

	Engineering Test Report No. 2104193-03			
Report Date	August 2, 2022			
Manufacturer Name	Astronics CSC			
Manufacturer Address	804 S Northpoint Blvd, Dock 26-29 Waukegan, IL 60087			
Test Item Name Model No.	Cabin Wireless Access Point CabinAXe 700-00016-000)		
Date Received	May 31, 2022			
Test Dates	May 31 – June 24, 2022			
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart E, Section 15.407 Innovation, Science, and Economic Development Canada, RSS-GEN Innovation, Science, and Economic Development Canada, RSS-248			
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515 FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107			
Signature	Tylan Jayly			
Tested by	Tylar Jozefczyk			
Signature	Kaymond J Klouda,			
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894			
PO Number	47106			

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart E, Section 15.407 and Innovation, Science, and Economic Development Canada, RSS-248 test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	
2.1.	Scope of Tests	
2.2.	Purpose	
2.3.	Identification of the EUT	4
3.	Power Input	
4.	Grounding	4
5.	Support Equipment	5
6.	Interconnect Leads	5
7.	Modifications Made to the EUT	5
8.	Mode of Operation	
9.	Test Specifications	5
10.	Test Plan	
11.	Deviation, Additions to, or Exclusions from Test Specifications	6
12.	Laboratory Conditions	6
13.	Summary Summar	
14.	Sample Calculations	6
15.	Statement of Conformity	6
16.	Certification	6
17.	Photographs of EUT	
18.	Equipment List	
19.	Block Diagram of Test Setup	9
20.	Effective Isotropic Radiated Power (EIRP)	10
21.	Case Spurious Radiated Emissions	12
23.	Scope of Accreditation	31

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
_	2 AUG 2022	Initial Release of Engineering Test Report No. 2104193-03

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Astronics CSC Cabin Wireless Access Point CabinAXe (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by Astronics CSC located in Waukegan, IL.

2.2. Purpose

The test series was performed to determine if the Astronics CSC Cabin Wireless Access Point CabinAXe (FCC ID: 2AL4H-70000016) meets the Class II Permissive Change requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart E, §15.407.

The test series was also performed to determine if the Astronics CSC Cabin Wireless Access Point CabinAXe (ISED UPN: 22737-70000016) meets the Class II Permissive Change requirements of the Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-Gen and RSS-248 for Transmitters. The following modifications have been made to the original equipment:

- The EUT housing has changed.

The EUT is equipped with the following pre-certified radio module:

- Aruba Networks IAP-635 (FCC ID Q9DAPIN0635, IC ID 4675A-APIN0635), operating in the 5GHz band.

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows:

EUT Identification			
Product Description	Cabin Wireless Access Point CabinAXe		
Model/Part No.	700-00016-000		
Serial No.	000005		
Size of EUT	9.5" x 9.0" x 2.85"		
Software/Firmware Version	1.0.0BL1		
Device Type	Digitally Modulated Transmission Device		
Band of Operation	5955 – 7095MHz		
Modulation Type	OFDMA		
Antenna Type	Integrated downtilt omni-directional		
Antenna Gain (dBi) ¹	7.0		
Rated Output Power	0.991W (29.96dBm)		
FCC ID & ISED UPN Number	FCC ID: 2AL4H-70000016		
	ISED UPN: 22737-70000016		
Note 1 – Antenna gain is supplied by the manufacturer and Elite is not responsible for the accuracy of the antenna gain.			

The EUTs listed above was used throughout the test series.

3. Power Input

The EUT obtained 120VAC 60Hz power via a 3 wire, 1 meter, unshielded power cord.

4. Grounding

The EUT was connected to ground through the third wire of its input power cord.

