SAR TEST REPORT

For

Smarttrac LLC

GPS Tracker and Alert

Model No.:SMT1

Prepared for : Smarttrac LLC

Address : 7(b) Well St, Buckingham, MK 18 1EW, England, United

Kingdom

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.
Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an

Avenue, Bao'an District, Shenzhen, Guangdong, China

Tel : (86)755-82591330 Fax : (86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : December 15, 2016

Number of tested samples :

Serial number : Prototype

Date of Test : December 20, 2016 ~ December 21, 2016

Date of Report : November 29, 2016

SAR TEST REPORT

Report Reference No.: LCS1612283954E

Date Of Issue: November 29, 2016

Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure.....: Full application of Harmonised standards

Partial application of Harmonised standards □

Other standard testing method

Applicant's Name.....: Smarttrac LLC

Kingdom

Test Specification:

Standard : IEEE 1528:2013/KDB 447498/ KDB 941225

47CFR §2.1093

Test Report Form No. LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF..... Dated 2014-09

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: GPS Tracker and Alert

Trade Mark: Smarttrac

Model/Type Reference: SMT1

Operation Frequency: GSM 850/PCS1900

Modulation Type: GSM(GMSK)

Ratings DC 3.7V by battery(3000mAh)

Result Positive

Compiled by:

linda He

Supervised by:

Approved by:

Linda He/ File administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

SAR -- TEST REPORT

Test Report No.: LCS1612283954E November 29, 2016

Date of issue

Type / Model.....: SMT1 EUT.....: : GPS Tracker and Alert Applicant.....: : Smarttrac LLC Address.....: 7(b) Well St, Buckingham, MK 18 1EW, England, United Kingdom Telephone.....: : / Fax....: : / Manufacturer.....: Smarttrac LLC Kingdom Telephone.....: : / Fax.....: : / Factory.....: Smarttrac LLC Kingdom Telephone : / Fax....: : /

Test Result Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2AKRZ-SMT1Report No.:LCS1612283954E
--

Revison History

Revision	Issue Date	Revisions	Revised By
00	2016-12-29	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. TEST STANDARDS AND TEST DESCRIPTION	6
1.1. TEST STANDARDS 1.2. TEST DESCRIPTION 1.3. GENERAL REMARKS 1.4. PRODUCT DESCRIPTION 1.5. STATEMENT OF COMPLIANCE	
2. TEST ENVIRONMENT	8
2.1. TEST FACILITY	
3. SAR MEASUREMENTS SYSTEM CONFIGURATION	
3.1. SARMEASUREMENT SET-UP 3.2. OPENSAR E-FIELD PROBE SYSTEM 3.3. PHANTOMS 3.4. DEVICE HOLDER 3.5. SCANNING PROCEDURE 3.6. DATA STORAGE AND EVALUATION 3.7. POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM 3.8. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOM 3.9. TISSUE EQUIVALENT LIQUID PROPERTIES 3.10. SYSTEM CHECK 3.11. SAR MEASUREMENT PROCEDURE 3.12. POWER REDUCTION 3.13. POWER DRIFT	
4. TEST CONDITIONS AND RESULTS	21
4.1. CONDUCTED POWER RESULTS	22 24 25 25 27 27 27 27 28
5. CALIBRATION CERTIFICATES	34
 5.1 PROBE-EP220 CALIBRATION CERTIFICATE 5.2 SID835DIPOLE CALIBRATION CERTIFICATE 5.3 SID1900 DIPOLE CALIBRATION CERTIFICATE 	43
6. EUT TEST PHOTOGRAPHS	65
7 FUT PHOTOCRAPHS	6070

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

<u>IEEE Std C95.1, 2005:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

<u>FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices</u>

KDB447498 D01 General RF Exposure Guidance v06 : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04, Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB941225 D01 3G SAR Procedures v03r01: 3G SAR MEAUREMENT PROCEDURES

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	December 20, 2016
Testing commenced on	:	December 20, 2016
Testing concluded on	:	December 21, 2016

1.4. Product Description

The **Smarttrac LLC's** Model: SMT1 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description			
Product Name:	GPS Tracker and Alert		
Trade Mark:	Smarttrac		
Model/Type reference:	SMT1		
Listed Model(s):	1		
Modulation Type:	GMSK for GSM/GPRS, 8PSK for EGPRS		
Device category:	Portable Device		
Exposure category:	General population/uncontrolled environment		
EUT Type:	Production Unit		
Hardware Version			
Software Version:			
Power supply:	DC 3.7V by battery(3000mAh)		
Hotspot:	Not supported		

The EUT is GPS Tracker and Alert. the GPS Tracker and Alertis intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS class 12 for GSM850 and PCS 1900 functions. For more information see the following datasheet

Technical Characteristics	
GSM	
Support Networks	GSM, GPRS
Support Band	GSM850, PCS1900
Frequency	GSM850: 824.2~848.8MHz
	GSM1900: 1850.2~1909.8MHz
Power Class:	GSM850:Power Class 5
	PCS1900:Power Class 0
Modulation Type:	GMSK for GSM/GPRS, 8-PSK(EGPRS)
Antenna Type	PIFA Antenna, 1.0 dBi(max.) For GSM 850;1.50 dBi(max.) For PCS 1900
GSM Release Version	R99
GPRS Multislot Class	12
EGPRS Multislot Class	12
DTM Mode	Not Supported

1.5. Statement of Compliance

The maximum of results of SAR found during testing for SMT1 are follows:

<Highest Reported standalone SAR Summary>

Classment Class	Frequency Band	Body-worn (Report 1g SAR(W/Kg)
PCE	GSM 850	1.391
POE	GSM1900	0.801

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Site Description EMC Lab.

: CNAS Registration Number. is L4595. FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1. VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C		
Humidity:	40-65 %		
Atmospheric pressure:	950-1050mbar		

2.3. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average(averaged over the whole body)	0.08	0.4	
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0	
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

2.4. Equipments Used during the Test

		Calibration		ation	
Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Calibration Due
PC	Lenovo	G5005	MY42081102	N/A	N/A
Signal Generator	Angilent	E4438C	MY42081396	09/25/2016	09/24/2017
Multimeter	Keithley	MiltiMeter 2000	4059164	10/01/2016	09/30/2017
S-parameter Network Analyzer	Agilent	8753ES	US38432944	09/25/2016	09/24/2017
Wireless Communication Test Set	R&S	CMU200	105988	09/25/2016	09/24/2017
Power Meter	R&S	NRVS	100469	09/25/2016	09/24/2017
Power Sensor	R&S	NRV-Z51	100458	09/25/2016	09/24/2017
Power Sensor	R&S	NRV-Z32	10057	09/25/2016	09/24/2017
E-Field PROBE	SATIMO	SSE5	SN 17/14 EP220	11/01/2016	10/31/2017
DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	10/01/2015	09/30/2018
DIPOLE 1900	SATIMO	SID 1900	SN 30/14 DIP 1G900-333	10/01/2015	09/30/2018
COMOSAR OPEN Coaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	10/01/2016	09/30/2017
Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	10/01/2016	09/30/2017
Mobile Phone POSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
6 AXIS ROBOT	KUKA	KR6-R900	501217	N/A	N/A
High Power Solid State Amplifier (80MHz~1000MHz)	Instruments for Industry	CMC150	M631-0627	09/25/2016	09/24/2017
Medium Power Solid State Amplifier (0.8~4.2GHz)	Instruments for Industry	S41-25	M629-0539	09/25/2016	09/24/2017
Wave Tube Amplifier 48 GHz at 20Watt	Hughes Aircraft Company	1277H02F000	102	09/25/2016	09/24/2017

