

# FCC PART 15, SUBPART C ISEDC RSS-247, ISSUE 2, FEBRUARY 2017

### **TEST REPORT**

For

## The Detection Group, Inc.

4550 Kearny Villa Road, Suite 110 San Diego, CA, 92123 USA

FCC ID: 2AK4V-DT-450 IC: 22517-DT450

Report Type: Product Type: Permissive Change Report Communication Module Zhao Zhao **Prepared By** Test Engineer Report Number R2008142-DSS **Report Date** 2020-12-11 Simon Ma **Reviewed By** RF Supervisor Bay Area Compliance Laboratories Corp. 1274 Anvilwood Ave Sunnyvale, CA 94089, USA Tel: (408) 732-9162, Fax: (408) 732 9164



**Note**: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This test report **shall not** be used by the customer to claim product certification, approval, or endorsement by A2LA or any agency of the United States Government or any foreign government.

<sup>\*</sup> This test report may contain data and test methods that are not covered by BACL's scope of accreditation as of the test report date shown above. These items are marked within the test report text with an asterisk "\*"

### **TABLE OF CONTENTS**

| l Ge       | eneral Descriptioneneral                                                                       | 4  |
|------------|------------------------------------------------------------------------------------------------|----|
| 1.1        | Product Description for Equipment Under Test (EUT)                                             |    |
| 1.2        | Mechanical Description of EUT                                                                  |    |
| 1.3        | Objective                                                                                      |    |
| 1.4        | Related Submittal(s)/Grant(s)                                                                  |    |
| 1.5        | Test Methodology                                                                               |    |
| 1.6        | Measurement Uncertainty                                                                        |    |
| 1.7        | Test Facility Registrations                                                                    |    |
| 1.8        | Test Facility Accreditations                                                                   |    |
| •          | vstem Test Configuration                                                                       |    |
| 2.1        | Justification                                                                                  |    |
| 2.2        | EUT Exercise Software                                                                          |    |
| 2.3        | Equipment Modifications                                                                        |    |
| 2.4        | Local Support Equipment                                                                        |    |
| 2.5        | Support Equipment                                                                              |    |
| 2.6        | Interface Ports and Cabling                                                                    |    |
| 5 Su       | immary of Test Results                                                                         | 10 |
|            | CC §2.1091, §15.247(i) & ISEDC RSS-102 – RF Exposure                                           |    |
| 4.1<br>4.2 | Applicable Standards                                                                           |    |
| 4.2<br>4.3 | MPE Prediction  MPE Results                                                                    |    |
| 4.3<br>4.4 | RF exposure evaluation exemption for IC                                                        |    |
|            | CC §15.207 & ISEDC RSS-Gen §8.8 - AC Power Line Conducted Emissions                            |    |
| 5.1        | Applicable Standards                                                                           |    |
| 5.2        | Test Setup                                                                                     |    |
| 5.3        | Test Procedure                                                                                 |    |
| 5.4        | Corrected Amplitude and Margin Calculation                                                     |    |
| 5.5        | Test Equipment List and Details                                                                |    |
| 5.6        | Test Environmental Conditions                                                                  |    |
| 5.7        | Summary of Test Results                                                                        |    |
| 5.8        | Conducted Emissions Test Plots and Data                                                        |    |
| 6 F(       | CC §15.209, §15.247(d) & ISEDC RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions | 21 |
| 6.1        | Applicable Standards                                                                           |    |
| 6.2        | Test Setup                                                                                     |    |
| 6.3        | Test Procedure                                                                                 |    |
| 6.4        | Corrected Amplitude and Margin Calculation                                                     |    |
| 6.5        | Test Equipment List and Details                                                                |    |
| 6.6        | Test Environmental Conditions                                                                  |    |
| 6.7        | Summary of Test Results                                                                        |    |
| 6.8        | Spurious Emissions Test Results                                                                |    |
|            | nnex A – Test Setup Photographs                                                                |    |
|            | nnex B- EUT External Photographs                                                               |    |
|            | nnex C- EUT Internal Photographs                                                               |    |
| l0 Ar      | nnex D (Normative) - ISO/IEC 17025 Certificate and Scope of Accreditation                      | 34 |

### **DOCUMENT REVISION HISTORY**

| Revision Number Report Number |              | Description of Revision | Date of Revision |  |
|-------------------------------|--------------|-------------------------|------------------|--|
| 0                             | R2008142-DSS | Original Report         | 2020-12-11       |  |

### 1 General Description

### 1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report was prepared on behalf of *The Detection Group, Inc.*, and their *product model: DT-450* (FCC: 2AK4V-DT-450, IC: 22517-DT450) in host model: *Smart Base Station*, as referred to as EUT in this report. The EUT is a communication module with 2.4 GHz Wi-Fi, Bluetooth BDR/EDR, and Bluetooth LE functions. Host product is a Gateway for hub products used for leak detection monitoring.

