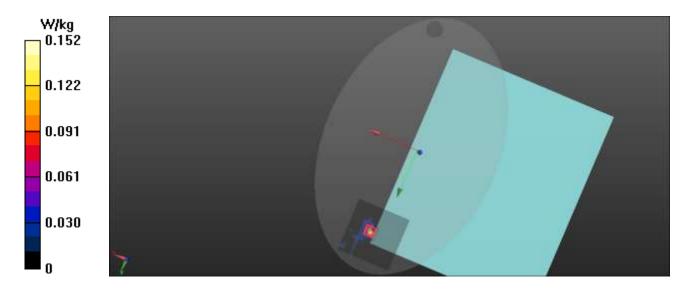
• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 785_Front_0 mm_Ant 1/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 0.155 W/kg

Configuration/802.11a_f.5 785_Front_0 mm_Ant 1/Zoom Scan (9x9x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 3.598 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.265 W/kg

SAR(1 g) = 0.052 W/kg; SAR(10 g) = 0.016 W/kgMaximum value of SAR (measured) = 0.152 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (43) of (98)

8)

Procedure Name: 802.11a_f.5 785_Front_0 mm_Ant 2

Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 5.341$ S/m; $\varepsilon_r = 34.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.55, 4.55, 4.55); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

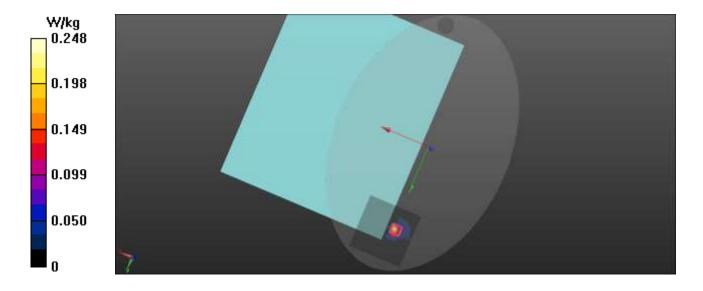
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 785_Front_0 mm_Ant 2/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.200 W/kg

Configuration/802.11a_f.5 785_Front_0 mm_Ant 2/Zoom Scan (8x8x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.388 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.489 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.248 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (44) of (98)

9)

Procedure Name: 802.11a_f.5 785_Front_0 mm_Ant 3

Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 5.341$ S/m; $\varepsilon_r = 34.641$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.55, 4.55, 4.55); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

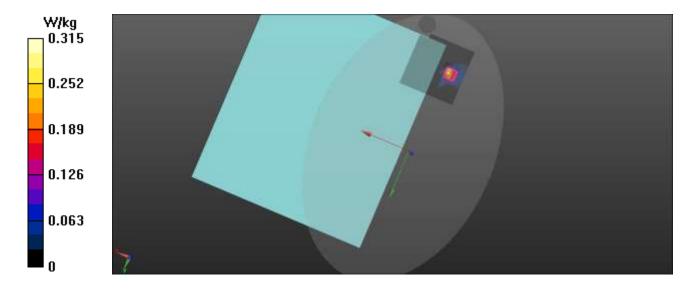
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 785_Front_0 mm_Ant 3/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.321 W/kg

Configuration/802.11a_f.5 785_Front_0 mm_Ant 3/Zoom Scan (9x9x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.379 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.638 W/kg

SAR(1 g) = 0.149 W/kg; SAR(10 g) = 0.053 W/kg

Maximum value of SAR (measured) = 0.315 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (45) of (98)

10)

Procedure Name: 802.11b f.2 437 Front 0 mm Ant 1

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 52.204$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(7.86, 7.86, 7.86); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

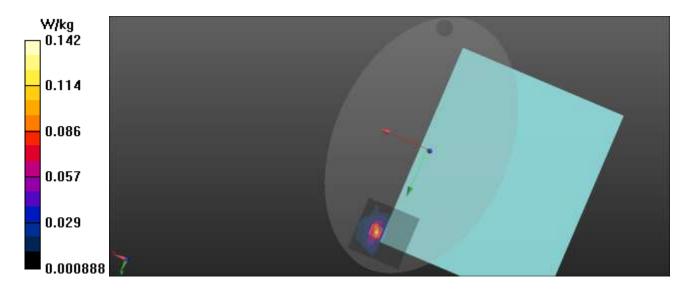
• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b_f.2 437_Front_0 mm_Ant 1/Area Scan (101x101x1):

Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 0.116 W/kg

Configuration/802.11b_f.2 437_Front_0 mm_Ant 1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 2.641 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.220 W/kg

SAR(1 g) = 0.090 W/kg; SAR(10 g) = 0.039 W/kgMaximum value of SAR (measured) = 0.142 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (46) of (98)

11)

Procedure Name: 802.11b f.2 437 Front 0 mm Ant 2

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 52.204$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