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SARMeasurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

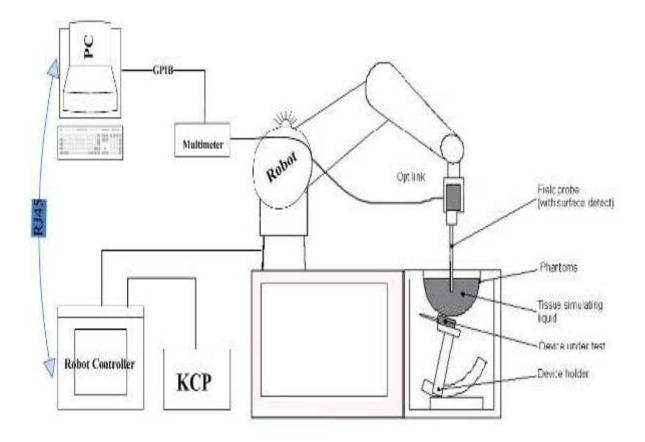
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EP220 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity: 0.25dB(700 MHz to 3GHz)

Directivity 0.25 dB in HSL (rotation around probe axis)

0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range 0.01W/kg to > 100 W/kg;

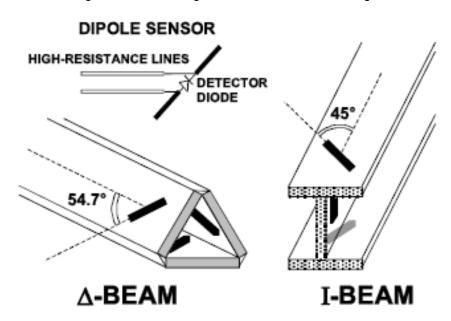
Linearity: 0.25 dB

Dimensions Overall length: 330 mm (Tip: 16mm)

Tip diameter: 5 mm (Body: 8 mm)

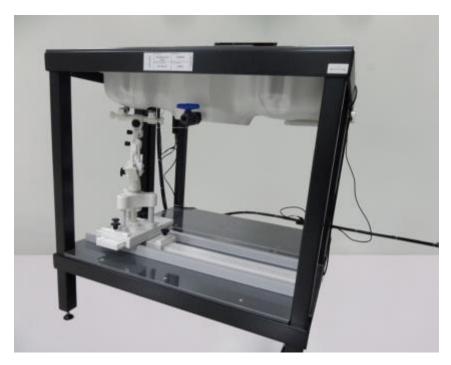
Distance from probe tip to sensor centers: 2.5 mm

Application General dosimetry up to 3 GHz


Dosimetry in strong gradient fields Compliance tests of Mobile Phones

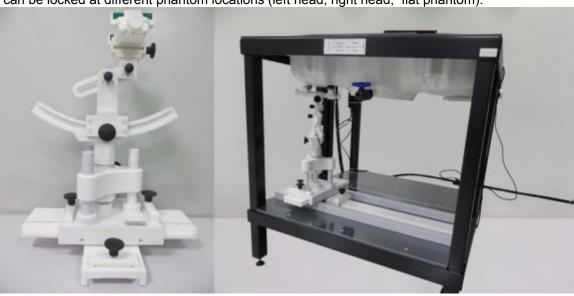
Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz}$: $\leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz}$: $\leq 4 \text{ mm}^*$
uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
gna	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Z\infty}$	om(n-1) mm
x, y, z		\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm
	uniform graded grid	spatial resolution: Δx_{Zoom} , Δy_{Zoom} uniform grid: $\Delta z_{Zoom}(n)$ $\begin{array}{c} \Delta z_{Zoom}(n) \\ \text{1st two points closest to phantom surface} \\ \hline \Delta z_{Zoom}(n>1) \\ \text{between subsequent points} \end{array}$	spatial resolution: Δx_{Zoom} , Δy_{Zoom} $2-3 \text{ GHz: } \leq 5 \text{ mm}^*$ uniform grid: $\Delta z_{Zoom}(n)$ $\leq 5 \text{ mm}$ $\begin{array}{c} \Delta z_{Zoom}(1)\text{: between} \\ 1^{st} \text{ two points closest} \\ \text{to phantom surface} \\ \hline \Delta z_{Zoom}(n>1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/q], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi - Diode compression point Dcpi

Device parameters: - Frequency

 Crest factor cf

Media parameters: - Conductivity σ

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvE}}$$

$$H-\text{fieldprobes}: \qquad H_i = \sqrt{Norm_i \cdot Conv}F$$

$$H-\text{fieldprobes}: \qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$
 al of channel i
$$(\textbf{i} = \textbf{x}, \textbf{y}, \textbf{z})$$

$$(\textbf{i} = \textbf{x}, \textbf{y}, \textbf{z})$$

$$(\textbf{i} = \textbf{x}, \textbf{y}, \textbf{z})$$

$$(\textbf{i} = \textbf{x}, \textbf{y}, \textbf{z})$$

= compensated signal of channel i With Vi Normi

= sensor sensitivity of channel i

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2AKRZ-SMT1Report No.:LCS1612283954E

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

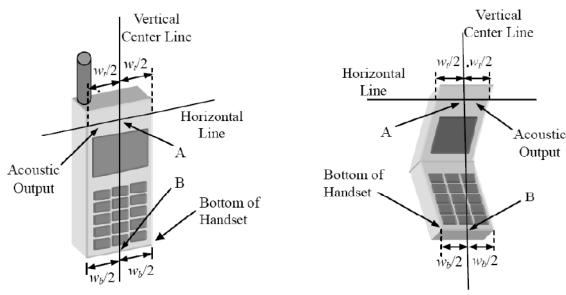
σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

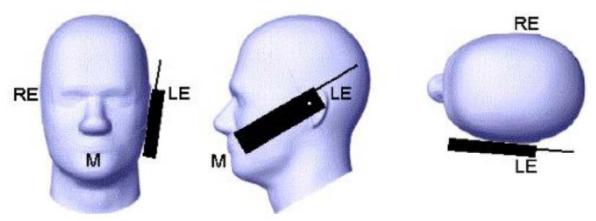

The power flow density is calculated assuming the excitation field as a free space field

$$P_{\text{(pwe)}} = \frac{E_{\text{tot}}^2}{3770} \text{ or } P_{\text{(pwe)}} = H_{\text{tot}}^2.37.7$$

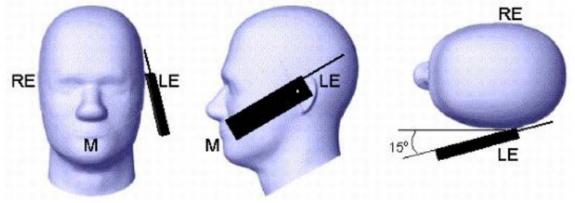
Where Ppwe=Equivalent power density of a plane wave in mW/cm2

Etot=total electric field strength in V/m

H_{tot}=total magnetic field strength in A/m


Wt Width of the handset at the level of the acoustic

W_bWidth of the bottom of the handset


A Midpoint of the widthwtof the handset at the level of the acoustic output

B Midpoint of the width w_b of the bottom of the handset

Picture 1-a Typical "fixed" case handset Picture 1-b Typical "clam-shell" case handset

Picture 2 Cheek position of the wireless device on the left side of SAM

Picture 3 Tilt position of the wireless device on the left side of SAM

For body SAR test we applied to FCC KDB447498 D01v06.