#### 1.2 Mechanical Description of EUT

| Length (cm) | Width<br>(cm) | Height (cm) | Weight<br>(g) |
|-------------|---------------|-------------|---------------|
| 6.95        | 5.15          | 1.00        | 5             |

#### 1.3 Objective

This report is prepared on behalf of *The Detection Group, Inc.*, in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commission's rules and ISEDC RSS-247 Issue 2 on February 2017.

The objective is to determine compliance with FCC Part 15.247and ISEDC RSS-247 rules for new enclosure and radio co-location with LTE radio module (FCC ID: RI7ME910C1NA, IC: 5131A-ME910C1NA), and 900 MHz radio (FCC ID: 2AK4V-DT-550, IC: 22517-DT550).

#### 1.4 Related Submittal(s)/Grant(s)

Equipment class: DTS, FCC ID: 2AK4V-DT-450

#### 1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

#### 1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

| Parameter                         | Measurement uncertainty |  |
|-----------------------------------|-------------------------|--|
| Occupied Channel Bandwidth        | ±5 %                    |  |
| RF output power, conducted        | ±0.57 dB                |  |
| Power Spectral Density, conducted | ±1.48dB                 |  |
| Unwanted Emissions, conducted     | ±1.57dB                 |  |
| All emissions, radiated           | ±4.0 dB                 |  |
| AC power line Conducted Emission  | ±2.0 dB                 |  |
| Temperature                       | ±2 ° C                  |  |
| Humidity                          | ±5 %                    |  |
| DC and low frequency voltages     | ±1.0 %                  |  |
| Time                              | ±2 %                    |  |
| Duty Cycle                        | ±3 %                    |  |

#### 1.7 Test Facility Registrations

BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

#### 1.8 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3<sup>rd</sup>-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3297.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (\*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices,

Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

# B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.03) to certify

- For the USA (Federal Communications Commission):
  - 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
  - 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
  - 3- All Telephone Terminal Equipment within FCC Scope C.
- For the Canada (Industry Canada):
  - 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
  - 2 All Scope 2-Licensed Personal Mobile Radio Services;
  - 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
  - 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
  - 5 All Scope 5-Licensed Fixed Microwave Radio Services
  - 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.
- For Singapore (Info-Communications Development Authority (IDA)):
  - All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
    - All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2
- For the Hong Kong Special Administrative Region:
  - 1 All Radio Equipment, per KHCA 10XX-series Specifications;
  - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
  - 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.
- For Japan:

2.

- MIC Telecommunication Business Law (Terminal Equipment):
  - All Scope A1 Terminal Equipment for the Purpose of Calls;
  - All Scope A2 Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
  - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
  - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
  - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

# C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
  - for Telephony (ver. 3.0)
  - for Audio/Video (ver. 3.0)
  - for Battery Charging Systems (ver. 1.1)
  - for Set-top Boxes & Cable Boxes (ver. 4.1)
  - for Televisions (ver. 6.1)
  - for Computers (ver. 6.0)
  - for Displays (ver. 6.0)
  - for Imaging Equipment (ver. 2.0)
  - for Computer Servers (ver. 2.0)

- 2 Commercial Food Service Equipment
  - for Commercial Dishwashers (ver. 2.0)
  - for Commercial Ice Machines (ver. 2.0)
  - for Commercial Ovens (ver. 2.1)
  - for Commercial Refrigerators and Freezers
- 3 Lighting Products
  - For Decorative Light Strings (ver. 1.5)
  - For Luminaires (including sub-components) and Lamps (ver. 1.2)
  - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
  - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
  - for Residential Ceiling Fans (ver. 3.0)
  - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
- For Water Coolers (ver. 3.0)

# D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada ISEDC) Foreign Certification Body FCB APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China Taiwan):
  - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
  - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
  - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
  - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
  - o Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA)
  APEC Tel MRA -Phase I & Phase II
- Israel US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
  - ENERGY STAR Recognized Test Laboratory US EPA
  - o Telecommunications Certification Body (TCB) US FCC;
  - o Nationally Recognized Test Laboratory (NRTL) US OSHA
- Vietnam: APEC Tel MRA -Phase I;

### 2 System Test Configuration

### 2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013 and FCC KDB 558074 D01 DTS Meas Guidance v04.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case configuration was selected based on the original test report, and verified consistent by measuring the fundamental field strength.