5. Support Equipment

The EUT was submitted for testing along with the following support equipment:

Description	Model #	S/N
Dell Laptop	7490	
Serial Terminator - 9-Pin	E54-345	

6. Interconnect Leads

The following interconnect cables were submitted with the test item:

Description	Model #	S/N
Mini USB Cable	B00NH11N5A	
Ethernet Cable (5ft)	N201-005-WH	
Micro USB to USB A cable	B0723M876	
J1 (LAN1 UUT cable)	E54-331	
USB to RJ45 Serial Rollover Cable	U209-006-RJ45-X	

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Mode of Operation

The EUT and all peripheral equipment were energized. The unit was programmed to transmit in the following mode:

Mode	Description
Mode 802.11ax-HE20 MSC0	Description - 5955MHz, Power Setting = 8dBm - 6195MHz, Power Setting = 8dBm - 6415MHz, Power Setting = 8dBm - 6435MHz, Power Setting = 8dBm - 6475MHz, Power Setting = 8dBm - 6515MHz, Power Setting = 8dBm - 6535MHz, Power Setting = 8dBm - 6715MHz, Power Setting = 8dBm - 6715MHz, Power Setting = 8.5dBm - 6855MHz, Power Setting = 8.5dBm - 6875MHz, Power Setting = 8.5dBm - 6895MHz, Power Setting = 8.5dBm - 6895MHz, Power Setting = 8.5dBm - 7015MHz, Power Setting = 8.5dBm

9. Test Specifications

The tests were performed to selected portions of, and in accordance with, the test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart E
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- RSS-Gen Issue 5, February 2020, Amendment 2, Innovation, Science, and Economic Development Canada, "General Requirements for Compliance of Radio Apparatus"
- RSS-248 Issue 1, November 2021, "Radio Local Area Network (RLAN) Devices Operating in the 5925-7125 MHz Band"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Astronics CSC and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart E, Section 15.407, Innovation, Science, and Economic Development Canada, RSS-248, and ANSI C63.10-2013 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The ambient parameters of the laboratory during testing were as follows:

Ambient Parameters	Value
Temperature	24.4°C
Relative Humidity	31%
Atmospheric Pressure	1013.2mb

13. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Requirements	Test Method	S/N	Results
Effective Isotropic Radiated Power (EIRP)	FCC 15.407 ISED RSS-248	ANSI C63.10:2013	000005	Conforms
Case Spurious Radiated Emissions	FCC 15.407 ISED RSS-248	ANSI C63.10:2013	000005	Conforms

14. Sample Calculations

For Radiated Emissions:

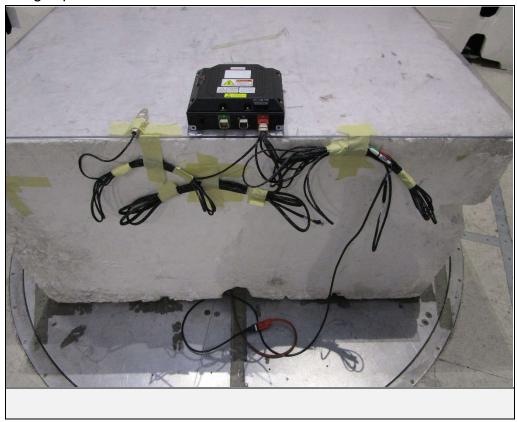
The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS
$$(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)$$

To convert the Field Strength $dB\mu V/m$ term to $\mu V/m$, the $dB\mu V/m$ is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in $\mu V/m$ terms.

Formula 2: FS (
$$\mu$$
V/m) = AntiLog [(FS (dB μ V/m))/20]