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

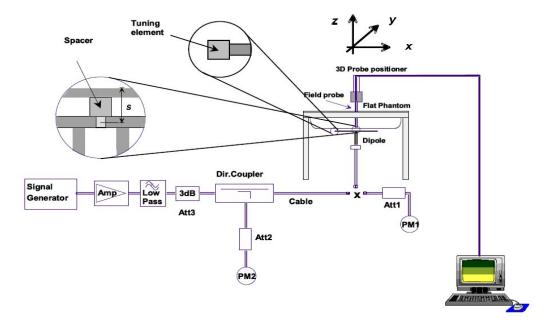
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid

Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	٤r
750	/	/	/	0.79	1	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	1	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	1	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	1	/	30.45	55.36	1.38	41.0
1900	/	13.84	/	0.35	1	/	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	1	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	1	1	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	1	/	19.97	71.88	1.88	40.3

Target Frequency	H	ead	В	ody
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.9. Tissue equivalent liquid properties


Dielectric Performance of Head and Body Tissue Simulating Liquid

		2.0.00		0	. aa boay			4 0.0	
Tissue	Measured	Target	Tissue		Measure	d Tissue		Liquid	
Type	Frequency (MHz)	$\epsilon_{ m r}$	σ	ε _r	Dev.	σ	Dev.	Liquid Temp.	Test Data
835B	835	55.2	0.97	53.23	-3.57%	0.98	1.03%	22.5	12/20/2016
1900B	1900	53.30	1.52	54.42	2.10%	1.51	-0.66%	22.5	12/21/2016

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID835SN 07/14 DIP 0G835-303 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2015-10-01	-24.46		55.4		2.4	
2016-09-30	-25.53	-2.058%	56.1	0.214	1.352	-0.423

SID1900 SN 30/14 DIP 1G900-333Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2015-10-01	-23.68		51.2		6.4	
2016-09-30	-24.19	-0.106%	50.179	0.874	3.521	-0.247

Mixtur e	Frequen	Power	SAR _{1q}	SAR _{10q}	Drift	1W Ta	arget		rence entage	Liquid	Date
Туре	cy (MHz)	rowei	(W/Kg)	(W/Kg)	(%)	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Temp	Date
		100 mW	0.966	0.630							12/20/
Body	835	Normalize to 1 Watt	9.66	6.33	1.26	9.90	6.39	-2.42	-0.94	22.5	2016
		100 mW	4.347	2.140							12/21/
Body	1900	Normalize to 1 Watt	43.47	21.40	-0.33	43.33	21.59	0.32	-0.88	22.5	2016

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

- a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum powerin each supported wireless interface and frequency band.
- b. Read the WWAN RF power level from the base station simulator.
- c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
- d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.13. Power Drift To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2AKRZ-SMT1Report No.:LCS1612283954E
The product without any power reduction. 3.13. Power Drift To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This	
The product without any power reduction. 3.13. Power Drift To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This	a da Barrara Barbaratan
3.13. Power Drift To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This	3.12. Power Reduction
3.13. Power Drift To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This	
To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This	The product without any power reduction.
To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This	
E-field at the same location at the beginning and at the end of the measurement for each test position. This	3.13. Power Drift
E-field at the same location at the beginning and at the end of the measurement for each test position. This	
ensures that the power drift during one measurement is within 5%.	To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the F-field at the same location at the beginning and at the end of the measurement for each test position. This
	ensures that the power drift during one measurement is within 5%.
This was out shall not be very advect a veent in full without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.	

4.TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

Conducted power measurement results for GSM850/PCS1900

		Burst Co	nducted pow				age power (c	IBm)	
GSI	M 850	Chann	el/Frequency	/(MHz)	1	Channel/Frequency(MHz)			
		128/824.2	190/836.6 251/848.8			128/824.2	190/836.6	251/848.8	
G	SM	31.35	31.24	31.36	-9.03dB	22.32	22.21	22.33	
	1TX slot	31.02	31.11	31.05	-9.03dB	21.99	22.08	22.02	
GPRS	2TX slot	30.15	30.14	30.22	-6.02dB	24.13	24.12	24.20	
(GMSK)	3TX slot	29.42	29.47	29.38	-4.26dB	25.16	25.21	25.12	
	4TX slot	27.61	27.66	27.59	-3.01dB	24.60	24.65	24.58	
	1TX slot	26.76	26.75	26.81	-9.03dB	17.73	17.72	17.78	
EGPRS	2TX slot	24.57	24.55	24.52	-6.02dB	18.55	18.53	18.50	
(8PSK)	3TX slot	22.34	22.38	22.29	-4.26dB	18.08	18.12	18.03	
	4TX slot	20.14	20.11	20.17	-3.01dB	17.13	17.10	17.16	
		Burst Co	nducted pow	rer (dBm)		Average power (dBm)			
GSM	1 1900	Channel/Frequency(MHz)			,	Channel/Frequency(MHz)			
001	1 1300	512/	661/	810/	'	512/	661/	810/	
		1850.2	1880	1909.8		1850.2	1880	1909.8	
G	SM	29.82	29.73	29.75	-9.03dB	20.79	20.70	20.72	
	1TX slot	29.23	29.25	29.22	-9.03dB	20.20	20.22	20.19	
GPRS	2TX slot	27.35	27.31	27.28	-6.02dB	21.33	21.29	21.26	
(GMSK)	3TX slot	26.44	26.49	26.41	-4.26dB	22.18	22.23	22.15	
	4TX slot	24.27	24.22	24.29	-3.01dB	21.26	21.21	21.28	
	1TX slot	25.82	25.88	25.79	-9.03dB	16.79	16.85	16.76	
EGPRS	2TX slot	23.74	23.71	23.68	-6.02dB	17.72	17.69	17.66	
(8PSK)	3TX slot	21.52	21.59	21.53	-4.26dB	17.26	17.33	17.27	
	4TX slot	19.77	19.79	19.82	-3.01dB	16.76	16.78	16.81	

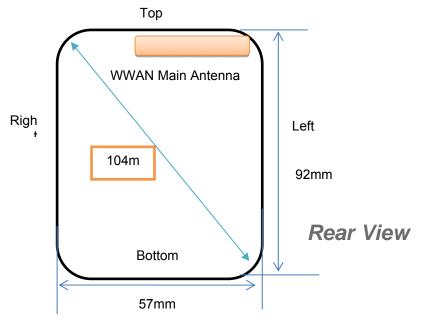
Notes:

1. Division Factors

To average the power, the division factor is as follows:

- 1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB
- 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB
- 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB
- 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB
- 2. According to the conducted power as above, the GPRS measurements are performed with 3Txslot for GPRS850 and 3Txslot GPRS1900.