#### 2.2 EUT Exercise Software

The test firmware used was Tera Term and test commands, provided by *The Detection Group, Inc.*, the software is compliant with the standard requirements being tested against.

| Modulation | Frequency<br>(MHz) | Power Setting |
|------------|--------------------|---------------|
|            | 2402               | Default       |
| GFSK       | 2441               | Default       |
|            | 2480               | Default       |
|            | 2402               | Default       |
| 8DPSK      | 2441               | Default       |
|            | 2480               | Default       |

Data Rates Tested: GFSK: Default 8DPSK: Default

### 2.3 **Equipment Modifications**

No equipment modifications are made to the EUT

### 2.4 Local Support Equipment

| Manufacturer | Description | Model | Serial Number |  |
|--------------|-------------|-------|---------------|--|
| ASUS         | Laptop      | -     | -             |  |

### 2.5 Support Equipment

| Manufacturer | Description  | Model       |
|--------------|--------------|-------------|
| TRIAD        | Power supply | WSU050-4000 |

### 2.6 Interface Ports and Cabling

| Cable Description Length |  | То  | From   |
|--------------------------|--|-----|--------|
| USB cable 1 m            |  | EUT | Laptop |

### 3 Summary of Test Results

Results reported relate only to the product tested.

| FCC and ISEDC Rules                                                                                               | Description of Test               | Results   |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|
| FCC §2.1091, §15.247(i)<br>ISEDC RSS-102                                                                          | RF Exposure                       | Compliant |
| FCC §15.207, ISEDC RSS<br>GEN §8.8                                                                                | AC Power Line Conducted Emissions | Compliant |
| FCC §2.1053, §15.35(b),<br>§15.205, §15.209, §15.247 (d)<br>ISEDC RSS-247 §5.5<br>ISEDC RSS-Gen §8.9 and<br>§8.10 | Radiated Spurious Emissions       | Compliant |

### 4 FCC §2.1091, §15.247(i) & ISEDC RSS-102 – RF Exposure

### 4.1 Applicable Standards

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to KDB 447 498 Section (7.2), "simultaneous transmission of MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on calculated or measured field strengths or power density, is  $\leq 1.0$ . The MPE ratio of each antenna is determined at the minimum *test separation distance* required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency.

Limits for General Population/Uncontrolled Exposure

| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength<br>(V/m)                 | Magnetic Field<br>Strength<br>(A/m) | Power Density (mW/cm²)  | Averaging Time (minutes) |  |  |
|-----------------------------|-----------------------------------------------------|-------------------------------------|-------------------------|--------------------------|--|--|
|                             | Limits for General Population/Uncontrolled Exposure |                                     |                         |                          |  |  |
| 0.3-1.34                    | 614                                                 | 1.63                                | * (100)                 | 30                       |  |  |
| 1.34-30                     | 824/f                                               | 2.19/f                              | * (180/f <sup>2</sup> ) | 30                       |  |  |
| 30-300                      | 27.5                                                | 0.073                               | 0.2                     | 30                       |  |  |
| 300-1500                    | /                                                   | /                                   | f/1500                  | 30                       |  |  |
| 1500-100,000                | /                                                   | /                                   | 1.0                     | 30                       |  |  |

Where: f = frequency in MHz

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF field.

<sup>\* =</sup> Plane-wave equivalent power density

According to ISED RSS-102 Issue 5:

| Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment) |                             |                                          |                             |                               |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------|-----------------------------|-------------------------------|--|
| Frequency Range<br>(MHz)                                                                            | Electric Field<br>(V/m rms) | Magnetic Field<br>(A/m rms)              | Power Density<br>(W/m²)     | Reference Period<br>(minutes) |  |
| 0.003-10 <sup>21</sup>                                                                              | 83                          | 90                                       | -                           | Instantaneous*                |  |
| 0.1-10                                                                                              | -                           | 0.73/ f                                  | -                           | 6**                           |  |
| 1.1-10                                                                                              | 87/ f <sup>0.5</sup>        | -                                        | -                           | 6**                           |  |
| 10-20                                                                                               | 27.46                       | 0.0728                                   | 2                           | 6                             |  |
| 20-48                                                                                               | 58.07/ f <sup>0.25</sup>    | 0.1540/ f <sup>0.25</sup>                | 8.944/ f <sup>0.5</sup>     | 6                             |  |
| 48-300                                                                                              | 22.06                       | 0.05852                                  | 1.291                       | 6                             |  |
| 300-6000                                                                                            | 3.142 f <sup>0.3417</sup>   | 0.008335 f <sup>0.3417</sup>             | 0.02619 f <sup>0.6834</sup> | 6                             |  |
| 6000-15000                                                                                          | 61.4                        | 0.163                                    | 10                          | 6                             |  |
| 15000-150000                                                                                        | 61.4                        | 0.163                                    | 10                          | 616000/ f <sup>1.2</sup>      |  |
| 150000-300000                                                                                       | 0.158 f <sup>0.5</sup>      | 4.21 x 10 <sup>-4</sup> f <sup>0.5</sup> | 6.67 x 10 <sup>-5</sup> f   | 616000/f <sup>1.2</sup>       |  |

Note: f is frequency in MHz.

### **4.2** MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R =distance to the center of radiation of the antenna

<sup>\*</sup> Based on nerve stimulation (NS).

<sup>\*\*</sup> Based on specific absorption rate (SAR).

#### 4.3 MPE Results

#### **Bluetooth Radio**

Maximum peak output power at antenna input terminal (dBm): 9.54

Maximum peak output power at antenna input terminal (mW): 8.99

Prediction distance (cm): 20

Maximum Antenna Gain, typical (dBi): 1.4

Maximum Antenna Gain (numeric): 1.38

Power density of prediction frequency at 20.0 cm (mW/cm<sup>2</sup>): 0.0025

FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm<sup>2</sup>): 1.0

MPE Ratio (numeric): 0.0025

#### 900 MHz Radio (FCC ID: 2AK4V-DT-550, IC: 22517-DT550)

Maximum peak output power at antenna input terminal (dBm): 23.89

Maximum peak output power at antenna input terminal (mW): 244.91

Prediction distance (cm): 20

Prediction frequency (MHz): 906

Maximum Antenna Gain, typical (dBi): 1.2

Maximum Antenna Gain (numeric): 1.31

Power density of prediction frequency at 20.0 cm (mW/cm<sup>2</sup>): 0.0642

FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 0.604

MPE Ratio (numeric): 0.106

### LTE Radio (FCC ID: RI7ME910C1NA, IC: 5131A-ME910C1NA)

| Band  | Frequency<br>(MHz) | Max<br>Conducted<br>Power<br>(dBm) | Evaluated<br>Distance<br>(cm) | Antenna<br>Gain<br>(dBi) | MPE<br>(mW/cm²) | MPE<br>Limit<br>(mW/cm²) | MPE<br>Ratio |
|-------|--------------------|------------------------------------|-------------------------------|--------------------------|-----------------|--------------------------|--------------|
| FDD4  | 1710.7             | 24.00                              | 20                            | 2.5                      | 0.08887         | 1.00                     | 0.089        |
| FDD2  | 1850.7             | 24.00                              | 20                            | 2.5                      | 0.08887         | 1.00                     | 0.089        |
| FDD12 | 699.0              | 24.45                              | 20                            | -0.4                     | 0.05055         | 0.466                    | 0.108        |
| FDD13 | 777.0              | 24.00                              | 20                            | -0.4                     | 0.04558         | 0.518                    | 0.088        |

Note: antenna gain is information provided by the applicant.

#### **Radio Co-location**

### Worst Case Co-location Bluetooth Radio, 900 MHz Radio and LTE Band FDD12:

| Frequency<br>Band | Max EIRP<br>Power(dBm) | Evaluated<br>Distance<br>(cm) | Worst-Case<br>MPE<br>(mW/cm²) | MPE<br>Limit<br>(mW/cm²) | Worst-<br>Case<br>MPE<br>Ratios | Sum of<br>MPE<br>Ratios | Limit |
|-------------------|------------------------|-------------------------------|-------------------------------|--------------------------|---------------------------------|-------------------------|-------|
|                   |                        |                               | Worst Case                    |                          |                                 |                         |       |
| BT EDR            | 23.00                  | 20                            | 0.0025                        | 1.0                      | 0.25%                           |                         |       |
| 900MHz<br>Radio   | 25.09                  | 20                            | 0.0604                        | 0.604                    | 10.6%                           | 21.65%                  | 100%  |
| LTE Band<br>FDD12 | 24.05                  | 20                            | 0.051                         | 0.466                    | 10.8%                           |                         |       |

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum MPE ratio at the distance of 20 cm is 21.65% Limit is 100%.

