

Product PowerEgg X 8K PowerEgg" Trade mark

Model/Type reference PEX20

Serial Number N/A

Report Number EED39N80209402 FCC ID 2AKBMPEX20 Date of Issue July 15, 2021

Test Standards	Results
47 CFR Part 15 Subpart E	PASS

Prepared for:

Powervision Tech Inc.

Zone E, Ocean Venture Valley, No.40, Yangguang Rd, Nanhai new District, Weihai, Shandong, China. 264200

Prepared by:

Centre Testing International (Suzhou) CO., LTD. Building 18, Zhihui New Town Ecological Industrial Park, No. 1206, Jinyang East Road, Lujia Tolon, Kunshan, Jiangsu, China TEL +86-0512-5015 8288

检验检测专用章

Compiled by:

Reviewed by:

Approved by:

Date:

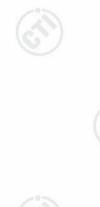
July 15, 2021

Check No.: 7824090421

N	lo.	Last Report No.	Modification Description
1		EED39N80209402	First report

TABLE OF CONTENTS

	INDEE OF CONTENTS	
1 To	est Summary	4
	est Requirement	
2.1	Test Environment	5
2.2	Test Condition	5
3 G	eneral Information	5
3.1	Client Information	5
3.2	General Description of EUT	5
3.3	Product Specification subjective to this standard	6
3.4	Description of Support Units	6
3.5	Test Location	6
3.6	Test Facility	6
3.7	Deviation from Standards	
3.8	Abnormalities from Standard Conditions	6
3.9	Other Information Requested by the Customer	6
3.10	Measurement Uncertainty (95% confidence levels, k=2)	7
4 E	quipment List	8
5 R	adio Technical Requirements Specification	9
5.1	Reference Documents for Testing	9
5.2	Test Results List	
Appen	dix A): Min 6dB emission bandwidth	10
Appen	dix B): Occupied channel bandwidth	17
Appen	dix C): Maximum Conduct Output Power	25
Appen	dix D): Power Spectral Density	33
	dix E): Frequency Stability	
Appen	dix F): Duty cycle	44
	dix G): Antenna Requirement	
Appen	dix H): Operation in the absence of information to the transmit	53
Appen	dix I): AC Power Line Conducted Emission	54
Appen	dix J): Restricted bands around fundamental frequency (Radiated Emission)	56
Appen	dix K): Unwanted Emissions in the Restricted Bands (Radiated Emission)	63
Appen	dix L): Unwanted Emissions that fall Outside of the Restricted Bands	70
	IDIX 1 PHOTOGRAPHS OF TEST SETUP	
APPEN	IDIX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	76



1 Test Summary

(2.3)	(P. N.	1031			
Test Item	Test Requirement	Test method	Result		
26dB Emission Bandwidth	Part15E Section 15.407 (a)	ANSI C63.10-2013	PASS		
Min 6dB emission bandwidth	Part15E Section 15.407 (e)	ANSI C63.10-2013	PASS		
Occupied channel bandwidth	Part15E Section 15.407	ANSI C63.10-2013	PASS		
Maximum Conduct Output Power	Part15E Section 15.407 (a)(1)(2)(4)(h)(1)	ANSI C63.10-2013	PASS		
Power Spectral Density	Part15E Section 15.407 (a)(1)(2)(5)	ANSI C63.10-2013	PASS		
Frequency stability	Part15E Section 15.407 (g)	ANSI C63.10-2013	PASS		
Duty cycle	Part15E Section 15.407	ANSI C63.10-2013	/		
Antenna Requirement	Part15C Section 15.203	ANSI C63.10-2013	PASS		
Operation in the absence of information to the transmit	Part15E Section 15.407 (c)	47 CFR Part 15 Subpart E	PASS		
AC Power Line Conducted Emission	Part15E Section 15.407 (b)(6)	ANSI C63.10-2013	N/A		
Restricted bands around fundamental frequency (Radiated Emission)	Part15E Section 15.407 (b)(6)(7)(8)	ANSI C63.10-2013	PASS		
Unwanted Emissions in the Restricted Bands	Part15E Section 15.407 (b)(6)(7)(8)	ANSI C63.10-2013	PASS		
Unwanted Emissions that fall Outside of the Restricted Bands	Part15E Section 15.407 (b)(1)(2)(3)(5)	ANSI C63.10-2013	PASS		

Q/CTI LD-SUCEED-1007 Version 1.0 Page 4 of 76

2 Test Requirement

2.1 Test Environment

Operating Environment:			
Temperature:	22.3 °C		
Humidity:	48.7 % RH	(2)	(2)
Atmospheric Pressure:	1010mbar		6

2.2 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest wode	TX/KX	Low(L)	Middle(M)	High(H)	
902 11a/a/20M)	5725MHz ~5850 MHz	Channel 149	Channel 157	iddle(M) High(H) annel 157 Channel 165	
802.11a/n(20M)	3723WHZ ~3630 WHZ	5745MHz	5785MHz		

Note: Through Pre-scan,6Mbps of rate is the worst case of 802.11a; 6.5Mbps of rate is the worst case of 802.11n(HT20).

3 General Information

3.1 Client Information

Applicant:	Powervision Tech Inc.	
Address of Applicant:	Zone E,Ocean Venture Valley, No.40, Yangguang Rd, Nanhai new District, Weihai, Shandong,China. 264200	
Manufacturer:	Powervision Tech Inc.	
Address of Manufacturer:	Zone E,Ocean Venture Valley, No.40, Yangguang Rd, Nanhai new District, Weihai, Shandong,China. 264200	
Factory:	Powervision (Suzhou) Technology Co.,Ltd.	
Address of Factory:	Building 3,No.15, Zhujing Road,Changshu High-tech Industrial Development Zone,Suzhou,China	

3.2 General Description of EUT

Product Name:	PowerEgg 2	X 8K		
Model No.(EUT):	PEX20	(:2	13	
Serial Model:	1	(6,7)	(65)	
Trade Mark:	PowerE	:gg [™]		
EUT Supports Radios application:	2.4G WIFI: IEEE802.11b/g/n(20MHz), 2412MHz-2462MHz 5G WIFI: IEEE802.11a/an(HT20)5725-5850MHz. 2.4G: 2406MHz~2466MHz 5G:5740MHz~5830MHz			(chi
Power Supply:	Adapter:	Model:PAD20 INPUT:100-240V 1.4A 50-60Hz OUTPUT:DC 13.3V 3.76A DC 5V 2A	(41)	
. ,	Battery:	Model: PEMIB10 Rated voltage:11.4V Rated capacity:3800mAh		
Sample Received Date:	2021.05.14		_	/°
Sample tested Date:	2021.05.17	to 2021.06.02		(27)

3.3 Product Specification subjective to this standard

Operation Frequency:	IEEE802.11a/n(20M): 5725MHz ~5850 MHz			
Channel Numbers:	IEEE 802.11a/n(20M): 5725MHz ~5850 MHz/ 5 channel			
Type of Modulation:	OFDM			
Sample Type:	Mobile production			
Test Software of EUT:	artgui (manufacturer declare)			
Antenna Type :	Type: PCB antenna			
Antenna Gain [®] :	ANT1 Gain :3dBi ANT2 Gain :3dBi			
Test Voltage:	DC 11.4V			

Note: 1 The antenna gain is provided by the client and we Centre Testing International (Suzhou) CO., LTD. test lab is not responsible for the accuracy of the antenna gain information.

3.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
NB	ThinkPad	E490	FCC ID and DOC	СТІ

3.5 Test Location

All test facilities used to collect the test data are located at Building 18, Zhihui New Town Ecological Industrial Park, No. 1206, Jinyang East Road, Lujia Town, Kunshan, Jiangsu, China.

3.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No. 5734.01

Centre Testing International (Suzhou) CO., LTD. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration. Laboratories and any additional program requirements in the identified field of testing.