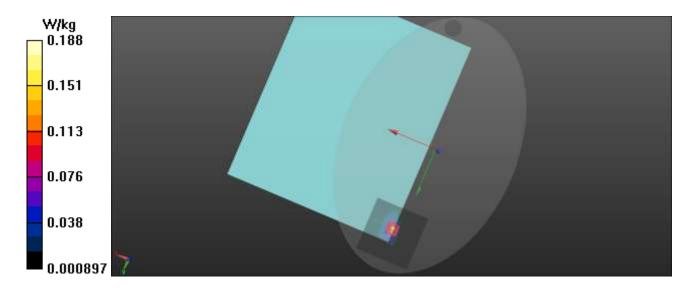
• Probe: EX3DV4 - SN3865; ConvF(7.86, 7.86, 7.86); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

• Measurement SW: DASY52, Version 52.8 (8);


Configuration/802.11b_f.2 437_Front_0 mm_Ant 2/Area Scan (101x101x1):

Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.164 W/kg

Configuration/802.11b_f.2 437_Front_0 mm_Ant 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.900 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.337 W/kg

SAR(1 g) = 0.109 W/kg; SAR(10 g) = 0.042 W/kgMaximum value of SAR (measured) = 0.188 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (47) of (98)

12)

Procedure Name: 802.11b_f.2 437_Front_0 mm_Ant 3

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 52.204$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(7.86, 7.86, 7.86); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

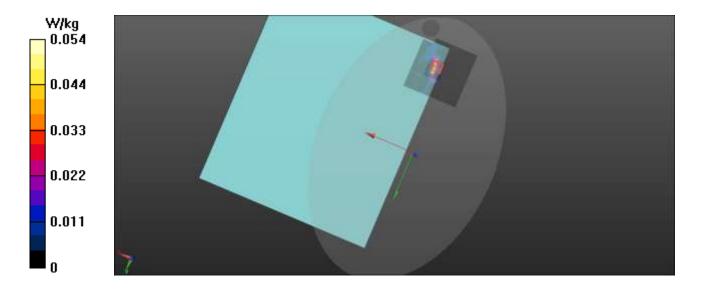
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b_f.2 437_Front_0 mm_Ant 3/Area Scan (101x101x1):

Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0538 W/kg

Configuration/802.11b_f.2 437_Front_0 mm_Ant 3/Zoom Scan (8x9x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.175 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.0920 W/kg

SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.014 W/kg

Maximum value of SAR (measured) = 0.0544 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (48) of (98)

13)

Procedure Name: 802.11a f.5 200 Front 0 mm Ant 1

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.189 \text{ S/m}$; $\varepsilon_r = 48.805$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.61, 4.61, 4.61); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

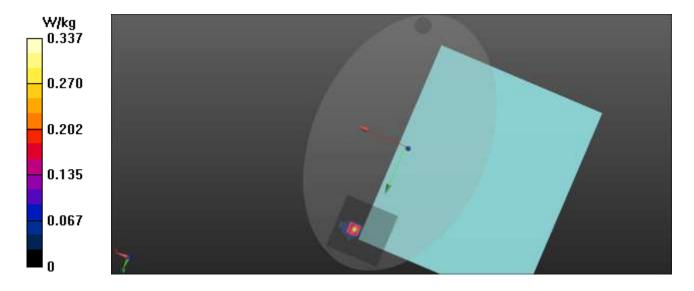
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 200_Front_0 mm_Ant 1/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.300 W/kg

Configuration/802.11a_f.5 200_Front_0 mm_Ant 1/Zoom Scan (9x9x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.094 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.578 W/kg

SAR(1 g) = 0.163 W/kg; SAR(10 g) = 0.053 W/kg

Maximum value of SAR (measured) = 0.337 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (49) of (98)

14)

Procedure Name: 802.11a_f.5 200_Front_0 mm_Ant 2

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.189 \text{ S/m}$; $\varepsilon_r = 48.805$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.61, 4.61, 4.61); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

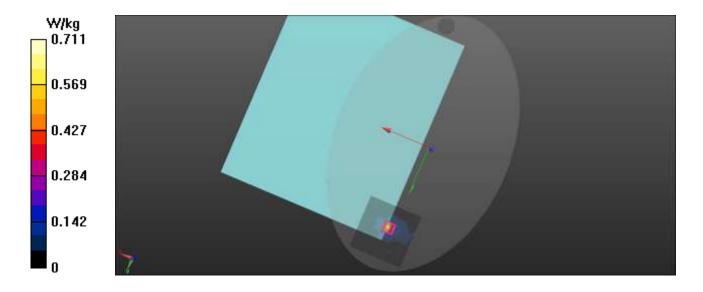
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 200_Front_0 mm_Ant 2/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.725 W/kg

Configuration/802.11a_f.5 200_Front_0 mm_Ant 2/Zoom Scan (8x8x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.615 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.385 W/kg; SAR(10 g) = 0.144 W/kg

Maximum value of SAR (measured) = 0.711 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (50) of (98)

15)

Procedure Name: 802.11a_f.5 200_Front_0 mm_Ant 3

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.189 \text{ S/m}$; $\varepsilon_r = 48.805$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.61, 4.61, 4.61); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