### 4.4 RF exposure evaluation exemption for IC

#### Bluetooth

Maximum EIRP power = 9.54 dBm + 1.4 dBi = 10.94 dBm which is less than  $1.31 \times 10^{-2} f^{0.6834} = 2.70 \text{ W} = 34.31 \text{ dBm}$ 

### 900 MHz Radio (FCC ID: 2AK4V-DT-550, IC: 22517-DT550)

Worst Case at 906MHz

Maximum EIRP power = 23.89 dBm + 1.2 dBi = 25.09 dBm which is less than  $1.31 \times 10^{-2} f^{0.6834} = 1.37 \text{ W} = 31.38 \text{ dBm}$ 

### LTE Radio (FCC ID: RI7ME910C1NA, IC: 5131A-ME910C1NA)

| Band  | Frequency<br>(MHz) | Max<br>Conducted<br>Power<br>(dBm) | Evaluated<br>Distance<br>(cm) | Antenna<br>Gain<br>(dBi) | MPE<br>(W/m²) | MPE<br>Limit<br>(W/m²) | MPE<br>Ratio |
|-------|--------------------|------------------------------------|-------------------------------|--------------------------|---------------|------------------------|--------------|
| FDD4  | 1710.7             | 24.00                              | 20                            | 2.5                      | 0.89          | 4.24                   | 0.21         |
| FDD2  | 1850.7             | 24.00                              | 20                            | 2.5                      | 0.89          | 4.48                   | 0.20         |
| FDD12 | 699.0              | 24.45                              | 20                            | -0.4                     | 0.51          | 2.30                   | 0.22         |
| FDD13 | 777.0              | 24.00                              | 20                            | -0.4                     | 0.46          | 2.47                   | 0.18         |

#### **Radio Co-location**

### Worst Case Colocation Bluetooth Radio, 900MHz Radio and LTE Band FDD12:

| Frequency<br>Band | Max EIRP<br>Power(dBm)) | Evaluated<br>Distance<br>(cm) | Worst-Case<br>MPE<br>(W/cm²) | MPE<br>Limit<br>(W/cm²) | Worst-<br>Case<br>MPE<br>Ratios | Sum of<br>MPE<br>Ratios | Limit |
|-------------------|-------------------------|-------------------------------|------------------------------|-------------------------|---------------------------------|-------------------------|-------|
|                   |                         |                               | Worst Case                   |                         |                                 |                         |       |
| BT EDR            | 10.94                   | 20                            | 0.025                        | 5.41                    | 4.6%                            |                         |       |
| 900MHz<br>Radio   | 25.09                   | 20                            | 0.64                         | 2.75                    | 23.3%                           | 50.1%                   | 100%  |
| LTE Band<br>FDD12 | 24.05                   | 20                            | 0.51                         | 2.30                    | 22.2%                           |                         |       |

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum MPE ratio at the distance of 20 cm is 50.1% Limit is 100%.

### 5 FCC §15.207 & ISEDC RSS-Gen §8.8 - AC Power Line Conducted Emissions

### 5.1 Applicable Standards

As per FCC §15.207, ISEDC RSS GEN §8.8

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

| Frequency of Emission | Conducted I           | Limit (dBuV)          |
|-----------------------|-----------------------|-----------------------|
| (MHz)                 | Quasi-Peak            | Average               |
| 0.15-0.5              | 66 to 56 <sup>1</sup> | 56 to 46 <sup>2</sup> |
| 0.5-5                 | 56                    | 46                    |
| 5-30                  | 60                    | 50                    |

*Note*<sup>1</sup>: *Decreases with the logarithm of the frequency.* 

Note<sup>2</sup>: A linear average detector is required.

### 5.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.10-2013 measurement procedure. The specification used was FCC §15.207 limits and ISEDC RSS GEN §8.8.

External I/O cables were draped along the edge of the test table and bundled when necessary. The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120~V / 60~Hz AC power.

#### **5.3** Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the main outlet of the LISN-1 and the power cords of support equipment were connected to LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak, quasi-peak, and average detection mode. Quasi-Peak readings are distinguished with "QP." Average readings are distinguished with "Ave".