FCC-Designation No.:CN1290

Centre Testing International Group Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The American association for Centre Testing International Group Co., Ltd. EMC laboratory accreditation Designation No.:CN1290

3.7 Deviation from Standards

None.

3.8 Abnormalities from Standard Conditions

None.

3.9 Other Information Requested by the Customer

None.

3.10 Measurement Uncertainty (95% confidence levels, k=2)

		7 250.51		
No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	Occupied Bandwidth	0.56%		
3	RF Power conducted	0.59 dB		
4	Power Spectral Density, conducted	2.37 dB		
5	Unwanted Emission, conducted	2.68 dB		
		4.41 dB(30MHz-1GHz)		
6	All Emission, radiated	4.99 dB(1GHz-18GHz)		
/0		5.307 dB(18GHz-40GHz)		
7	Temperature test	0.54°C		
8	Humidity test	1.62%		
9	DC and low frequency voltages test	1.14%		

Q/CTI LD-SUCEED-1007 Version 1.0 Page 7 of 76

4 Equipment List

	RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)		
Signal Generator	R&S	SMB100A	182002	2020-10-23	2021-10-22		
Communication test set	R&S	CMW500	107929	2021-04-29	2022-04-28		
Spectrum Analyzer	R&S	FSV40	101588	2020-10-23	2021-10-22		
Vector signal generator	R&S	SMBV100B	101985	2020-10-23	2021-10-22		
Temperature/ Humidity Indicator	testo	608-H1	1945222628	2020-11-09	2021-11-08		
Switch Automatic control	R&S	OSP-B157W8	101111	2020-10-23	2021-10-22		
High-low temperature chamber	GIANT FORCE	GTH-800-40-CP	MAA1908-003	2020-12-08	2021-12-07		
Automatic test software	Shenzhen JS TONSCEND	/	V2.6.77.0518	1	/		

		966 Semi-anec	hoic Chamber	,	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
Receiver	R&S	ESU8	100537	2020-12-10	2021-12-09
Spectrum analyzer	R&S	FSV40	101185	2020-12-10	2021-12-09
Preamplifier (30MHz~1GHz)	SONOMA	317	393347	2020-12-04	2021-12-03
Preamplifier (1GHz~18GHz)	R&S	SCU-18D	1987397	2020-12-10	2021-12-09
Preamplifier (18GHz~40GHz)	1	MTLNA1804003 0235	12009007	2020-10-23	2021-10-22
Loop Antenna (9kHz~30MHz)	TESEQ	HLA6121	54575	2021-02-27	2022-02-26
Antenna (30MHz~1GHz)	SCHWARZBEC K	VULB9163	9163-965	2020-10-16	2021-10-15
Antenna (1GHz~18GHz)	R&S	HF907	102524	2020-12-15	2021-12-14
Antenna (18GHz~40GHz)	R&S	BBHA9170	1032	2020-10-23	2021-10-22
Band rejection filter	Xi'an xingbo	XBLBQ-DZA81	200827-1-02	1 6	/
Band rejection filter	Xi'an xingbo	XBLBQ-DZA104	200827-1-11	, %	1
Band rejection filter	Xi'an xingbo	XBLBQ-DZA118	200827-1-10	/	1
Band rejection filter	Xi'an xingbo	XBLBQ-DZA105	200827-1-12		1

Q/CTI LD-SUCEED-1007 Version 1.0 Page 8 of 76

Radio Technical Requirements Specification

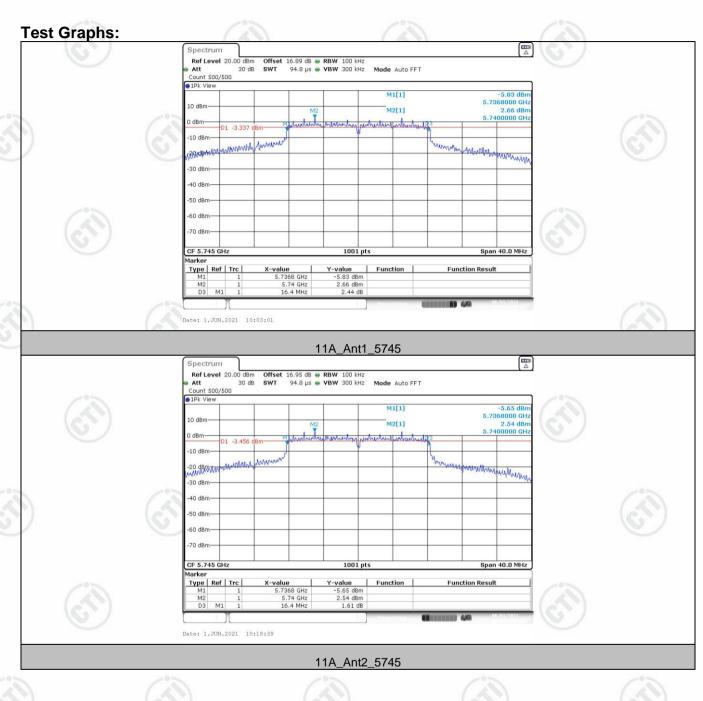
5.1 Reference Documents for Testing

No.	Identity	Document Title
1	FCC Part15E	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
3	KDB789033 D02 General UNII Test Procedures New Rules v01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15 subpart E

5.2 Test Results List

	7 4 5 1			
Test Requirement	Test method	Test item	Verdict	Note
Part15E Section 15.407 (e)	ANSI C63.10-2013	Min 6dB emission bandwidth	PASS	Appendix A)
Part15E Section 15.407	ANSI C63.10-2013	Occupied channel bandwidth	1	Appendix B)
Part15E Section 15.407 (a)(1)(2)(4)(h)(1)	ANSI C63.10-2013	Maximum Conduct Output Power	PASS	Appendix C)
Part15E Section 15.407 (a)(1)(2)(5)	ANSI C63.10-2013	Power Spectral Density	PASS	Appendix D)
Part15E Section 15.407 (g)	ANSI C63.10-2013	Frequency stability	PASS	Appendix E)
Part15E Section 15.407	ANSI C63.10-2013	Duty cycle	/	Appendix F)
Part15C Section 15.203	ANSI C63.10-2013	Antenna Requirement	PASS	Appendix G)
Part15E Section 15.407 (c)	47 CFR Part 15 Subpart E	Operation in the absence of information to the transmit	PASS	Appendix H)
Part15E Section 15.407 (b)(6)	ANSI C63.10-2013	AC Power Line Conducted Emission	PASS	Appendix I)
Part15E Section 15.407 (b)(6)(7)(8)	ANSI C63.10-2013	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix J)
Part15E Section 15.407 (b)(6)(7)(8)	ANSI C63.10-2013	Unwanted Emissions in the Restricted Bands	PASS	Appendix K)
Part15E Section 15.407 (b)(1)(2)(3)(5)	ANSI C63.10-2013	Unwanted Emissions that fall Outside of the Restricted Bands	PASS	Appendix L)

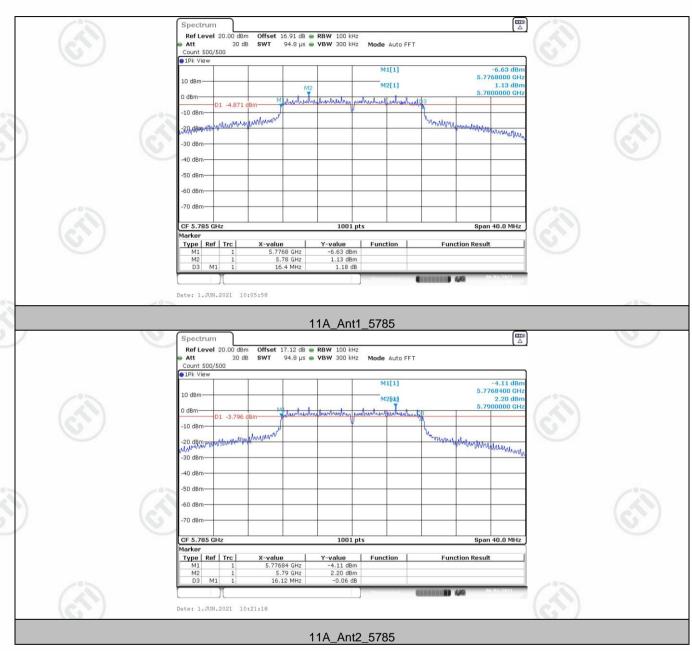
Appendix A): Min 6dB emission bandwidth


Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	RF test System Format Power ports Table RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