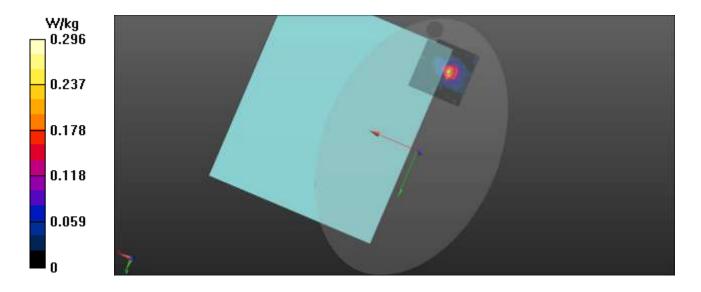
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 200_Front_0 mm_Ant 3/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.333 W/kg

Configuration/802.11a_f.5 200_Front_0 mm_Ant 3/Zoom Scan (9x9x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.521 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.506 W/kg

SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.058 W/kg

Maximum value of SAR (measured) = 0.296 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (51) of (98)

16)

Procedure Name: 802.11a_f.5 785_Front_0 mm_Ant 1

Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 6.104$ S/m; $\varepsilon_r = 47.193$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.29, 4.29, 4.29); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

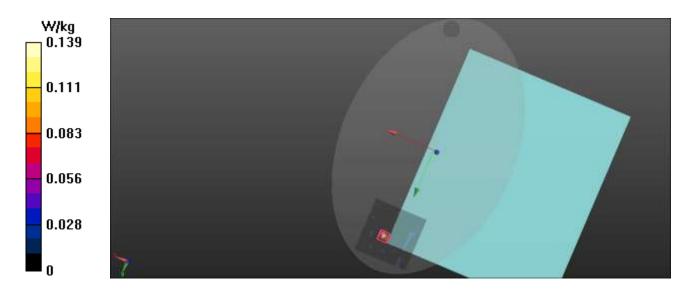
• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 785_Front_0 mm_Ant 1/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 0.168 W/kg

Configuration/802.11a_f.5 785_Front_0 mm_Ant 1/Zoom Scan (9x9x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mmReference Value = 1.979 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.317 W/kg

SAR(1 g) = 0.067 W/kg; SAR(10 g) = 0.035 W/kgMaximum value of SAR (measured) = 0.139 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (52) of (98)

17)

Procedure Name: 802.11a_f.5 785_Front_0 mm_Ant 2

Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 6.104$ S/m; $\varepsilon_r = 47.193$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.29, 4.29, 4.29); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

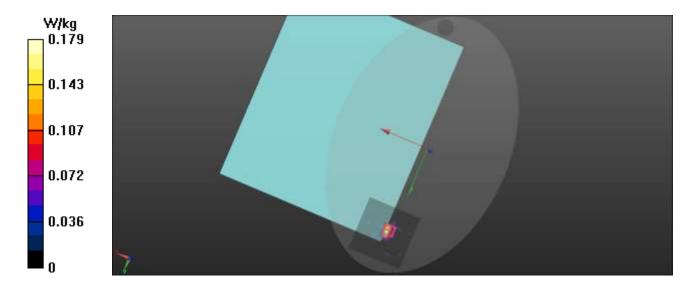
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 785_Front_0 mm_Ant 2/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.266 W/kg

Configuration/802.11a_f.5 785_Front_0 mm_Ant 2/Zoom Scan (9x10x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.023 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.328 W/kg

SAR(1 g) = 0.096 W/kg; SAR(10 g) = 0.058 W/kg

Maximum value of SAR (measured) = 0.179 W/kg

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR17-SPF0001-C Page (53) of (98)

18)

Procedure Name: 802.11a f.5 785 Front 0 mm Ant 3

Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 6.104$ S/m; $\varepsilon_r = 47.193$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3865; ConvF(4.29, 4.29, 4.29); Calibrated: 2016-08-30;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2016-07-26

• Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178

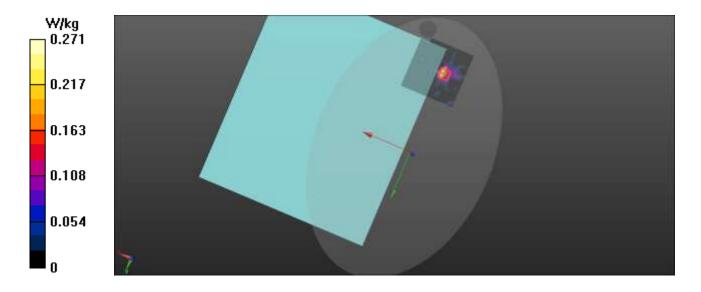
• Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11a_f.5 785_Front_0 mm_Ant 3/Area Scan (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.390 W/kg

Configuration/802.11a_f.5 785_Front_0 mm_Ant 3/Zoom Scan (9x9x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.640 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.068 W/kg

Maximum value of SAR (measured) = 0.271 W/kg