### 5.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL), the Attenuator Factor (Atten) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + CL + Atten$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Cable Loss (3.7 dB) + Attenuator (10 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

#### 5.5 Test Equipment List and Details

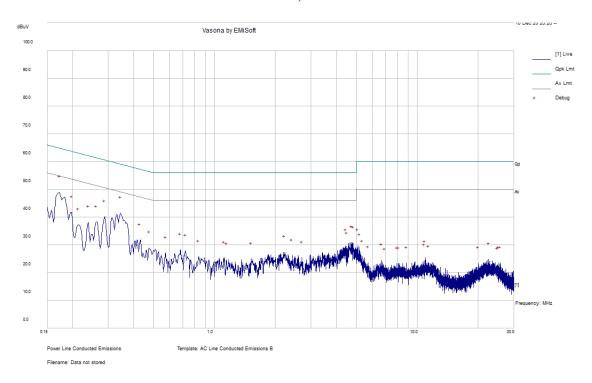
| Manufacturer                 | Description                     | Model No.                       | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|------------------------------|---------------------------------|---------------------------------|------------|---------------------|-------------------------|
| Rohde and Schwarz            | Receiver, EMI Test              | ESCI 1166.5950.03               | 100338     | 2020-03-15          | 2 years                 |
| Rohde and Schwarz            | Impulse Limiter                 | ESH3-Z2                         | 101963     | 2020-07-01          | 1 year                  |
| Solar Electronics<br>Company | High Pass Filter                | Type 7930-100                   | 7930150204 | 2020-11-12          | 1 year                  |
| Suirong                      | 30 ft conductive emission cable | LMR 400                         | -          | N/R                 | N/A                     |
| FCC                          | LISN                            | FCC-LISN-50-25-2-<br>10-CISPR16 | 160129     | 2020-10-13          | 1 year                  |
| Vasona                       | Test software                   | V6.0 build 11                   | 10400213   | N/R                 | N/R                     |

**Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

#### **5.6** Test Environmental Conditions

| Temperature:       | 20° C      |
|--------------------|------------|
| Relative Humidity: | 59 %       |
| ATM Pressure:      | 102.27 kPa |

The testing was performed by Allen Huang on 2020-12-10 in 5m chamber 3.


### 5.7 Summary of Test Results

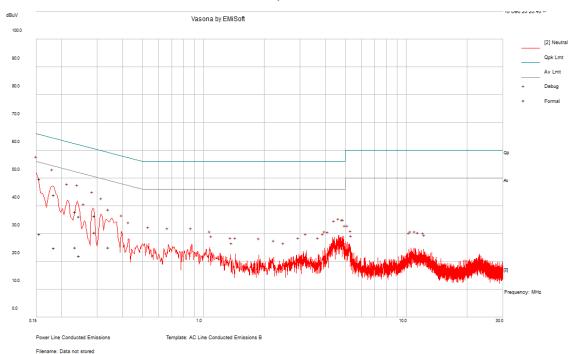
According to the recorded data in following table, the EUT <u>complied with the FCC Part 15 and RSS-Gen standards'</u> conducted emissions limits, with the margin reading of:

| Connection: AC/DC adapter connected to 120 V/60 Hz, AC |                       |  |  |  |  |  |  |
|--------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| Margin<br>(dB)                                         |                       |  |  |  |  |  |  |
| -15.93                                                 | 0.156225 Line 0.15-30 |  |  |  |  |  |  |

#### **5.8 Conducted Emissions Test Plots and Data**

### 120 V, 60 Hz - Line




### **Quasi-Peak Measurement:**

| Frequency (MHz) | Raw<br>Data<br>(dBuV) | Cable<br>Loss<br>(dB) | Factors (dB) | Level<br>(dBuV) | Conductor<br>(Line/Neutral) | Limit (dBuV) | Margin<br>(dB) |
|-----------------|-----------------------|-----------------------|--------------|-----------------|-----------------------------|--------------|----------------|
| 0.156225        | 40.14                 | 9.8                   | -0.21        | 49.73           | Line                        | 65.66        | -15.93         |
| 0.340204        | 29.08                 | 9.77                  | -0.07        | 38.79           | Line                        | 59.2         | -20.41         |
| 0.291036        | 26.72                 | 9.78                  | -0.08        | 36.42           | Line                        | 60.49        | -24.07         |
| 0.183822        | 34.42                 | 9.79                  | -0.16        | 44.05           | Line                        | 64.31        | -20.26         |
| 0.244737        | 26.53                 | 9.79                  | -0.11        | 36.22           | Line                        | 61.93        | -25.72         |
| 0.233598        | 28.3                  | 9.79                  | -0.11        | 37.98           | Line                        | 62.32        | -24.34         |