Result Table:

Result Tab	IC.	-576	The state of the s	400		-0.00	
Test Mode	Antenna	Channel	6db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
(6)	Ant1	5745	16.400	5736.800	5753.200	0.5	PASS
	Ant2	5745	16.400	5736.800	5753.200	0.5	PASS
11A	Ant1	5785	16.400	5776.800	5793.200	0.5	PASS
	Ant2	5785	16.120	5776.840	5792.960	0.5	PASS
	Ant1	5825	16.360	5816.840	5833.200	0.5	PASS
	Ant2	5825	16.360	5816.840	5833.200	0.5	PASS
(3	Ant1	5745	17.040	5736.200	5753.240	0.5	PASS
(0,)	Ant2	5745	16.760	5736.440	5753.200	0.5	PASS
441100	Ant1	5785	16.960	5776.240	5793.200	0.5	PASS
11N20	Ant2	5785	17.000	5776.440	5793.440	0.5	PASS
1	Ant1	5825	17.040	5816.200	5833.240	0.5	PASS
	Ant2	5825	17.120	5816.440	5833.560	0.5	PASS

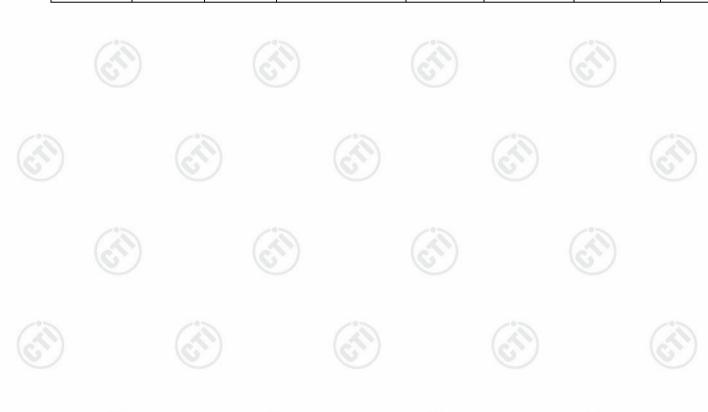
Q/CTI LD-SUCEED-1007 Version 1.0 Page 10 of 76

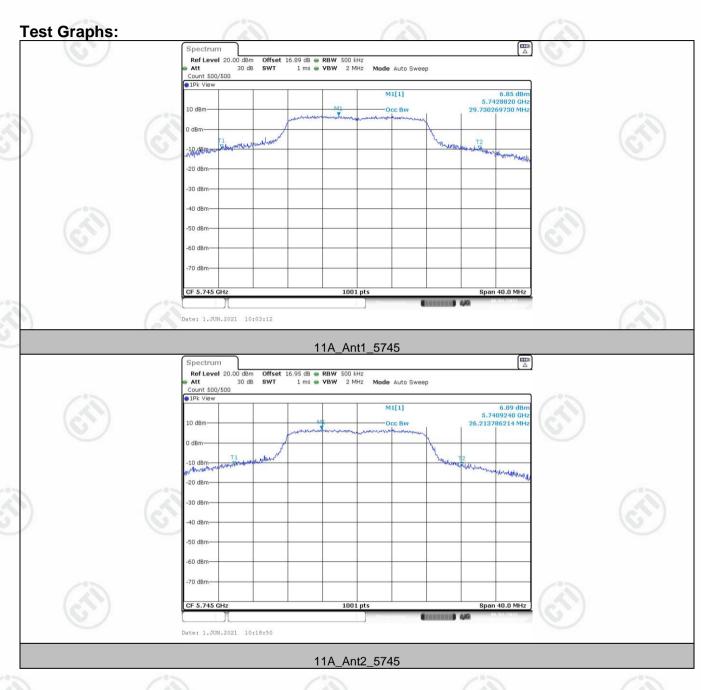




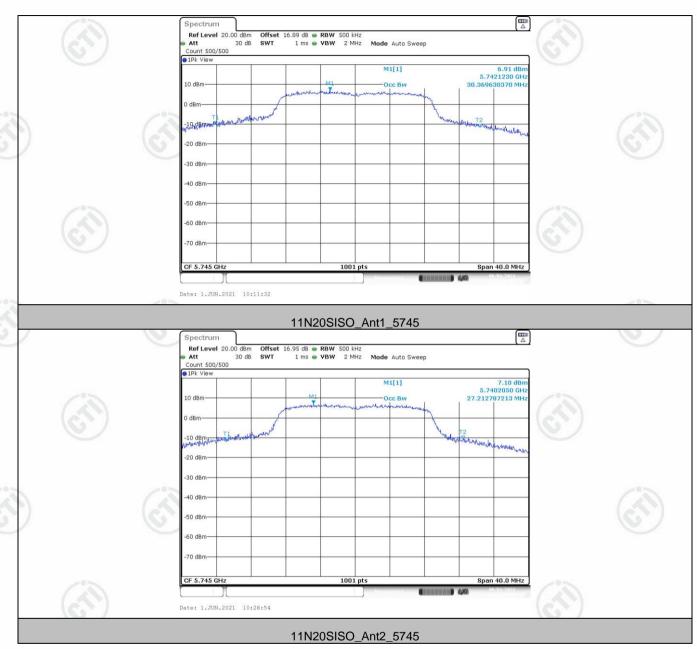
Appendix B): Occupied channel bandwidth

		47 CFR Part 15C Section 15.407 (a)
	Test Requirement:	· · ·
	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
100	Test Setup:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
100	Test Procedure:	 Set center frequency to the nominal EUT channel center frequency. Set span = 1.5 times to 5.0 times the OBW. Set RBW = 1% to 5% of the OBW Set VBW ≥ 3 RBW Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Use the 99% power bandwidth function of the instrument (if available). If the instrument does not have a 99% power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.
	Limit:	No restriction limits
	Test Mode:	Transmitting mode with modulation
3	Test Results:	Pass




Result Table:

			P TOLE X	V		7 · · · A · St. N	
Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	5745	29.73	5729.376	5759.106		PASS
	Ant2	5745	26.214	5730.854	5757.068		PASS
A	Ant1	5785	30.849	5768.856	5799.705	/	PASS
11A	Ant2	5785	26.254	5770.974	5797.228	\	PASS
	Ant1	5825	30.849	5808.896	5839.745		PASS
	Ant2	5825	27.373	5810.375	5837.747		PASS
	Ant1	5745	30.37	5728.936	5759.306		PASS
0	Ant2	5745	27.213	5730.215	5757.428	<u></u>	PASS
11N20	Ant1	5785	31.249	5768.576	5799.825		PASS
	Ant2	5785	27.093	5770.654	5797.747		PASS
	Ant1	5825	31.289	5808.656	5839.945	(PASS
	Ant2	5825	27.812	5810.095	5837.907		PASS