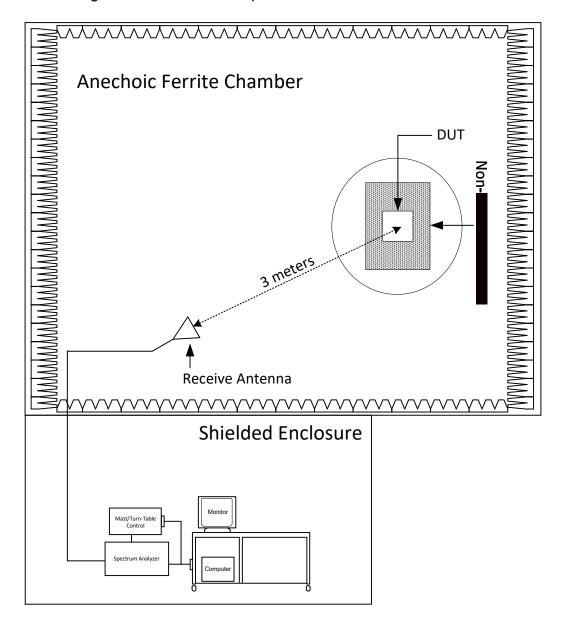
15. Statement of Conformity


The Astronics CSC Cabin Wireless Access Point CabinAXe (Model No. 700-00016-000, Serial No. 000005) did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart E, Section 15.407 and Innovation, Science, and Economic Development Canada, RSS-248.

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart E, Section 15.407 and Innovation, Science, and Economic Development Canada, RSS-248 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT


Equipment List 18.

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW14	PREAMPLIFIER	PLANAR	PE2-35-120-5R0- 10-12-SFF	PL22671	1-20GHz	9/21/2021	9/21/2022
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
I KIV/// Y'	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66659	1GHZ-18GHZ	4/27/2022	4/27/2024
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	3/31/2022	3/31/2023
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1		I/O	
XPQ5	FILTER	IK & I MICEOWAVE	11SH10- 9000/U2000-O/O	1	5000-5800 MHZ	9/7/2021	9/7/2023

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required
NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. Effective Isotropic Radiated Power (EIRP)

EUT Information		
Manufacturer	Astronics CSC	
Product	Cabin Wireless Access Point CabinAXe	
Model No.	700-00016-000	
Serial No.	000005	
Mode	802.11ax-HE20	

Test Setup Details		
Setup Format	Tabletop	
Height of Support	N/A	
Measurement Method	Radiated	
Type of Test Site	Semi-Anechoic Chamber	
Test Site Used	Room 29	
Type of Antennas Used	Above 1GHz: Double-ridged waveguide (or equivalent)	
Notes	N/A	

Measurement Uncertainty						
	Expanded					
Measurement Type	Measurement					
	Uncertainty					
Radiated disturbance (electric field strength on an open area test site or alternative test	3.1					
site) (1 GHz – 6 GHz)	J. I					

Requirements
The output power shall not exceed 1W (30dBm).

Procedure

The EUT was placed on the non-conductive stand and set to transmit. A double ridged waveguide antenna was placed at a test distance of 3 meters from the EUT. The resolution bandwidth (RBW) of the spectrum analyzer was set to greater than the 6dB bandwidth. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. The maximum meter reading was recorded. The peak power output was measured for the low, middle, and high channels.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a dipole antenna (double ridged waveguide antenna for all measurements above 1GHz) was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss (and antenna gain for all measurements above 1GHz), as required. The peak power output was calculated for low, middle, and high hopping frequencies.

	Test Details							
Manufacturer	Astronics CSC							
EUT	Cabin Wireless Access Point CabinAXe							
Model No.	700-00016-000							
Serial No.	000005							
Mode	802.11ax-HE20							
Result	Max EIRP = 0.991W (29.96dBm)							
Notes	None							