### **Average Measurement:**

| Frequency<br>(MHz) | Raw<br>Data<br>(dBuV) | Cable<br>Loss<br>(dB) | Factors (dB) | Level<br>(dBuV) | Conductor<br>(Line/Neutral) | Limit (dBuV) | Margin (dB) |
|--------------------|-----------------------|-----------------------|--------------|-----------------|-----------------------------|--------------|-------------|
| 0.156225           | 20.27                 | 9.8                   | -0.21        | 29.86           | Line                        | 55.66        | -25.8       |
| 0.340204           | 15.36                 | 9.77                  | -0.07        | 25.06           | Line                        | 49.2         | -24.14      |
| 0.291036           | 20.84                 | 9.78                  | -0.08        | 30.54           | Line                        | 50.49        | -19.95      |
| 0.183822           | 15.25                 | 9.79                  | -0.16        | 24.89           | Line                        | 54.31        | -29.42      |
| 0.244737           | 12.45                 | 9.79                  | -0.11        | 22.13           | Line                        | 51.93        | -29.8       |
| 0.233598           | 15.43                 | 9.79                  | -0.11        | 25.11           | Line                        | 52.32        | -27.21      |

### 120 V, 60 Hz – Neutral



### **Quasi-Peak Measurement:**

| Frequency (MHz) | Raw<br>Data<br>(dBuV) | Cable<br>Loss<br>(dB) | Factors (dB) | Level<br>(dBuV) | Conductor<br>(Line/Neutral) | Limit (dBuV) | Margin<br>(dB) |
|-----------------|-----------------------|-----------------------|--------------|-----------------|-----------------------------|--------------|----------------|
| 0.150317        | 39.25                 | 9.8                   | -0.22        | 48.83           | Neutral                     | 65.98        | -17.16         |
| 0.16511         | 37.11                 | 9.79                  | -0.19        | 46.71           | Neutral                     | 65.2         | -18.49         |
| 0.222798        | 29.22                 | 9.79                  | -0.12        | 38.89           | Neutral                     | 62.71        | -23.82         |
| 0.199936        | 31.53                 | 9.79                  | -0.13        | 41.19           | Neutral                     | 63.61        | -22.42         |
| 0.270474        | 24.25                 | 9.79                  | -0.09        | 33.95           | Neutral                     | 61.1         | -27.16         |
| 0.332132        | 27.08                 | 9.77                  | -0.07        | 36.78           | Neutral                     | 59.4         | -22.62         |

### **Average Measurement:**

| Frequency (MHz) | Raw<br>Data<br>(dBuV) | Cable<br>Loss<br>(dB) | Factors (dB) | Level<br>(dBuV) | Conductor<br>(Line/Neutral) | Limit (dBuV) | Margin (dB) |
|-----------------|-----------------------|-----------------------|--------------|-----------------|-----------------------------|--------------|-------------|
| 0.150317        | 21.48                 | 9.8                   | -0.22        | 31.06           | Neutral                     | 55.98        | -24.92      |
| 0.16511         | 18.87                 | 9.79                  | -0.19        | 28.47           | Neutral                     | 55.2         | -26.73      |
| 0.222798        | 12.37                 | 9.79                  | -0.12        | 22.04           | Neutral                     | 52.71        | -30.67      |
| 0.199936        | 13.82                 | 9.79                  | -0.13        | 23.48           | Neutral                     | 53.61        | -30.13      |
| 0.270474        | 9.22                  | 9.79                  | -0.09        | 18.92           | Neutral                     | 51.1         | -32.19      |
| 0.332132        | 18.74                 | 9.77                  | -0.07        | 28.44           | Neutral                     | 49.4         | -20.96      |