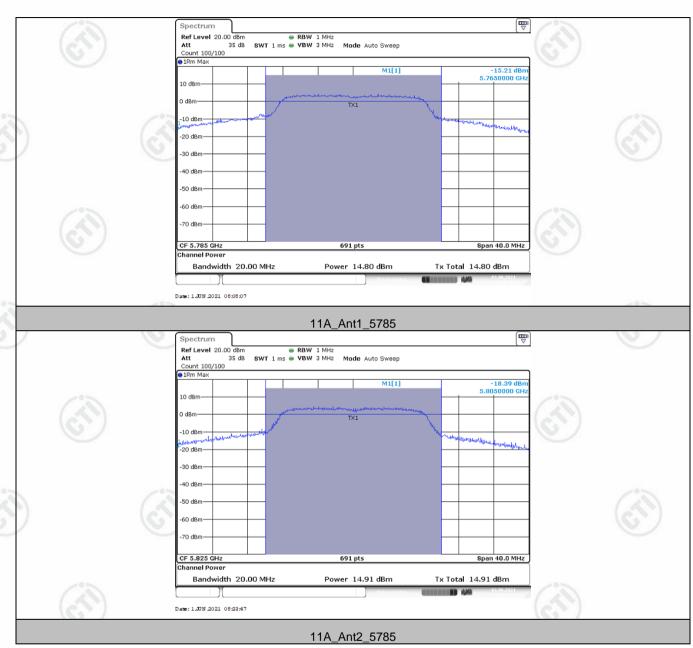
Appendix C): Maximum Conduct Output Power

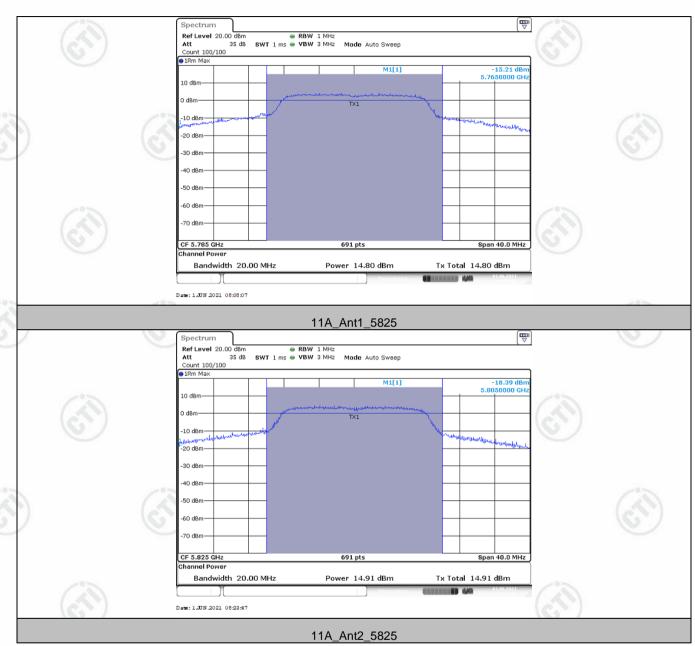
183 - /		100	/				
Test Requirement:	47 CFR Part 15C	Section 15.407	(a)				
Test Method:	KDB789033 D02 Section E	General UNII	Test Procedures	New Rules	v02r01		
Test Setup:	Control Computer Power Supply TEMPERATURE CA Table	Attenuator	RF test System Instrument				
Test Procedure:	General UNII Tes 2. The RF output and attenuator. T measurement. 3. Set to the max continuously.	3. Set to the maximum power setting and enable the EUT transmit continuously.4. Measure the conducted output power and record the results in the test					
	Frequency	Limit	(6,)		(0.		
	band (MHz)						
	5150-5250	≤1W(30dBm) for master device					
	(27)	≤250mW(24dBm) for client device					
	5250-5350	≤250mW(24dl 11dBm+10log	50mW(24dBm) for client device or dBm+10logB*				
Limit:	5470-5725	≤250mW(24di 11dBm+10log	dBm) for client device or gB*				
	5725-5850	≤1W(30dBm)	/ /N / /N				
	Remark:						
Test Mode:	Transmitting mod	e with modulatio	n		<u>'</u>		
Test Results:	Pass						
. Joe Hooditoi							

Result Table:

esuit lable.					
Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	5745	14.64	<=30	PASS
	Ant2	5745	14.82	<=30	PASS
	Ant1	5785	14.80	<=30	PASS
	Ant2	5785	15.14	<=30	PASS
11A	Ant1	5825	14.58	<=30	PASS
	Ant2	5825	14.91	<=30	PASS
	(5745	17.74	<=30	PASS
	Total	5785	17.98	<=30	PASS
		5825	17.76	<=30	PASS
	Ant1	5745	14.81	<=30	PASS
	Ant2	5745	15.00	<=30	PASS
	Ant1	5785	14.44	<=30	PASS
	Ant2	5785	14.90	<=30	PASS
11N20	Ant1	5825	14.21	<=30	PASS
	Ant2	5825	14.76	<=30	PASS
		5745	17.92	<=30	PASS
	Total	5785	17.69	<=30	PASS
		5825	17.51	<=30	PASS

Note: The Duty Cycle Factor is compensated in the graph.







Appendix D): Power Spectral Density

	47.0ED D 4.1EQ 1	2 (1 45 425	()			
Test Requirement:	47 CFR Part 15C		. ,			
Test Method:	KDB789033 D02 Section F	General UNII	Test Procedures	New Rules	v02r01	
Test Setup:	Control Computer Power Supply TEMPERATURE CABI Table Remark: Offset=C	Attenuator				
Test Procedure:	emission bandwidt Sweep time = Auto 2. Allow the sweep	th. 1. Set RBW : b, Detector = RM os to continue ui	MI receiver span to = 500 kHz/1 MHz, \ MS. Intil the trace stabilize of determine the ma	/BW ≥ 3*RBV zes.	V,	
	Frequency band (MHz)	Limit				
	5150-5250	≤17dBm in 1MHz for master device				
		≤11dBm in 1MHz for client device				
Limit:	5250-5350	≤11dBm in 1N	MHz for client device			
Lillit	5470-5725	≤11dBm in 1M	IHz for client device	2.2		
	5725-5850	≤30dBm in 50	OkHz	(6/2)		
	Remark: The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.					
Test Mode:	Transmitting mode	with modulatio	n (
Test Results:	Pass				6	

Result Table:

itesuit rubie.		7 2 2 3				201	
Test Mode	Antenna	Channel	Power [dBm/500kHz]	Limit [dBm/500kHz]	EIRP [dBm/MHz]	Limit [dBm/MHz]	Verdict
	Ant1	5745	7.12	<=30			PASS
	Ant2	5745	7.43	<=30		(PASS
)	Ant1	5785	6.48	<=30	5)	(6	PASS
	Ant2	5785	7.15	<=30			PASS
11A	Ant1	5825	5.47	<=30			PASS
	Ant2	5825	6.92	<=30	(<u></u>	PASS
6.		5745	10.29	<=30	16)	PASS
	Total	5785	9.84	<=30			PASS
		5825	9.27	<=30			PASS
	Ant1	5745	7.06	<=30	<u>()</u>	(8	PASS
	Ant2	5745	6.64	<=30)		PASS
	Ant1	5785	6.44	<=30			PASS
(3)	Ant2	5785	6.11	<=30	-	- ~	PASS
11N20	Ant1	5825	5.44	<=30	(6	S)	PASS
	Ant2	5825	6.05	<=30	-	<u> </u>	PASS
		5745	9.87	<=30			PASS
	Total	5785	9.29	<=30	63	/	PASS
	(62.)	5825	8.77	<=30	((3	(6	PASS


Note: 1.The Result and Limit Unit is dBm/500 kHz in the band 5.725–5.85 GHz.