Freq (MHz)	Ant Pol	Wide BW Meter Reading (dBµV)	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total (dBµV/m)	EIRP (dBm)	Limit (dBm)	Margin (dB)
5955.00	Н	78.35	5.36	37.57	0.00	121.28	25.98	30.00	-4.02
0000.00	V	65.29	5.36	37.57	0.00	108.22	12.92	30.00	-17.08
6195.00	Н	77.96	5.48	38.53	0.00	121.97	26.67	30.00	-3.33
	V	64.16	5.48	38.53	0.00	108.17	12.87	30.00	-17.13
6415.00	Н	80.98	5.57	38.25	0.00	124.80	29.50	30.00	-0.50
	V	64.47	5.57	38.25	0.00	108.29	12.99	30.00	-17.01
6435.00	Η	81.47	5.57	38.22	0.00	125.26	29.96	30.00	-0.04
0433.00	V	66.47	5.57	38.22	0.00	110.26	14.96	30.00	-15.04
6475.00	Η	80.33	5.59	38.18	0.00	124.10	28.80	30.00	-1.20
	V	67.26	5.59	38.18	0.00	111.03	15.73	30.00	-14.27
6515.00	Н	80.18	5.61	38.18	0.00	123.96	28.66	30.00	-1.34
	V	65.74	5.61	38.18	0.00	109.52	14.22	30.00	-15.78
6535.00	Н	80.20	5.61	38.17	0.00	123.99	28.69	30.00	-1.31
0555.00	V	65.40	5.61	38.17	0.00	109.19	13.89	30.00	-16.11
6715.00	Η	79.89	5.68	38.73	0.00	124.30	29.00	30.00	-1.00
67 15.00	V	67.11	5.68	38.73	0.00	111.52	16.22	30.00	-13.78
6855.00	Η	80.82	5.76	38.36	0.00	124.94	29.64	30.00	-0.36
0055.00	V	66.93	5.76	38.36	0.00	111.05	15.75	30.00	-14.25
6875.00	Н	80.56	5.78	38.31	0.00	124.64	29.34	30.00	-0.66
0075.00	V	67.59	5.78	38.31	0.00	111.67	16.37	30.00	-13.63
6905.00	Н	80.57	5.80	38.25	0.00	124.62	29.32	30.00	-0.68
6895.00	V	66.91	5.80	38.25	0.00	110.96	15.66	30.00	-14.34
7015.00	Н	79.23	5.91	37.81	0.00	122.95	27.65	30.00	-2.35
7015.00	V	66.65	5.91	37.81	0.00	110.37	15.07	30.00	-14.93
7005.00	Н	78.03	5.96	37.72	0.00	121.71	26.41	30.00	-3.59
7095.00	V	66.47	5.96	37.72	0.00	110.15	14.85	30.00	-15.15

21. Case Spurious Radiated Emissions

	EUT Information						
Manufacturer	Astronics CSC						
Product	Cabin Wireless Access Point CabinAXe						
Model No.	700-00016-000						
Serial No.	000005						
Mode	802.11ax-HE20						

Test Setup Details						
Setup Format	Tabletop					
Height of Support	N/A					
Type of Test Site	Semi-Anechoic Chamber					
Test Site Used	Room 29					
Type of Antennas Used	Above 1GHz: Double-Ridged Waveguide (or equivalent)					
Notes	Testing was done in the 1 – 18GHz range only.					

Measurement Uncertainty							
Measurement Type	Expanded Measurement Uncertainty						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2						

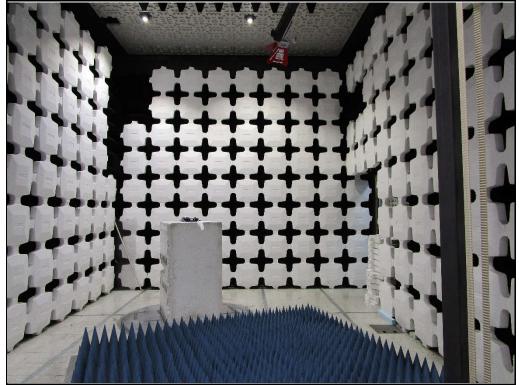
Procedure

Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the EUT. The entire frequency ranges from 1 to 18GHz was investigated using a peak detector function.

The final open field emission tests were then manually performed over the frequency range of 1 to 18GHz.

- 1) For all harmonics not in the restricted bands, the following procedure was used:
 - a) The field strength of the fundamental was measured using a double ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5 meter high non-conductive stand. A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
 - b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5 meter high non-conductive stand. A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
 - a) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5 meter high non-conductive stand. A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
 - b) To ensure that maximum or worst case emission levels were measured, the following steps were taken when taking all measurements:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - c) For all radiated emissions measurements above 1GHz, the peak readings must comply with the §15.35(b) limits. §15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in §15.209(a).



d) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken.