4.2. Manufacturing tolerance


GSM 850 (GMSK) (Burst Average Power)					
Channel	Channel 128	Channel 190	Channel 251		
Target (dBm)	31.0	31.0	31.0		
Tolerance ±(dB)	1.0	1.0	1.0		
	GSM 1900 (GMSK) (B	Burst Average Power)			
Channel	Channel 512	Channel 661	Channel 810		
Target (dBm)	29.0	29.0	29.0		
Tolerance ±(dB)	1.0	1.0	1.0		

	GSM 850 GPRS	(GMSK) (Burst Av	verage Power)	
Cha	annel	128	190	251
1 Txslot	Target (dBm)	31.0	31.0	31.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
2 Txslot	Target (dBm)	30.0	30.0	30.0
2 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
3 Txslot	Target (dBm)	29.0	29.0	29.0
3 1 X 5101	Tolerance ±(dB)	1.0	1.0	1.0
4 Txslot	Target (dBm)	27.0	27.0	27.0
4 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
		(8PSK) (Burst Av	verage Power)	
Cha	annel	128	190	251
1 Txslot	Target (dBm)	26.0	26.0	26.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
2 Txslot	Target (dBm)	24.0	24.0	24.0
2 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0
3 Txslot	Target (dBm)	22.0	22.0	22.0
3 1 X 5101	Tolerance ±(dB)	1.0	1.0	1.0
4 Txslot	Target (dBm)	20.0	20.0	20.0
4 1 7 5 10 1	Tolerance ±(dB)	1.0	1.0	1.0
		GMSK) (Burst A		
Cha	annel	512	661	810
1 Txslot	Target (dBm)	29.0	29.0	29.0
1 173101	Tolerance ±(dB)	1.0	1.0	1.0
2 Txslot	Target (dBm)	27.0	27.0	27.0
2 1 1 3 1 0 1	Tolerance ±(dB)	1.0	1.0	1.0
3 Txslot	Target (dBm)	26.0	26.0	26.0
0 173101	Tolerance ±(dB)	1.0	1.0	1.0
4 Txslot	Target (dBm)	24.0	24.0	24.0
4 173101	Tolerance ±(dB)	1.0	1.0	1.0
		E (8PSK) (Burst A		
Cha	annel	512	661	810
1 Txslot	Target (dBm)	25.0	25.0	25.0
1 173101	Tolerance ±(dB)	1.0	1.0	1.0
2 Txslot	Target (dBm)	23.0	23.0	23.0
2 1 / 3101	Tolerance ±(dB)	1.0	1.0	1.0
3 Txslot	Target (dBm)	21.0	21.0	21.0
0 173101	Tolerance ±(dB)	1.0	1.0	1.0
4 Txslot	Target (dBm)	19.0	19.0	19.0
7 1 / 3101	Tolerance ±(dB)	1.0	1.0	1.0

GSM 850 (GMSK) (source-based time-averaged Power)						
Channel	Channel 128	Channel 190	Channel 251			
Target (dBm)	22.0	22.0	22.0			
Tolerance ±(dB)	1.0	1.0	1.0			
GSM 1900 (GMSK) (source-based time-averaged Power)						
GSM ¹	1900 (GMSK) (source-l	pased time-averaged P	ower)			
Channel	1900 (GMSK) (source-l Channel 512	Channel 661	ower) Channel 810			
			, ,			

GSM 850 GPRS (GMSK) (source-based time-averaged Power)						
Cha	annel	128	190	251		
1 Txslot	Target (dBm)	22.0	22.0	22.0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0		
2 Txslot	Target (dBm)	24.0	24.0	24.0		
2 1 XSIOL	Tolerance ±(dB)	1.0	1.0	1.0		
3 Txslot	Target (dBm)	25.0	25.0	25.0		
3 1 X SIOL	Tolerance ±(dB)	1.0	1.0	1.0		
4 Txslot	Target (dBm)	24.0	24.0	24.0		
4 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0		
GS	M 850 EDGE (8PSK	() (source-based ti	me-averaged Pow			
Cha	annel	128	190	251		
1 Txslot	Target (dBm)	17.0	17.0	17.0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0		
2 Txslot	Target (dBm)	18.0	18.0	18.0		
2 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0		
3 Txslot	Target (dBm)	18.0	18.0	18.0		
3 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0		
4 Txslot	Target (dBm)	17.0	17.0	17.0		
	Tolerance ±(dB)	1.0	1.0	1.0		
	/ 1900 GPRS (GMS)					
Cha	annel	512	661	810		
1 Txslot	Target (dBm)	20.0	20.0	20.0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1.0	1.0	1.0		
2 Txslot	Target (dBm)	21.0	21.0	21.0		
2 173101	Tolerance ±(dB)	1.0	1.0	1.0		
3 Txslot	Target (dBm)	22.0	22.0	22.0		
0 173101	Tolerance ±(dB)	1.0	1.0	1.0		
4 Txslot	Target (dBm)	21.0	21.0	21.0		
	Tolerance ±(dB)	1.0	1.0	1.0		
	M 1900 EDGE (8PS)					
Cha	annel	512	661	810		
1 Txslot	Target (dBm)	16.0	16.0	16.0		
1 173101	Tolerance ±(dB)	1.0	1.0	1.0		
2 Txslot	Target (dBm)	17.0	17.0	17.0		
2 173101	Tolerance ±(dB)	1.0	1.0	1.0		
3 Txslot	Target (dBm)	17.0	17.0	17.0		
0 173101	Tolerance ±(dB)	1.0	1.0	1.0		
4 Txslot	Target (dBm)	16.0	16.0	16.0		
7 170101	Tolerance ±(dB)	1.0	1.0	1.0		

4.3. Transmit Antennas and SAR Measurement Position

Antenna information:

WWAN Main Antenna	GSM/TX/RX
TTTT III THAILT THE III A	331111111111111111111111111111111111111

Distance of The Antenna to the EUT surface and edge							
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side						
WWAN	<5mm	<5mm	<5mm	80mm	<5mm	<5mm	

4.4. Standalone SAR Test Exclusion Considerations

Per KDB447498 for standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [√ f(GHz)] ≤ 3.0 for 1-q SARand ≤ 7.5 for 10-q extremity SAR, where

- •f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- •The result is rounded to one decimal place for comparison
- •3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B:

- a) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
- b) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and \leq 6 GHz

