RF Exposure evaluation

According to KDB 447498 D01 General RF Exposure Guidance v05 The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where \Box f(GHz) is the RF channel transmit frequency in GHz \Box Power and distance are rounded to the nearest mW and mm before calculation \Box The result is rounded to one decimal place for comparison For WiFi: Worse case is as below: [2412 MHz 8.21dBm (6.622mW) output power]

 $(6.622 \text{mW} / 5 \text{mm}) \cdot [\sqrt{2.412} (\text{GHz})] = 2.1 < 3.0 \text{ for } 1\text{-g SAR}$

For 915 MHz transmitter:

$$eirp = pt x gt = (EXd)^2/30$$

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

 $E = electric \ field \ strength \ in \ V/m, \quad --- \qquad 10^{((dBuV/m)/20)}/10^6$

d = measurement distance in meters (m)---3m

So $pt = (EXd)^2/30 x gt$

Ant gain 2 dBi ;so Ant numeric gain=1.585

Field strength = 67.76 dBuV/m @3m

So Pt={ $[10^{(-67.76-/20)}/10^6-x3]^2/30x1.585$ }x1000~mW=0.0018-mW

So $(0.0018 \text{ mW/5mm})x \sqrt{0.915 \text{ GHz}} = 0.00034 < 3$

2.1+0.00034=2.10034<3

Then SAR evaluation is not required