Test Setup for Spurious Radiated Emissions, 1 – 18GHz – Antenna Polarization Horizontal

Test Setup for Spurious Radiated Emissions, 1 – 18GHz – Antenna Polarization Vertical

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	5955MHz
Notes	Peak and Average Measurements in the Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
11910.00	Н	47.57	Ambient	6.96	41.41	-39.03	56.91	700.99	5000.00	-17.07
11910.00	V	47.41	Ambient	6.96	41.41	-39.03	56.75	688.19	5000.00	-17.23
17965.00	Н	47.89	Ambient	7.98	43.02	-37.68	61.21	1149.89	5000.00	-12.77
17865.00	V	47.04	Ambient	7.98	43.02	-37.68	60.36	1042.69	5000.00	-13.62

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (µV/m)	Average Limit at 3m (µV/m)	Margin (dB)
11910.00	Н	31.91	Ambient	6.96	41.41	-39.03	0.00	41.25	115.53	500.00	-12.73
11910.00	V	31.89	Ambient	6.96	41.41	-39.03	0.00	41.23	115.27	500.00	-12.75
17865.00	Н	32.37	Ambient	7.98	43.02	-37.68	0.00	45.69	192.60	500.00	-8.29
	V	32.07	Ambient	7.98	43.02	-37.68	0.00	45.39	186.06	500.00	-8.59

	Test Details							
Manufacturer	Astronics CSC							
EUT	Cabin Wireless Access Point CabinAXe							
Model No.	700-00016-000							
Serial No.	000005							
Mode	802.11ax-HE20							
Frequency Tested	5955MHz							
Notes	Peak Measurements in Non-Restricted Bands							

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
E0EE 00	Н	54.82		5.36	37.57	0.00	97.75	77149.98		
5955.00	V	41.14		5.36	37.57	0.00	84.07	15971.14		

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6195MHz
Notes	Peak and Average Measurements in the Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
10000 00	Н	48.19	Ambient	7.29	41.60	-38.77	58.31	823.58	5000.00	-15.67
12390.00	V	48.39	Ambient	7.29	41.60	-38.77	58.51	842.76	5000.00	-15.47

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (µV/m)	Average Limit at 3m (µV/m)	Margin (dB)
12390.00	Η	32.68	Ambient	7.29	41.60	-38.77	0.00	42.80	138.10	500.00	-11.18
12390.00	V	32.52	Ambient	7.29	41.60	-38.77	0.00	42.64	135.58	500.00	-11.34

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6195MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6405.00	Н	54.06		5.48	38.53	0.00	98.07	80044.00		
6195.00	V	40.06		5.48	38.53	0.00	84.07	15970.88		

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6415MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6415.00	Н	56.72		5.57	38.25	0.00	100.54	106385.10		
0415.00	V	40.84		5.57	38.25	0.00	84.66	17095.46		
12830.00	Н	36.56	Ambient	7.04	41.71	-38.50	46.81	219.01	10638.51	-33.73
12030.00	V	36.07	Ambient	7.04	41.71	-38.50	46.32	207.00	10638.51	-34.22

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6435MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6435.00	Н	57.63		5.57	38.22	0.00	101.42	117756.01		
0435.00	V	42.20		5.57	38.22	0.00	85.99	19928.89		
12070 00	Н	36.95	Ambient	7.02	41.69	-38.48	47.18	228.59	11775.60	-34.24
12870.00	V	37.37	Ambient	7.02	41.69	-38.48	47.60	239.92	11775.60	-33.82

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6475MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6475.00	Н	56.64		5.59	38.18	0.00	100.41	104891.82		
0475.00	V	43.52		5.59	38.18	0.00	87.29	23160.16		
12950.00	Н	37.29	Ambient	7.00	41.63	-38.43	47.49	236.97	10489.18	-32.92
12950.00	V	37.02	Ambient	7.00	41.63	-38.43	47.22	229.71	10489.18	-33.19

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6515MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6515.00	Н	56.74		5.61	38.18	0.00	100.52	106213.23		
0515.00	V	40.99		5.61	38.18	0.00	84.77	17325.21		
13030.00	Н	37.11	Ambient	7.01	41.54	-38.39	47.27	231.03	10621.32	-33.25
13030.00	V	37.86	Ambient	7.01	41.54	-38.39	48.02	251.87	10621.32	-32.50