	;	Standalone SAI	R test exclu	sion conside	erations		
Communication system	Frequency (MHz)	Configuration	Maximum Average Power (dBm)	Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR Exclusion
		Front Size	26	5	184.40	3.0	no
		BackSize	26	5	184.40	3.0	no
GSM 850	850	Left Size	26	5	184.40	3.0	no
G3W 630		Right Size	26	5	184.40	3.0	no
		Top Size	26	5	184.40	3.0	no
		Bottom Size	26	80	26dBm	25.22dBm	no
		Front Size	23	5	138.13	3.0	no
		Back Size	23	5	138.13	3.0	no
CSM 1000	1900	Left Size	23	5	138.13	3.0	no
GSM 1900	1900	Right Size	23	5	138.13	3.0	no
		Top Size	23	5	138.13	3.0	no
		Bottom Size	23	80	23dBm	26.12 dBm	yes

Remark:

- Maximum average power including tune-up tolerance;
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

4.5. Standalone SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10}

Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR=Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

	2419	-
	Test Mode	Duty Cycle
Г	GPRS850	1:2.67
	GPRS1900	1:2

Table 5: SAR Values [GSM/GPRS 850]

				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
		meas	sured / repor	ted SAR numi	bers - Body (Body-wo	orn, dista	nce 0mm)		
190	836.6	Voice	Front	25.21	26.00	4.15	1.199	0.581	0.697	Plot 1
	measured / reported SAR numbers - Body (Body-worn, distance 0mm)									
190	836.6	3Txslots	Front	25.21	26.00	-0.34	1.199	1.160	1.391	Plot 2
128	824.2	3Txslots	Front	25.16	26.00	3.47	1.213	0.928	1.126	
251	848.8	3Txslots	Front	25.12	26.00	-3.82	1.225	1.006	1.232	
190	836.6	3Txslots	Rear	25.21	26.00	4.47	1.199	0.508	0.609	
190	836.6	3Txslots	Left	25.21	26.00	0.18	1.199	0.321	0.385	
190	836.6	3Txslots	Right	25.21	26.00	-4.08	1.199	0.224	0.269	
190	836.6	3Txslots	Тор	25.21	26.00	1.33	1.199	0.296	0.355	
190	836.6	3Txslots	Bottom	25.21	26.00	-2.78	1.199	0.169	0.203	

Remark

- 1. The value with blue color is the maximum SAR Value of each test band.
- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
- 3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
- 4. Per KDB 648474 D04, when the reported SAR for a body-worn accessory measured without a headset connected tothe handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.

Table 6: SAR Values [GSM/GPRS1900]

_			•	u.b. 0 0 0 0 1 1 1 1			1			
				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	time slots	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
	measured / reported SAR numbers –Body (Body-worn, distance 0mm)									
661	1880.0	Voice	Front	22.23	23.00	-0.95	1.194	0.212	0.253	Plot 3
		mea	asured / repor	ted SAR num	bers –Body (Body-wo	orn, dista	nce 0mm)		
661	1880.0	3Txslots	Front	22.23	23.00	-0.01	1.194	0.671	0.801	Plot 4
661	1880.0	3Txslots	Rear	22.23	23.00	-4.51	1.194	0.413	0.493	
661	1880.0	3Txslots	Left	22.23	23.00	-1.54	1.194	0.253	0.302	
661	1880.0	3Txslots	Right	22.23	23.00	-0.99	1.194	0.186	0.222	
661	1880.0	3Txslots	Тор	22.23	23.00	0.63	1.194	0.227	0.271	

Remark:

- 1. The value with blue color is the maximum SAR Value of each test band.
- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
- 3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
- 4. Per KDB 648474 D04, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.

4.6. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

						First Re	epeated
Frequency Band	Air Interface	RF Exposure Configuration	Test Position	Repeated SAR (yes/no)	Highest Measured SAR _{1-q} (W/Kg)	Measued SAR _{1-q} (W/Kg)	Largest to Smallest SAR Ratio
850MHz	GSM850	Standalone	Body-Front	yes	1.160	0.964	1.004
1900MHz	GSM1900	Standalone	Body-Front	no	0.671	n/a	n/a

4.7. General description of test procedures

- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 6. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - •≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - \bullet ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \bullet ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 7. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 8. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.

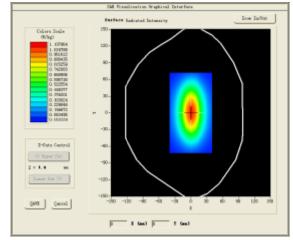
4.8. Measurement Uncertainty (300MHz-3GHz)

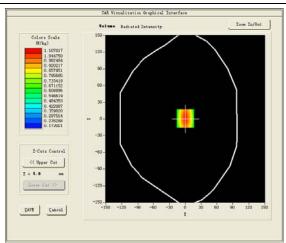
Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is ≥ 1.5 W/kg for 1-g SAR according to KDB865664D01.

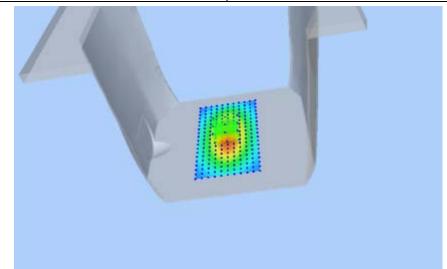
4.9. System Check Results

Test mode:835MHz(Body)
Product Description:Validation

Model:Dipole SID835


E-Field Probe:SSE5(SN17/14 EP220)


Test Date:December 20, 2016

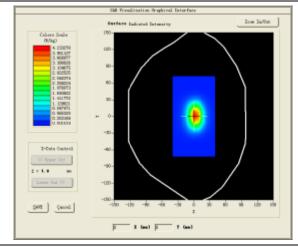

Medium(liquid type)	MSL_850			
Frequency (MHz)	835.0000			
Relative permittivity (real part)	54.67			
Conductivity (S/m)	1.01			
Input power	100mW			
Crest Factor	1.0			
Conversion Factor	5.36			
Variation (%)	1.2600000			
SAR 10g (W/Kg)	0.6304469			
SAR 1g (W/Kg)	0.9660254			

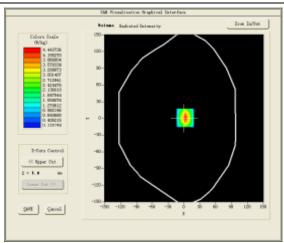
SURFACE SAR

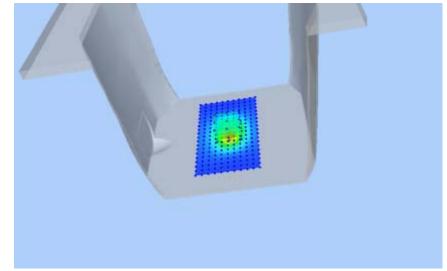
VOLUME SAR

Test mode:1900MHz(Body) Product Description:Validation

Model:Dipole SID1900


E-Field Probe:SSE5(SN17/14 EP220)


Test Date:December 21, 2016


Medium(liquid type)	MSL_1800		
Frequency (MHz)	1900.0000		
Relative permittivity (real part)	53.86		
Conductivity (S/m)	1.46		
Input power	100mW		
Crest Factor	1.0		
Conversion Factor	4.42		
Variation (%)	-0.3300000		
SAR 10g (W/Kg)	2.1404137		
SAR 1g (W/Kg)	4.3467231		