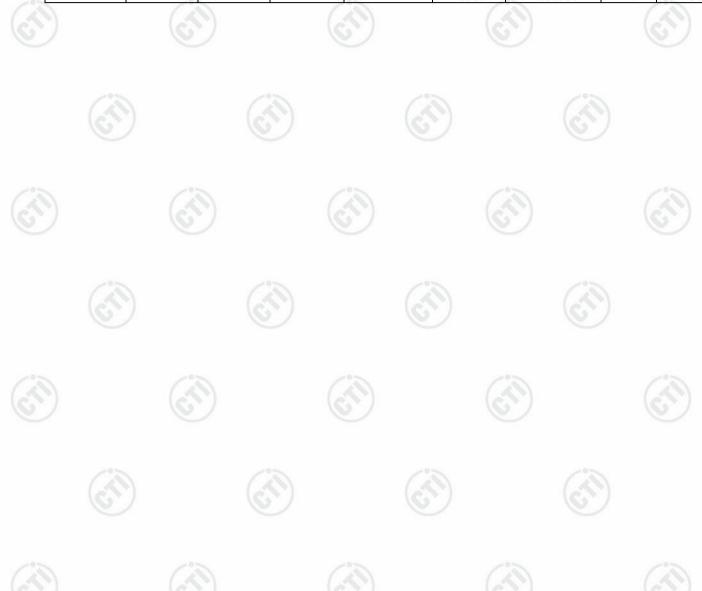
^{2.} The Duty Cycle Factor and RBW Factor is compensated in the graph.

Appendix E): Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

Test Result:

Test Resul	t;		[6]	1.4		1.2	67	
Test Mode	Antenna	Channel	Voltage [Vdc]	Voltage Temperature (°ℂ)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
	_0		NV	NT	24000	4.177546	20	PASS
	Ant1	5745	LV	NT	26000	4.525674	20	PASS
	6		HV	NT	30000	5.221932	20	PASS
			NV	NT	23000	4.003481	20	PASS
	Ant2	5745	LV	NT	41000	7.136641	20	PASS
)	(< 2	HV	NT	43000	7.484769	20	PASS
			NV	NT	47000	8.12446	20	PASS
	Ant1	5785	LV	NT	50000	8.643042	20	PASS
×	/3		HV	NT	50900	8.798617	20	PASS
11A	(6)	•)	NV	NT	48000	8.297321	20	PASS
	Ant2	5785	LV	NT	49000	8.470182	20	PASS
			HV	NT	49000	8.470182	20	PASS
		6	NV	NT /	59900	10.283262	20	PASS
	Ant1	5825	LV	NT 🌑	58900	10.111588	20	PASS
			HV	NT	59900	10.283262	20	PASS
		5825	NV	NT	48000	8.240343	20	PASS
	Ant2		LV	NT	47000	8.06867	20	PASS
/	0		HV	NT NT	47000	8.06867	20	PASS
			NV	NT	26000	4.525674	20	PASS
	Ant1	5745	LV	NT	44000	7.658834	20	PASS
)	(2)	HV	NT (46000	8.006963	20	PASS
	/	0	NV	NT	41000	7.136641	20	PASS
	Ant2	5745	LV	NT	44000	7.658834	20	PASS
	/9		HV	NT	45000	7.832898	20	PASS
)	(6)	.")	NV	NT	49000	8.470182	20	PASS
11N20	Ant1	5785	LV	NT	49000	8.470182	20	PASS
			HV	NT	49000	8.470182	20	PASS
		0	NV	NT	48000	8.297321	20	PASS
	Ant2	5785	LV	NT (G	48000	8.297321	20	PASS
	7 11112		HV	NT	48000	8.297321	20	PASS
			NV	NT	48000	8.240343	20	PASS
	Ant1	5825	LV	NT	47000	8.06867	20	PASS



(2)	Δ.	6	HV	NT /	48000	8.240343	20	PASS
6.	/	6	NV	NT V	47000	8.06867	20	PASS
	Ant2	5825	LV	NT	46000	7.896996	20	PASS
	12.0		HV	NT	46000	7.896996	20	PASS

Appendix F): Duty cycle

T 10 1	47 CFR Part15C Section 15.407							
Test Requirement:								
Test Method:	ANSI C63.10 2013							
Test Setup:	Control Control Control Control Power Power Poor Temperature Cabinet Table RF test System System Instrument							
	Remark: Offset=Cable loss+ attenuation factor. a) Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.							
Test Procedure:	 b) Set VBW ≥ RBW. c) detector = peak or average. d) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100. 							
Limit:								
Test Mode:	Refer to clause 2.2							
Test Results:	Pass							



Test Result:

Test Nesui		1.0	6.76		W 21		1 - 45	9.1	
Test Mode	Antenna	Channel	ON Time [ms]	Period [ms]	X	DC [%]	xFactor	Limit	Verdict
	Ant1	5745	2.03	2.07	0.9790	97.90%	0.09		PASS
9)	Ant2	5745	2.03	2.09	0.9722	97.22%	0.12	/	PASS
/	Ant1	5785	2.01	2.06	0.9789	97.89%	0.09		PASS
11A	Ant2	5785	2.03	2.07	0.9790	97.90%	0.09		PASS
	Ant1	5825	2.03	2.06	0.9859	98.59%	0.06		PASS
	Ant2	5825	2.00	2.06	0.9718	97.18%	0.12	·)	PASS
	Ant1	5745	1.88	1.91	0.9849	98.49%	0.07	/ <u></u>	PASS
	Ant2	5745	1.87	1.93	0.9700	97.00%	0.13		PASS
V	Ant1	5785	1.88	1.91	0.9849	98.49%	0.07		PASS
11N20SISO	Ant2	5785	1.88	1.94	0.9702	97.02%	0.13	(PASS
	Ant1	5825	1.88	1.91	0.9849	98.49%	0.07		PASS
	Ant2	5825	1.88	1.94	0.9702	97.02%	0.13		PASS

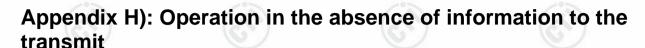
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:



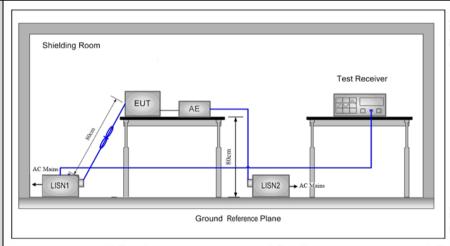
The antenna is integrated on the main PCB and no consideration of replacement.

15.407(c) requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signal ling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Operation in the absence of information to the transmit

Operation never ceases as information from cell town is always present. (manufacturer declare)



Appendix I): AC Power Line Conducted Emission

Test Requirement:	47 CFR Part 15C Section 15	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150kHz to 30MHz	C.S.		13				
Receiver setup:	RBW=9 kHz, VBW=30 kHz,	Sweep time=auto		(67)				
	Fraguency range (MHz)	Limit (d						
	Frequency range (MHz)	Quasi-peak	Average					
l imait.	0.15-0.5	66 to 56*	56 to 46*					
Limit:	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarith	m of the frequency.						

Test Setup:

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- **Test Procedure:**
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

Q/CTI LD-SUCEED-1007 Version 1.0 Page 54 of 76

	5) In order to find the maxi equipment and all of the in to ANSI C63.10: 2013 on comparison.	terface cables must be chang	
Test Mode:	1		
Test Results:	N/A	40%	-07

Appendix J): Restricted bands around fundamental frequency (Radiated Emission)