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6535MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6535.00	Н	56.95		5.61	38.17	0.00	100.74	108857.18		
0555.00	V	41.60		5.61	38.17	0.00	85.39	18593.33		
12070.00	Н	36.83	Ambient	7.01	41.49	-38.48	46.84	219.84	10885.72	-33.89
13070.00	V	36.58	Ambient	7.01	41.49	-38.48	46.59	213.61	10885.72	-34.14

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6715MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6715.00	Н	56.33		5.68	38.73	0.00	100.74	108914.19		
07 15.00	V	43.27		5.68	38.73	0.00	87.68	24215.00		
13430.00	Н	36.54	Ambient	7.16	41.20	-38.43	46.47	210.51	10891.42	-34.28
13430.00	V	36.24	Ambient	7.16	41.20	-38.43	46.17	203.36	10891.42	-34.58

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6855MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6855.00	Н	56.86		5.76	38.36	0.00	100.98	111884.85		
0000.00	V	42.78		5.76	38.36	0.00	86.90	22119.30		
13710.00	Н	37.29	Ambient	7.29	40.85	-38.43	47.00	223.86	11188.49	-33.98
137 10.00	V	36.85	Ambient	7.29	40.85	-38.43	46.56	212.81	11188.49	-34.42

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6875MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6875.00	Н	56.87		5.78	38.31	0.00	100.95	111579.99		
0075.00	V	43.81		5.78	38.31	0.00	87.89	24807.69		
13750.00	Н	37.31	Ambient	7.25	40.85	-38.46	46.95	222.54	11158.00	-34.00
13730.00	V	36.67	Ambient	7.25	40.85	-38.46	46.31	206.73	11158.00	-34.64

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	6895MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
6895.00	Н	55.58		5.80	38.25	0.00	99.63	95808.99		
0095.00	V	43.12		5.80	38.25	0.00	87.17	22824.76		
13790.00	Н	36.74	Ambient	7.20	40.86	-38.49	46.31	206.70	9580.90	-33.32
13790.00	V	37.45	Ambient	7.20	40.86	-38.49	47.02	224.31	9580.90	-32.61

	Test Details
Manufacturer	Astronics CSC
EUT	Cabin Wireless Access Point CabinAXe
Model No.	700-00016-000
Serial No.	000005
Mode	802.11ax-HE20
Frequency Tested	7015MHz
Notes	Peak Measurements in Non-Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
7015.00	Н	55.40		5.91	37.81	0.00	99.12	90391.60		
	V	42.57		5.91	37.81	0.00	86.29	20636.12		
14030.00	Н	37.24	Ambient	7.20	41.09	-38.59	46.93	222.19	9039.16	-32.19
	V	36.72	Ambient	7.20	41.09	-38.59	46.41	209.28	9039.16	-32.71

Test Details					
Manufacturer	Astronics CSC				
EUT	Cabin Wireless Access Point CabinAXe				
Model No.	700-00016-000				
Serial No.	000005				
Mode	802.11ax-HE20				
Frequency Tested	7095MHz				
Notes	Peak Measurements in Non-Restricted Bands				

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dBµV/m)	Peak Total at 3m (µV/m)	Peak Limit at 3m (µV/m)	Margin (dBm)
7095.00	Н	54.75		5.96	37.72	0.00	98.43	83454.54		
	V	42.37		5.96	37.72	0.00	86.05	20065.50		
14190.00	Н	36.15	Ambient	7.29	41.35	-38.54	46.25	205.39	8345.45	-32.18
	V	36.19	Ambient	7.29	41.35	-38.54	46.29	206.34	8345.45	-32.14

23. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC.