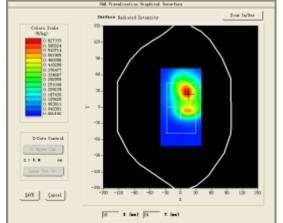
SURFACE SAR

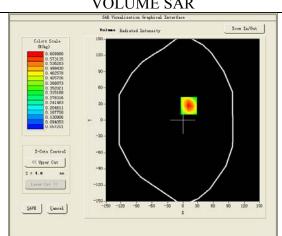
VOLUME SAR

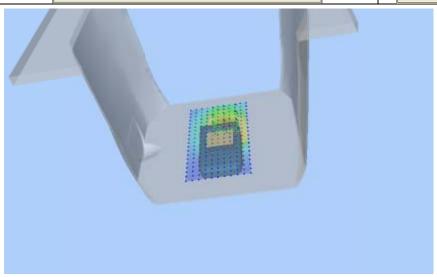
4.10. SAR Test Graph Results

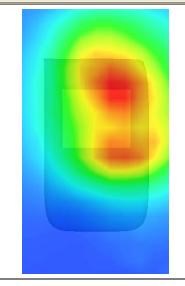
SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

#1


Test Mode:GSM850MHz,Mid channel(Body Front Side)

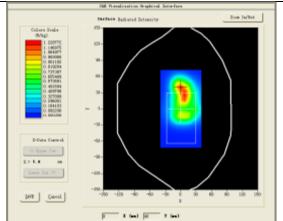

Product Description: GPS Tracker and Alert

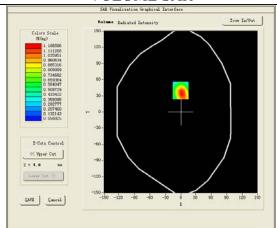

Model:SMT1

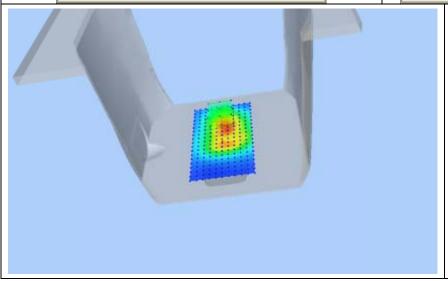

Test Date:December 20, 2016

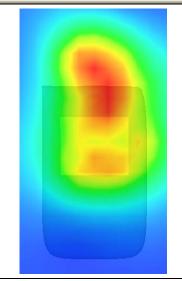
Medium(liquid type)	MSL_850
Frequency (MHz)	836.600000
Relative permittivity (real part)	54.67
Conductivity (S/m)	1.01
E-Field Probe	SN 17/14 EP220
Crest Factor	4.06
Conversion Factor	5.36
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	4.150000
SAR 10g (W/Kg)	0.369689
SAR 1g (W/Kg)	0.580625
SURFACE SAR	VOLUME SAR

#2


Test Mode:GPRS850MHz,Mid channel(BodyFront Side)

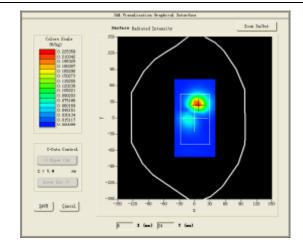

Product Description: GPS Tracker and Alert

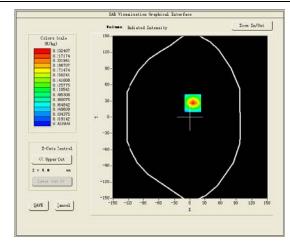

Model:SMT1

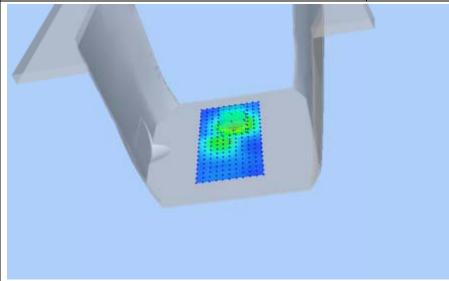

Test Date:December 20, 2016

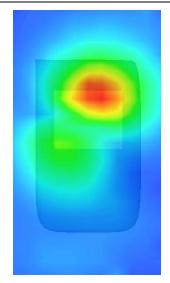
Medium(liquid type)	MSL_850		
Frequency (MHz)	836.600000		
Relative permittivity (real part)	54.67		
Conductivity (S/m)	1.01		
E-Field Probe	SN 17/14 EP220		
Crest Factor	4.06		
Conversion Factor	5.36		
Sensor	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-0.350000		
SAR 10g (W/Kg)	0.706071		
SAR 1g (W/Kg)	1.160195		
SURFACE SAR	VOLUME SAR		

#3


Test Mode:GSM1900MHz,Mid channel(Body Front Side)

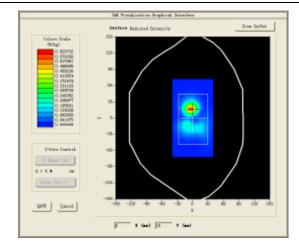

Product Description: GPS Tracker and Alert

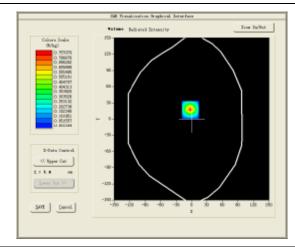

Model:SMT1

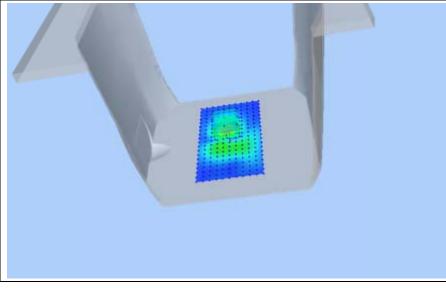

Test Date:December 21, 2016

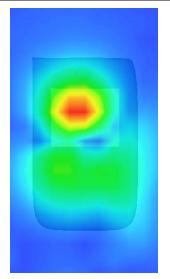
Medium(liquid type)	MSL_1800
Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.86
Conductivity (S/m)	1.46
E-Field Probe	SN17/14 EP220
Crest Factor	4.06
Conversion Factor	4.42
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.950000
SAR 10g (W/Kg)	0.102543
SAR 1g (W/Kg)	0.212144
SURFACE SAR	VOLUME SAR

#4


Test Mode:GPRS1900MHz,Mid channel(Body Front Side)


Product Description: GPS Tracker and Alert


Model:SMT1


Test Date:December 21, 2016

	<u> </u>
Medium(liquid type)	MSL_1800
Frequency (MHz)	1880.000000
Relative permittivity (real part)	53.86
Conductivity (S/m)	1.46
E-Field Probe	SN17/14 EP220
Crest Factor	4.06
Conversion Factor	4.42
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.010000
SAR 10g (W/Kg)	0.272482
SAR 1g (W/Kg)	0.671177
SURFACE SAR	VOLUME SAR

5.CALIBRATION CERTIFICATES

5.1 Probe-EP220 Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.306.1.16.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 17/14 EP220