Test Requirement:	47 CFR Part 15C Sec	tion	15.209 and 1	15.4	07 (b))			
Test Method:	ANSI C63.10 2013								(3)
	-) (1	(6,7)					
	Frequency		Detector		RBW		VBW	F	Remark
	0.009MHz-0.090MH	Ηz	Peak		10kH	Z	30kHz		Peak
	0.009MHz-0.090MH	Ηz	Average		10kH	z	30kHz	, A	Average
	0.090MHz-0.110MH	Ηz	Quasi-peak	k	10kH	z	30kHz	Qı	uasi-peak
Receiver Setup:	0.110MHz-0.490MH	Ηz	Peak		10kH	z	30kHz	2	Peak
Troopiror Cotap.	0.110MHz-0.490MF	Ηz	Average		10kH	Z	30kHz	F	Average
	0.490MHz -30MHz	Z	Quasi-peak	k	10kH	Z	30kHz	Qı	uasi-peak
	30MHz-1GHz	7	Quasi-peak	k 1	00 kH	Ιz	300kHz	Qı	uasi-peak
	AL 4011	O.	Peak		1MH:	z	3MHz		Peak
	Above 1GHz		Peak		1MH:	Z	10kHz	1	Average
	Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz	0.490MHz 2400/			imit uV/m -	F	Remark - -	Measuremen distance (m) 300	
	1.705MHz-30MHz	-27	30		_	12			30
	30MHz-88MHz		100	40	0	Οı	ıasi-peak		3
	88MHz-216MHz		150	43.5		Quasi-peak			3
	216MHz-960MHz		200				Quasi-peak		3
	960MHz-1GHz		500		.0	Quasi-peak			3
	Above 1GHz		500	-	.0		verage		3
Limit:	*(1) For transmitters of outside of the 5.15-5.3 dBm/MHz. (2) For transmitters of outside of the 5.15-5.3 dBm/MHz. (3) For transmitters of outside of the 5.47-5.3 dBm/MHz. (4) For transmitters of (i) All emissions shall more above or below MHz above or below band edge increasing below the band edge, increasing linearly to a	oera 35 G oera 725 oera be li the k	SHz band shating in the 5.2 GHz band shating in the 5.4 GHz band shating in the 5.7 imited to a levitand edge, and arly to a level from 5 MHz	all no 25-5 all no 47-5 nall r 725- vel o norea nd fi abo	.35 G .35 G .725 (.725	Hz eed GHz cee GHz dB dBm bel	an e.i.r.p. band: All e an e.i.r.p. z band: All d an e.i.r.p z band: m/MHz at arly to 10 Hz above n/MHz at 5 ow the ba	of -2 emissi of -2 emissi emissi or of - 75 Ml dBm/N or bels MHz nd edg	ons ons sions 27 Hz or MHz at 25 low the above or

Q/CTI LD-SUCEED-1007 Version 1.0 Page 56 of 76

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = $((E*d)^2) / 30$

where:

- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.
- (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) 104.77$

(iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

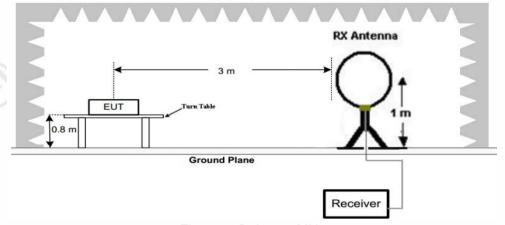
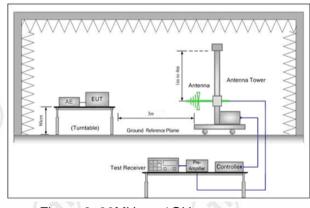



Figure 1. Below 30MHz

Horn Antenna Tower

Ground Reference Plane

Test Receiver

Test Receiver

Test Receiver

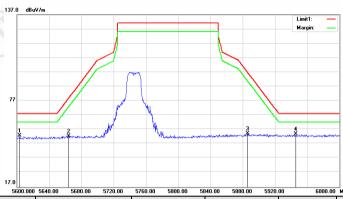
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

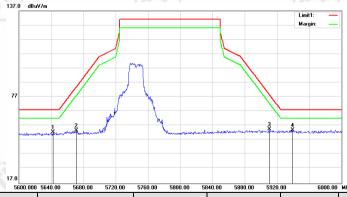
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The

Test Results:	Pass
Test Mode:	Transmitting mode with modulation
	 g. Test the EUT in the lowest channel, the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
	 e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	 c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.



Test plot as follows:

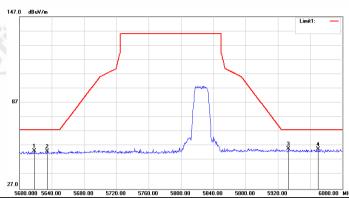
Mode:	802.11 a Transmitting	Channel:	149
Remark:	Horizontal		


Test Graph

3	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
	1	5603.600	43.05	9.67	52.72	68.20	-15.48	200	74	peak
	2	5664.000	42.83	9.80	52.63	78.56	-25.93	200	114	peak
	3	5886.000	44.25	10.17	54.42	97.06	-42.64	100	12	peak
	4	5946.000	43.89	10.20	54.09	68.20	-14.11	190	360	peak

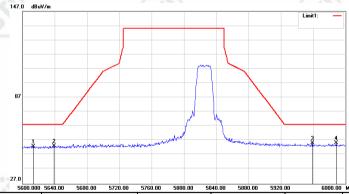
Mode:	802.11 a Transmitting	Channel:	149
Remark:	Vertical	(3)	,

Test Graph



No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	5642.400	42.90	9.76	52.66	68.20	-15.54	137	360	peak
2	5671.200	44.01	9.82	53.83	83.89	-30.06	200	183	peak
3	5910.400	44.59	10.18	54.77	79.00	-24.23	184	360	peak
4	5939.200	43.82	10.20	54.02	68.20	-14.18	200	65	peak

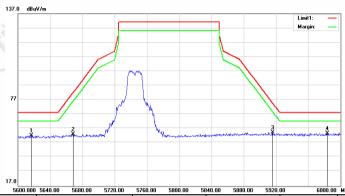
Mode:	802.11 a Transmitting	Channel:	165
Remark:	Horizontal		


Test Graph

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	5618.400	43.81	9.70	53.51	68.20	-14.69	200	256	peak
2	5634.400	43.38	9.74	53.12	68.20	-15.08	100	219	peak
3	5933.200	44.79	10.20	54.99	68.20	-13.21	200	202	peak
4	5969.600	44.66	10.22	54.88	68.20	-13.32	100	169	peak

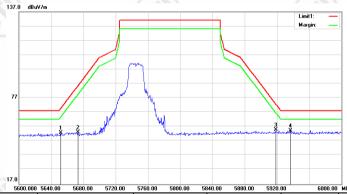
Mode:	Mode: 802.11 a Transmitting		165
Remark:	Vertical		

Test Graph


6	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
	1	5613.600	43.15	9.69	52.84	68.20	-15.36	200	338	peak
	2	5639.200	43.65	9.75	53.40	68.20	-14.80	200	20	peak
	3	5959.200	45.04	10.21	55.25	68.20	-12.95	114	360	peak
	4	5988.400	45.05	10.23	55.28	68.20	-12.92	200	159	peak

Q/CTI LD-SUCEED-1007 Version 1.0 Page 60 of 76

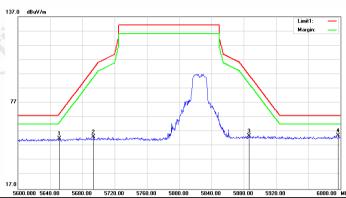
Mode:	802.11 n20 Transmitting	Channel:	149
Remark:	Horizontal		


Test Graph

	,		,						
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	5616.800	42.70	9.70	52.40	68.20	-15.80	200	59	peak
2	5668.400	43.39	9.81	53.20	81.82	-28.62	100	103	peak
3	5916.000	44.16	10.19	54.35	74.86	-20.51	200	129	peak
4	5983.600	43.63	10.23	53.86	68.20	-14.34	100	316	peak

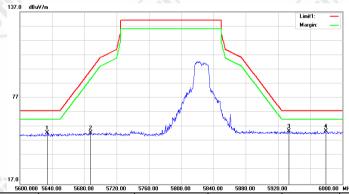
	Mode:	802.11 n20 Transmitting	Channel:	149
I	Remark:	Vertical		

Test Graph


6	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
	1	5652.000	43.13	9.78	52.91	69.68	-16.77	193	360	peak
	2	5673.200	43.24	9.82	53.06	85.37	-32.31	100	8	peak
	3	5918.800	44.71	10.19	54.90	72.79	-17.89	200	130	peak
	4	5936.800	44.22	10.20	54.42	68.20	-13.78	200	323	peak