1516 Centre Circle Downers Grove, IL 60515

Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168

Email: rbugielski@elitetest.com

Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112

Email: cfanning@elitetest.com

Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163

Email: blugo@elitetest.com

Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123

Email: reking@elitetest.com Website: www.elitetest.com

ELECTRICAL

Valid To: June 30, 2023 Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic compatibility and other electrical tests:</u>

Test Technology:	Test Method(s) 1:
Transient Immunity	ISO 7637-2 (including emissions); ISO 7637-3;
	ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;
	CS-11979, Section 6.4; CS.00054, Section 5.9;
	EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);
	GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12;
	ECE Regulation 10.06 Annex 10
Electrostatic Discharge (ESD)	ISO 10605 (2001, 2008);
3 , ,	CS-11979 Section 7.0; CS.00054, Section 5.10;
	EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;
	GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3;
	CISPR 25 (2016), Sections 6.3 and 6.4;
	CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2;
	GMW 3097, Section 3.3.2;
	EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)
Radiated Emissions Anechoic	CISPR 25 (2002, 2008), Section 6.4;
	CISPR 25 (2016), Section 6.5;
	CS-11979, Section 5.3; CS.00054, Section 5.6.3;
	GMW 3097, Section 3.3.1;
	EMC-CS-2009.1 (RE 310); FMC1278 (RE310);
	ECE Regulation 10.06 Annex 7 (Broadband)
	ECE Regulation 10.06 Annex 8 (Narrowband)

(A2LA Cert. No. 1786.01) Revised 06/24/2021

Page 1 of 8

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u> <u>Test Method(s)¹:</u>

Vehicle Radiated Emissions CISPR 12; CISPR 36; ICES-002; ECE Regulation 10.06 Annex 5

Bulk Current Injection (BC1) ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1;

GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112);

ECE Regulation 10.06 Annex 9

Radiated Immunity Anechoic ISO 11452-2; ISO 11452-5;

(Including Radar Pulse) CS-11979, Section 6.2; CS.00054, Section 5.8.2;

GMW 3097, Section 3.4.2;

EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21;

ECE Regulation 10.06 Annex 9

Radiated Immunity Magnetic Field ISO 11452-8

Radiated Immunity Reverb ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3;

EMC-CS-2009.1 (RI114); FMC1278 (RI114);

ISO 11452-11

Radiated Immunity ISO 11452-9;

(Portable Transmitters) EMC-CS-2009.1 (RI115); FMC1278 (RI115)

Vehicle Radiated Immunity (ALSE) ISO 11451-2; ECE Regulation 10.06 Annex 6

Vehicle Product Specific EMC

Standards

EN 14982; EN ISO 13309, ISO 13766; EN 50498;

EC Regulation No. 2015/208; EN 55012

Electrical Loads ISO 16750-2

Emissions

Radiated and Conducted (3m Semi-anechoic chamber,

up to 40 GHz)

47 CFR, FCC Part 15 B (using ANSI C63.4:2014); 47 CFR, FCC Part 18 (using FCC MP-5:1986);

ICES-001; ICES-003; ICES-005;

IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004);

IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010);

KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003);

CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997);

EN 55022 (1998) + A1(2000);

EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz);

CTODD 22. The CCO22. IZO C 0022. IZN 22.

CISPR 32; EN 55032; KS C 9832; KN 32;

ECE Regulation 10.06 Annex 14

Cellular Radiated Spurious Emissions ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12;

ETSI TS 134 124 UMTS; 3GPP TS 34.124; ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124

(A2LA Cert. No. 1786.01) Revised 06/24/2021

Page 2 of 8

Test Technology: Test Method(s) 1: Emissions (cont'd) Current Harmonics IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2; KS C 9610-3-2; ECE Regulation 10.06 Annex 11 Flicker and Fluctuations IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3; KS C 9610-3-3; ECE Regulation 10.06 Annex 12 Immunity Electrostatic Discharge IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; KS C 9610-4-2; IEEE C37.90.3 2001 Radiated Immunity IEC 61000-4-3 (1995) + A1(1998) + A2(2000); IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3; KS C 9610-4-3; IEEE C37.90.2 2004 Electrical Fast Transient/Burst IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); EC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4; KS C 9610-4-4; ECE Regulation 10.06 Annex 15 Surge IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; KS C 9610-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16 Conducted Immunity IEC 61000-4-6 (1996) + A1(2000); IEC 61000-4-6, Ed 2.0 (2006-05); IEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6