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/01/2016

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.306.1.16.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/1/2016	JE
Checked by :	Jérôme LUC	Product Manager	11/1/2016	JE
Approved by :	Kim RUTKOWSKI	Quality Manager	11/1/2016	num trutthouski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications	
A	11/1/2016	Initial release	

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.306.1.16.SATU.A

TABLE OF CONTENTS

1	Dev	vice Under Test	
2	Pro	duct Description4	
2	.1	General Information	4
3	Ме	asurement Method4	
3	.1	Linearity	4
3	.2	Sensitivity	5
3	.3	Lower Detection Limit	5
3	.4	Isotropy	5
3.	.5	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Measurement Results	
5	.1	Sensitivity in air	6
5	.2	Linearity	7
5.	.3	Sensitivity in liquid	7
5	.4	Isotropy	8
6	Lis	t of Equipment9	

Page: 3/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.306.1.16.SATU.A

1 DEVICE UNDER TEST

Device	e Under Test
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE5
Serial Number	SN 17/14 EP220
Product Condition (new / used)	Used
Frequency Range of Probe	0.7 GHz-3GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.179 MΩ
.0	Dipole 2: R2=0.175 MΩ
	Dipole 3: R3=0.179 MΩ

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

Ref: ACR.306.1.16.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0° - 180°) in 15° increments. At each step the probe is rotated about its axis (0° - 360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe	calibration in wave	guide			
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3,00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

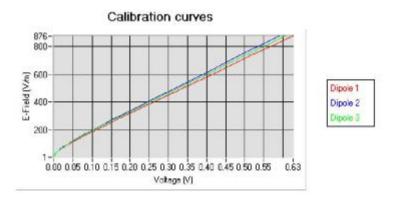
Page: 5/9

Ref: ACR.306.1.16.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

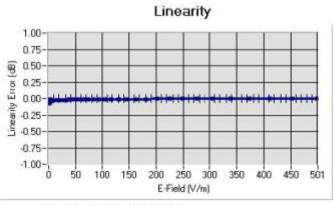

5.1 SENSITIVITY IN AIR

Normx dipole 1 (µV/(V/m) ²)	Normy dipole 2 (μV/(V/m) ²)	
5.96	5.35	5.52

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
99	99	101

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$



Page: 6/9

Ref: ACR.306.1.16.SATU.A

5.2 LINEARITY

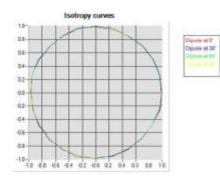
Linearity: II+/-1.70% (+/-0.07dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL850	835	42.19	0.90	5.21
BL850	835	54.67	1.01	5.36
HL900	900	42.08	1.01	4.71
BL900	900	55.25	1.08	4.89
HL1800	1800	41.68	1.46	4.26
BL1800	1800	53.86	1.46	4.42
HL2000	2000	38.26	1.38	4.49
BL2000	2000	52.70	1.51	4.63
HL2450	2450	37.50	1.80	4.44
BL2450	2450	53.22	1.89	4.53
HL2600	2600	39.80	1.99	4.13
BL2600	2600	52.52	2.23	4.25

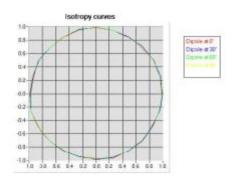
LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9



Ref: ACR.306.1.16.SATU.A

5.4 ISOTROPY


HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.08 dB

Page: 8/9

Ref: ACR.306.1.16.SATU.A

6 LIST OF EQUIPMENT

	Equi	pment Summary S	sneet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Reference Probe	MVG	EP 94 SN 37/08	10/2016	10/2017
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated, No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017

Page: 9/9

5.2 SID835Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.4.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 07/14 DIP 0G835-303

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.287.4.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2015	JE
Checked by:	Jérôme LUC	Product Manager	10/14/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	nim Puthoushi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Date	Modifications	
10/14/2015	Initial release	
		The state of the s

Page: 2/11

Ref: ACR.287.4.14.SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2	Des	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results6	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Val	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	Lie	t of Equipment 11	

Page: 3/11

Ref. ACR.287.4.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID835			
Serial Number	SN 07/14 DIP 0G835-303			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref. ACR 287.4.14 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

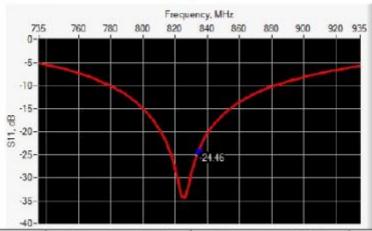
5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

Ref. ACR.287.4.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-24.46	-20	$55.4 \Omega + 2.4 j\Omega$

6.2 MECHANICAL DIMENSIONS

Frequency MHz	uency MHz L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1%.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

Ref: ACR 287.4.14 SATU A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

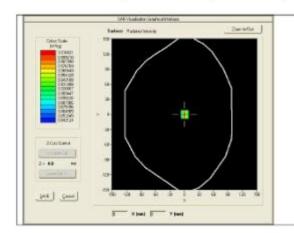
7.1 HEAD LIQUID MEASUREMENT

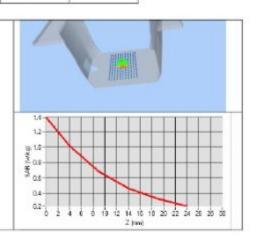
Frequency MHz	Relative permittivity (ϵ_{r}')		Conductivity (a) S/n	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.3 sigma: 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm


Page: 7/11



Ref. ACR.287.4.14.SATU.A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.60 (0.96)	6.22	6.20 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

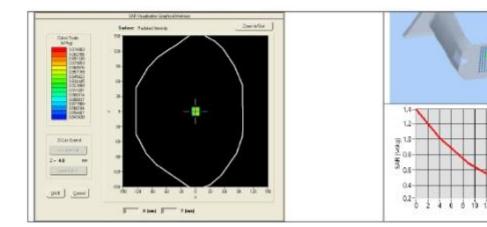
Page: 8/11

Ref: ACR.287.4.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_{r}')		Conductivity (a) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID


Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.1 sigma : 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Page: 9/11

Ref. ACR.287.4.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
835	9.90 (0.99)	6.39 (0.64)	

Page: 10/11

Ref: ACR.287.4.14.SATU.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2014	02/2017		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	Satimo	EPG122 SN 18/11	10/2015	10/2016		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2016		

Page: 11/11

COMOSAR E-Field Probe Calibration Report

Ref: ACR.262.8.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

FREQUENCY:1900MHz

SERIAL NO.: SN 30/14 DIP1G900-333

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR.262.8.14.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	10/14/2015	JS
Checked by:	Jérôme LUC	Product Manager	10/14/2015	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2015	fum Puthoushi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications	
A	10/14/2015	Initial release	

Page: 2/9

Ref: ACR.262.8.14.SATU.A

TABLE OF CONTENTS

1	Inti	oduction	
2	Des	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	lidation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

Ref: ACR.262.8.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type COMOSAR 1900 MHz REFERENCE DIPOI			
Manufacturer Satimo			
Model SID1900			
Serial Number SN 30/14 DIP1G900-333			
Product Condition (new / used) New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref: ACR 262.8.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