Q/CTI LD-SUCEED-1007 Version 1.0 Page 61 of 76

Mode:	802.11 n20 Transmitting	Channel:	165
Remark:	Horizontal		


Test Graph

No	. Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
8	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	5651.200	42.51	9.78	52.29	69.09	-16.80	100	155	peak
2	5693.600	43.62	9.87	53.49	100.46	-46.97	200	315	peak
3	5886.800	43.99	10.17	54.16	96.47	-42.31	200	59	peak
4	5997.200	44.01	10.24	54.25	68.20	-13.95	100	329	peak

Mode:	802.11 n20 Transmitting	Channel:	165
Remark:	Vertical		

Test Graph

6	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
	1	5634.000	43.22	9.74	52.96	68.20	-15.24	200	150	peak
	2	5687.600	43.01	9.86	52.87	96.02	-43.15	153	360	peak
	3	5933.600	43.72	10.20	53.92	68.20	-14.28	163	360	peak
	4	5979.200	43.83	10.23	54.06	68.20	-14.14	100	251	peak

Q/CTI LD-SUCEED-1007 Version 1.0 Page 62 of 76

Appendix K): Unwanted Emissions in the Restricted Bands (Radiated Emission)

Test Requirement:	47 CFR Part 15C Sec	tion 15.209 an	id 1	5.407 (b)					
Test Method:	ANSI C63.10 2013	>			.0				
				. (4	37	(3)			
	Frequency	Detecto	or	RBW	VBW	Remark			
	0.009MHz-0.090MH	Hz Peak	Peak		30kHz	Peak			
	0.009MHz-0.090MH	Hz Averag	Average		30kHz	Average			
	0.090MHz-0.110MH	Hz Quasi-pe	eak	10kHz	30kHz	Quasi-peak			
Receiver Setup:	0.110MHz-0.490MH	Hz Peak	37	10kHz	30kHz	Peak			
	0.110MHz-0.490MH	Hz Averag	е	10kHz	30kHz	Average			
	0.490MHz -30MH	z Quasi-pe	eak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-pe	eak	100 kHz	300kHz	Quasi-peak			
	Ab 202 4015	Peak		1MHz	3MHz	Peak			
	Above 1GHz	Peak		1MHz	10kHz	Average			
	Frequency	Field strength (microvolt/meto		Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	S)	/ -	- 16	300			
	0.490MHz-1.705MHz	24000/F(kHz	()	-	-	30			
	1.705MHz-30MHz	30		-	-	30			
	30MHz-88MHz	100		40.0	Quasi-peak	3			
	88MHz-216MHz	150		43.5	Quasi-peak	3			
	216MHz-960MHz	200		46.0	Quasi-peak	3			
	960MHz-1GHz	500		54.0	Quasi-peak	3			
	Above 1GHz	500	- 92	54.0	Average	3			
Limit:	outside of the 5.15 dBm/MHz. (2) For transmitters of the 5.15-5.35 GHz (3) For transmitters outside of the 5.47-dBm/MHz. (4) For transmitters of (i) All emissions shall above or below the base of the 5.15-6.	(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27							
	the band edge, and linearly to a level of 2 Remark: The emiss measurements empl frequency bands 9-	from 5 MHz at dBm/MHz at sion limits shooting a CIS	abov the own PR	ve or below band edge in the quasi-pea	ow the band e. above table ak detector	are based of except for the			

emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

- (i) EIRP = $((E*d)^2) / 30$ where:
- E is the field strength in V/m;
- · d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.
- (ii) Working in dB units, the above equation is equivalent to: EIRP[dBm] = E[dBµV/m] + 20 log(d[meters]) 104.77
- (iii) Or, if d is 3 meters: EIRP[dBm] = E[dBµV/m] - 95.2

Test Setup:

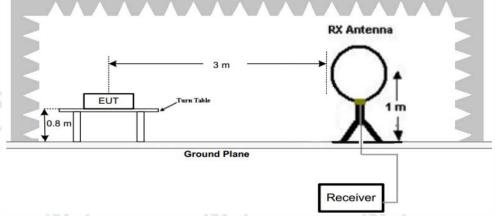
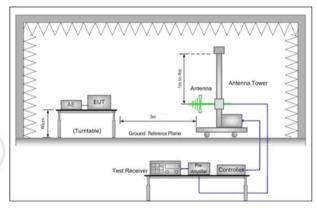



Figure 1. Below 30MHz

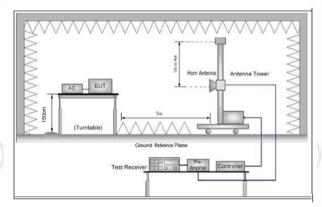


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

	Note: For the radiated emission test above 1GHz:
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was
	complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz:

Mode:	802.11a Transmitting		Channel:	149	
Remark:	C*S	(3)		/°>	

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
76.5600	V	60.07	-27.96	32.11	40.00	-7.89	QP
145.4300	V	57.26	-24.54	32.72	43.50	-10.78	QP
239.5200	V	54.29	-21.45	32.84	46.00	-13.16	QP
384.0500	V	50.17	-18.37	31.80	46.00	-14.20	QP
722.5800	V	43.17	-12.59	30.58	46.00	-15.42	QP
800.1800	V	47.54	-11.66	35.88	46.00	-10.12	QP
76.5600	Н	51.24	-27.96	23.28	40.00	-16.72	QP
144.4600	Н	48.36	-24.23	24.13	43.50	-19.37	QP
242.4300) н	47.85	-21.42	26.43	46.00	-19.57	QP
717.7300	Н	41.02	-12.72	28.30	46.00	-17.70	QP
800.1800	Н	45.98	-11.66	34.32	46.00	-11.68	QP
999.0300	H (A	41.57	-9.16	32.41	54.00	-21.59	QP

Notes:

1) Through Pre-scan then find the 802.11a-CH149 is the worst case mode and only the worst data was recorded.

Transmitter Emission above 1GHz U-NII-3

Mode:	a mode	Channel:	149
Remark:			

Horizontal

		_								
3	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
	1	11489.000	42.77	17.17	59.94	74.00	-14.06	200	284	peak
	2	11489.000	27.09	17.17	44.26	54.00	-9.74	200	284	AVG
	3	17252.000	28.18	25.46	53.64	74.00	-20.36	100	290	peak

Vertical

N	lo.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
3	1	11489.000	49.47	17.17	66.64	74.00	-7.36	200	350	peak
	2	11489.000	30.72	17.17	47.89	54.00	-6.11	200	350	AVG
	3	17235.000	34.68	25.47	60.15	74.00	-13.85	200	358	peak
	4	17235.000	14.56	25.47	40.03	54.00	-13.97	200	358	AVG

Mode:	a mode		Channel:	157	
Remark:	/ 2	(3)		(3)	/

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11574.000	40.75	17.26	58.01	74.00	-15.99	100	287	peak
2	11574.000	25.02	17.26	42.28	54.00	-11.72	100	287	AVG
3	16079.000	29.87	23.66	53.53	74.00	-20.47	200	63	peak

e e	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
	1	11574.000	46.35	17.26	63.61	74.00	-10.39	100	324	peak
	2	11574.000	29.36	17.26	46.62	54.00	-7.38	100	324	AVG
	3	16963.000	27.55	25.55	53.10	74.00	-20.90	100	56	peak

Mode:	a mode	Channel:	165	(50)
Remark:				

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
3	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11642.000	43.71	17.22	60.93	74.00	-13.07	200	312	peak
2	11642.000	28.08	17.22	45.30	54.00	-8.70	200	312	AVG
3	14838.000	30.46	22.89	53.35	74.00	-20.65	129	0	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11659.000	47.67	17.20	64.87	74.00	-9.13	153	0	peak
2	11659.000	32.61	17.20	49.81	54.00	-4.19	153	0	AVG
3	16453.000	29.41	24.07	53.48	74.00	-20.52	200	106	peak

Mode:	N20 mode	Channel:	149	
Remark:				