(A2LA Cert. No. 1786.01) Revised 06/24/2021

Page 3 of 8

Test Technology:	Test Method(s) 1:
Immunity (cont'd) Power Frequency Magnetic Field Immunity (Down to 3 A/m)	IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009); EN 61000-4-8 (1994) + A1(2000); KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8
Voltage Dips, Short Interrupts, and Line Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11; KS C 9610-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002
Generic and Product Specific EMC Standards	IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KS C 9610-6-3; EC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14-2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55035; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2
TxRx EMC Requirements	EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20
European Radio Test Standards	ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502; EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4

(A2LA Cert. No. 1786.01) Revised 06/24/2021

Page 4 of

Test Technology:	Test Method(s) 1:
Canadian Radio Tests	RSS-102 (RF Exposure Evaluation only); RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN
Mexico Radio Tests	IFT-008-2015; NOM-208-SCFI-2016
Japan Radio Tests	Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18
Taiwan Radio Tests	LP-0002 (July 15, 2020)
Australia/New Zealand Radio Tests	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
Hong Kong Radio Tests	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073
Korean Radio Test Standards	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125; KS X 3130; KS X 3126; KS X 3129
Vietnam Radio Test Standards	QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT; QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT; QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT; QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT
Vietnam EMC Test Standards	QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT; QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT
Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Room)	47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
Licensed Radio Service Equipment	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101 (using ANSI/TIA-603-E, TIA-102.CAAA-E, ANSI C63.26:2015)

(A2LA Cert. No. 1786.01) Revised 06/24/2021

Page 5 of 8

Test Technology:

Test Method(s) 1:

OIA (Over the Air) Performance GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing

CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0

Electrical Measurements and Simulation

Integrated Device Testing WiFi 802.11 a/b/g/n/a

AC Voltage / Current FAA AC 150/5345-10H (1mV to 5kV) 60 Hz (0.1V to 250V) up to 500 MHz FAA AC 150/5345-43J FAA AC 150/5345-44K (1µA to 150A) 60 Hz FAA AC 150/5345-46E DC Voltage / Current (lmV to 15-kV) / (lµA to 10A) FAA AC 150/5345-47C Power Factor / Efficiency / Crest Factor FAA EB 67D

(Power to 30kW)

Resistance

 $(1m\Omega \text{ to } 4000M\Omega)$

(Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.12

Rule Subpart/Technology	Test Method	Maximum
		Frequency
		(MHz)
Unintentional Radiators		Ø Ø
Part 15B	ANSI C63.4:2014	40000

(A2LA Cert. No. 1786.01) Revised 06/24/2021

When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA R101 - General Requirements - Accreditation of ISO-IEC 17025 Laboratories.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table $\rm A.1^2$

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
Intentional Radiators Part 15C	ANSI C63.10:2013	40000
Unlicensed Personal Communication Systems Devices Part 15D	ANSI C63.17:2013	40000
U-NII without DFS Intentional Radiators Part 15E	ANSI C63.10:2013	40000
U-NII with DFS Intentional Radiators Part 15E	FCC KDB 905462 D02 (v02)	40000
UWB Intentional Radiators Part 15F	ANSI C63.10:2013	40000
BPL Intentional Radiators Part 15G	ANSI C63.10:2013	40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
Commercial Mobile Services (FCC Licensed Radio Service Equipment) Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
General Mobile Radio Services (FCC Licensed Radio Service Equipment) Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Citizens Broadband Radio Services (FCC Licensed Radio Service Equipment) Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

(A2LA Cert. No. 1786.01) Revised 06/24/2021

Page 7 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table $\rm A.1^2$

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Maritime and Aviation Radio Services Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
Microwave and Millimeter Bands Radio Services		
Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63 26:2015	40000
Broadcast Radio Services	12.01.001.001.001.00	
Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Signal Boosters		
Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

 $^{^2}$ Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

(A2LA Cert. No. 1786.01) Revised 06/24/2021

Page 8 of 8

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 19th day of May 2021.

Vice President, Accreditation Service: For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2023

 $For the tests to which this accreditation applies, please {\it refer} to the laboratory's {\it Electrical Scope} of Accreditation.$