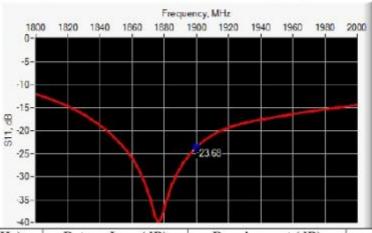
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

5.3 VALIDATION MEASUREMENT

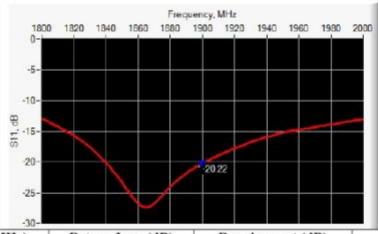
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %


Page: 5/11

Ref: ACR.262.8.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS


6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

 Frequency (MHz)
 Return Loss (dB)
 Requirement (dB)
 Impedance

 1900
 -23.68
 -20
 51.2 Ω + 6.4 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

F	requency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
	1900	-20.22	-20	$48.8 \Omega + 9.6 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h m	h mm		nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	

Page: 6/11

Ref: ACR 262.8.14.SATU.A

900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PAS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3,6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ϵ_r ')	Conductiv	ity (a) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

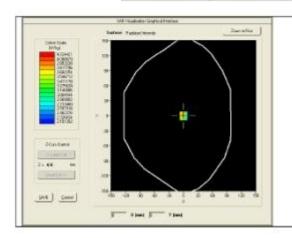
Ref: ACR.262.8.14.SATU.A

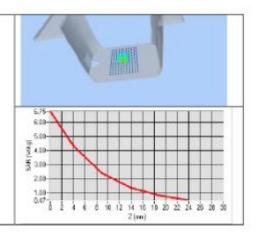
2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 ±5 %	1.96 ±5 %	
3000	38.5 ±5 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 41.1 sigma: 1.42
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	
1800	38.4		20.1	
1900	39.7	39.84 (3.98)	20.5	20.20 (2.02)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	


Page: 8/11

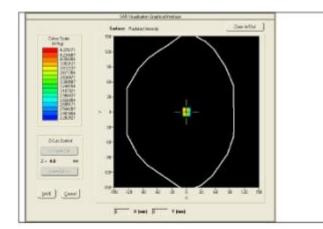
Ref. ACR.262.8.14.SATU.A

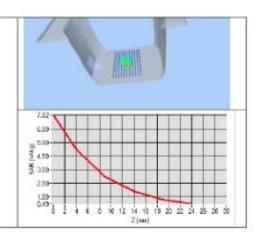
2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ε,')	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11


Ref. ACR.262.8.14.SATU.A


5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

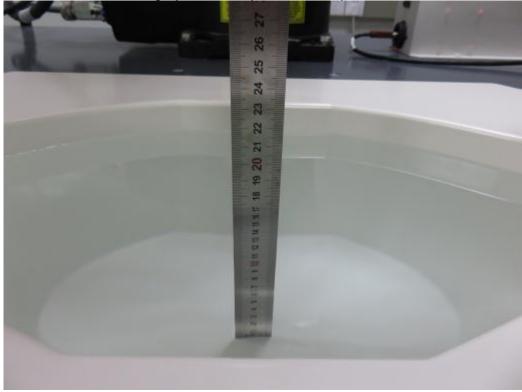
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.2 sigma : 1.54
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	43.33 (4.33)	21.59 (2.16)

Page: 10/11

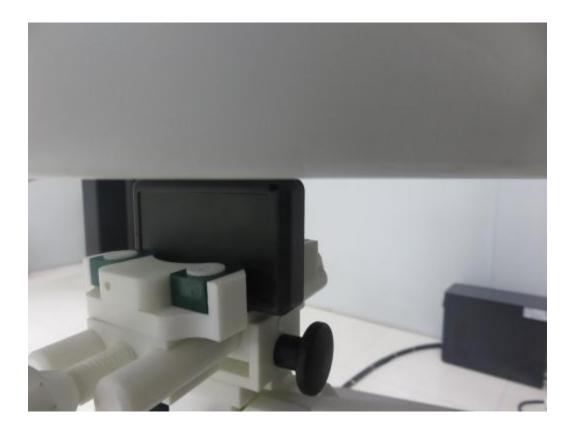
Ref: ACR.262.8.14.SATU.A


8 LIST OF EQUIPMENT

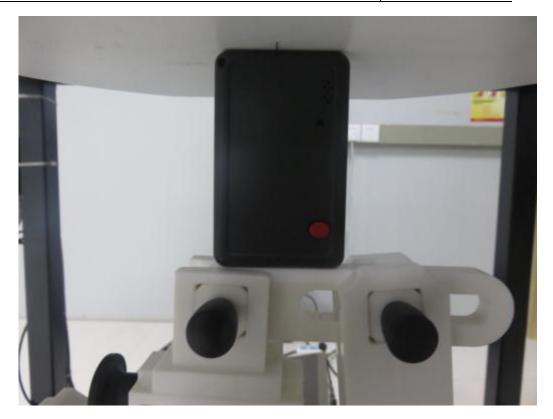
Equipment Description	Manufacturer / Model	Identification No.	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2014	02/2017	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	10/2015	10/2016	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2016	

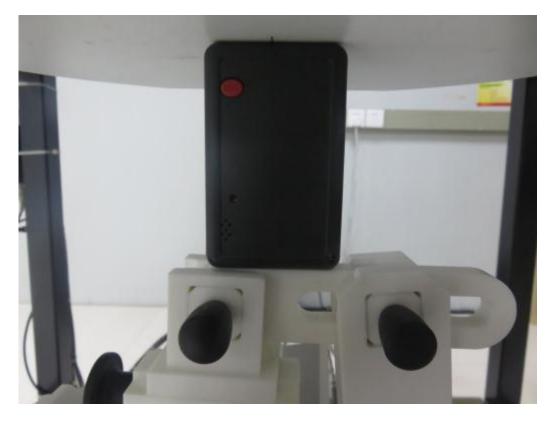
Page: 11/11

6.EUT TEST PHOTOGRAPHS

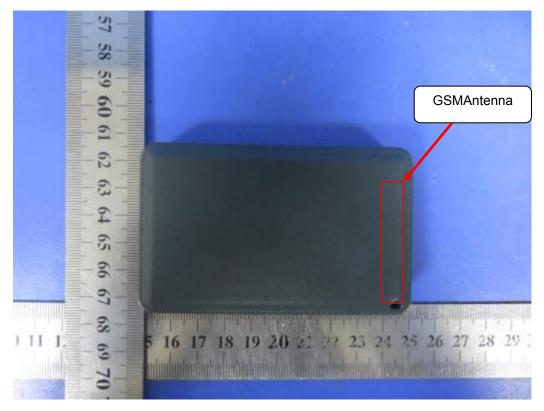

0mm body Front Side Setup Photo

0mm body Rear Side Setup Photo


0mm body Left Side Setup Photo


0mm body Right Side Setup Photo

0mm body Top Side Setup Photo



0mm body Bottom Side Setup Photo

7.EUT Photographs

.....The End of Test Report.....