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11506.000	40.62	17.19	57.81	74.00	-16.19	200	283	peak
2	11506.000	17.82	17.19	35.01	54.00	-18.99	200	283	AVG
3	15042.000	30.52	23.08	53.60	74.00	-20.40	200	231	peak

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
ć	1	11506.000	44.89	17.19	62.08	74.00	-11.92	100	325	peak
8	2	11506.000	21.18	17.19	38.37	54.00	-15.63	100	325	AVG
	3	17252.000	28.57	25.46	54.03	74.00	-19.97	200	109	peak
	4	17252.000	14.64	25.46	40.10	54.00	-13.90	200	109	AVG

Mode:	N20 mode	(7.7)	Channel:	157	(27)
Remark:	//				

Horizontal

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark		
d		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)			
7	1	11574.000	42.31	17.26	59.57	74.00	-14.43	100	289	peak		
	2	11574.000	24.83	17.26	42.09	54.00	-11.91	100	289	AVG		
	3	17150.000	27.90	25.55	53.45	74.00	-20.55	200	2	peak		

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11574.000	43.98	17.26	61.24	74.00	-12.76	100	322	peak
2	11574.000	29.17	17.26	46.43	54.00	-7.57	100	322	AVG
3	17354.000	27.58	25.38	52.96	74.00	-21.04	200	287	peak

Mode:	N20 mode	Channel:	165	
Remark:	(0.)			(0.)

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
21	11659.000	44.52	17.20	61.72	74.00	-12.28	100	311	peak
2	11659.000	27.21	17.20	44.41	54.00	-9.59	100	311	AVG
3	14923.000	30.02	22.99	53.01	74.00	-20.99	100	88	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
°.1	11659.000	48.11	17.20	65.31	74.00	-8.69	189	0	peak
2	11659.000	32.35	17.20	49.55	54.00	-4.45	189	0	AVG
3	14838.000	30.27	22.89	53.16	74.00	-20.84	200	200	peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Q/CTI LD-SUCEED-1007 Version 1.0 Page 69 of 76

Appendix L): Unwanted Emissions that fall Outside of the Restricted Bands

Test Requirement:	47 CFR Part 15C Sec	tion 15.209 and	15.407 (b)					
Test Method:	ANSI C63.10 2013			65				
	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH		10kHz		Peak			
	0.009MHz-0.090MH				Average			
	0.090MHz-0.110MH				Quasi-peak			
Dagainer Catum	0.110MHz-0.490MH	1.00	10kHz	- 48	Peak			
Receiver Setup:	0.110MHz-0.490MH	Hz Average		+	Average			
	0.490MHz -30MHz			30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-pea	k 100 kH	z 300kHz	Quasi-peak			
	AL 4011	Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10kHz	Average			
	Frequency	Field strength (microvolt/meter	Limit) (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	<i>/</i> -	- 19	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
Limit:	*(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27							
	dBm/MHz. (4) For transmitters of (i) All emissions shall above or below the babove or below the bedge increasing linea the band edge, and linearly to a level of 2 Remark: The emiss measurements empl	perating in the 5. be limited to a learn dedge increased and edge, and rly to a level of from 5 MHz at the limits show	.725-5.85 G evel of -27 asing linear from 25 M 15.6 dBm/N bove or belo ne band edg vn in the	Hz band: dBm/MHz at ly to 10 dBm lHz above or MHz at 5 MHz ow the band le. above table	75 MHz or mor /MHz at 25 MH below the ban above or belo edge increasin are based o			

frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

- (i) EIRP = $((E*d)^2) / 30$
- where:
- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.
- (ii) Working in dB units, the above equation is equivalent to:
 - $EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) 104.77$
- (iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

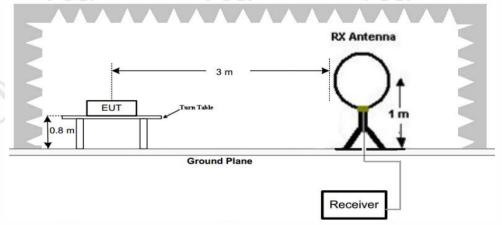
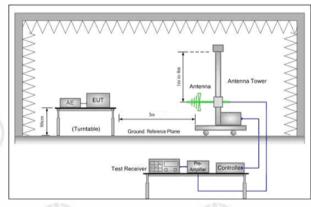



Figure 1. Below 30MHz

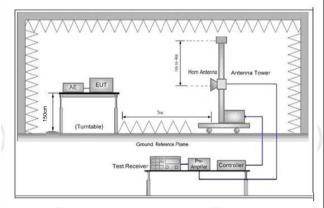


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the

Test Results:	Pass
Test Mode:	Transmitting mode with modulation
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did no have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.
	tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its wors case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	 b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	aimed at the source of emissions at each frequency of significan emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EU determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna

Test Data:

For the all emission out-of-band emission that complies with both the peak and average limits of § 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit. Refer to test item "Unwanted Emissions in the Restricted Bands (Radiated Emission)" test result.

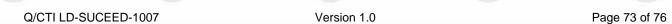
U-NII-3

Mode:	a mode	Chan	nel:	149	
Remark:	(6,2)	(0,1)		(6,7)	(6)

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11642.000	43.71	17.22	60.93	68.20	-7.27	100	228	peak
2	14838.000	30.46	22.89	53.35	68.20	-14.85	100	154	peak

Vertical


1	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
	1	11489.000	49.47	17.17	66.64	68.20	-1.56	200	350	peak
	2	17235.000	34.68	25.47	60.15	68.20	-8.05	200	358	peak

Mode:	a mode	Channel:	157
Remark:			

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
3	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11574.000	40.75	17.26	58.01	68.20	-10.19	100	287	peak
2	16079.000	29.87	23.66	53.53	68.20	-14.67	200	63	peak

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
10	1	11574.000	46.35	17.26	63.61	68.20	-4.59	100	324	peak
8	2	16963.000	27.55	25.55	53.10	68.20	-15.10	100	56	peak

Mode:	a mode	Channel:	165	(67)
Remark:				

Horizontal

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
c		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
	1	11642.000	43.71	17.22	60.93	68.20	-7.27	100	187	peak
	2	14838.000	30.46	22.89	53.35	68.20	-14.85	100	334	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	3873.000	41.12	7.32	48.44	74.00	-25.56	100	111	peak
2	16453.000	29.41	24.07	53.48	74.00	-20.52	100	23	peak

Mode:	N20 mode	Channel:	149
Remark:		(3)	

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11506.000	40.62	17.19	57.81	68.20	-10.39	200	283	peak
2	15042.000	30.52	23.08	53.60	68.20	-14.60	200	231	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11506.000	44.89	17.19	62.08	68.20	-6.12	100	325	peak
2	17252.000	28.57	25.46	54.03	68.20	-14.17	200	109	peak

Mode:	N20 mode	Channel:	157
Remark:	0		

Horizontal

No	. Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
d	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11574.000	42.31	17.26	59.57	68.20	-8.63	100	289	peak
2	17150.000	27.90	25.55	53.45	68.20	-14.75	200	2	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11574.000	43.98	17.26	61.24	68.20	-6.96	100	322	peak
2	17354.000	27.58	25.38	52.96	68.20	-15.24	200	287	peak

Mode:	N20 mode	Channel:	165
Remark:			

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
_ 1	11659.000	44.52	17.20	61.72	68.20	-6.48	100	311	peak
2	14923.000	30.02	22.99	53.01	68.20	-15.19	100	88	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	11659.000	48.11	17.20	65.31	68.20	-2.89	189	0	peak
2	14838.000	30.27	22.89	53.16	68.20	-15.04	200	200	peak

Refer to Report No. EED39N80209401 for test setup photos.

APPENDIX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Refer to Report No. EED39N80209401 for EUT external and internal photos.

The testing data and results in this report are just for scientific research, education, internal quality control and product development etc.

*** End of Report ***

The test report is effective only with both signature and specialized stamp; the result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