# 6 FCC §15.209, §15.247(d) & ISEDC RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions

### 6.1 Applicable Standards

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                                                                                                                                                                                                                                                                                                                                                                 | MHz                                                                                                                                                                                                                                                                       | MHz                                                                                                                                                                                                               | GHz                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 0.090 - 0.110 \\ 0.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - 12.52025 \\ 12.57675 - 12.57725 \\ 13.36 - 13.41 \end{array}$ | 16.42 - 16.423 $16.69475 - 16.69525$ $25.5 - 25.67$ $37.5 - 38.25$ $73 - 74.6$ $74.8 - 75.2$ $108 - 121.94$ $123 - 138$ $149.9 - 150.05$ $156.52475 - 156.52525$ $156.7 - 156.9$ $162.0125 - 167.17$ $167.72 - 173.2$ $240 - 285$ $322 - 335.4$ $399.9 - 410$ $608 - 614$ | 960 - 1240 $1300 - 1427$ $1435 - 1626.5$ $1645.5 - 1646.5$ $1660 - 1710$ $1718.8 - 1722.2$ $2200 - 2300$ $2310 - 2390$ $2483.5 - 2500$ $2690 - 2900$ $3260 - 3267$ $3.332 - 3.339$ $33458 - 3358$ $3.600 - 4.400$ | 4. 5 - 5. 15<br>5. 35 - 5. 46<br>7.25 - 7.75<br>8.025 - 8.5<br>9.0 - 9.2<br>9.3 - 9.5<br>10.6 - 12.7<br>13.25 - 13.4<br>14.47 - 14.5<br>15.35 - 16.2<br>17.7 - 21.4<br>22.01 - 23.12<br>23.6 - 24.0<br>31.2 - 31.8<br>36.43 - 36.5<br>Above 38.6 |

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

| Frequency<br>(MHz) | Field Strength<br>(micro volts/meter) | Measurement Distance (meters) |
|--------------------|---------------------------------------|-------------------------------|
| 0.009 - 0.490      | 2400/F(kHz)                           | 300                           |
| 0.490 - 1.705      | 24000/F(kHz)                          | 30                            |
| 1.705 - 30.0       | 30                                    | 30                            |
| 30 - 88            | 100**                                 | 3                             |
| 88 - 216           | 150**                                 | 3                             |
| 216 - 960          | 200**                                 | 3                             |
| Above 960          | 500                                   | 3                             |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c).

#### 6.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

#### **6.3** Test Procedure

The EUT host, and all support equipment power cords were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

For radiated testing the EUT was set 3 meter away from the testing antenna, which was varied from 1-4 meter, and the EUT was placed on a turntable, which was 0.8 meter and 1.5 meter above the ground plane for below and above 1000 MHz measurements, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna's polarity should be changed between horizontal and vertical.

The spectrum analyzer or receiver was set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 3MHz / Sweep = 100 ms
- (2) Average: RBW = 1MHz / VBW = 3MHz / Sweep = Auto

### 6.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB/m) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

### 6.5 Test Equipment List and Details

| Manufacturer       | Description                                     | Model No.               | Serial No. | Calibration<br>Date    | Calibration<br>Interval |
|--------------------|-------------------------------------------------|-------------------------|------------|------------------------|-------------------------|
| Rohde and Schwarz  | Receiver, EMI Test                              | ESCI<br>1166.5950K03    | 100044     | 2018-10-26             | 2.5 years               |
| Agilent            | Analyzer, Spectrum                              | E4440A                  | US45303156 | 2020-09-01             | 1 year                  |
| Sunol Sciences     | System Controller                               | SC99V                   | 011003-1   | N/R                    | N/A                     |
| Sunol Sciences     | Antenna, Biconi-Log                             | ЈВ3                     | A020106-2  | 2019-11-20             | 2 years                 |
| ETS Lindgren       | Antenna, Horn                                   | 3117                    | 9511-4627  | 2019-02-13             | 2.5 years               |
| Agilent            | Amplifier, Pre                                  | 8449B                   | 3147A00400 | 2020-02-07             | 1 year                  |
| Insulated Wire INC | 157 Series 2.92 SM (x2)<br>Armored 33 ft. Cable | KPS-1571AN-<br>3960-KPS | DC 1917    | 2020-02-28             | 1 years                 |
| -                  | SMA cable                                       | -                       | C0002      | Each time <sup>1</sup> | N/A                     |
| A.H. Systems       | Pre-Amplifer                                    | PAM 1840V               | 170        | 2019-11-09             | 1 Year                  |
| НР                 | Pre-Amplifier                                   | 8447D                   | 2944A07030 | 2020-08-17             | 1 year                  |
| Wisewave           | Antenna, Horn                                   | ARH-4223-02             | 10555-01   | 2020-02-27             | 2 years                 |
| BACL               | 5m3 Sensitivity Box                             | 1                       | 2          | 2019-10-02             | 1 years                 |

Note<sup>1</sup>: cable and attenuator included in the test set-up will be checked each time before testing.

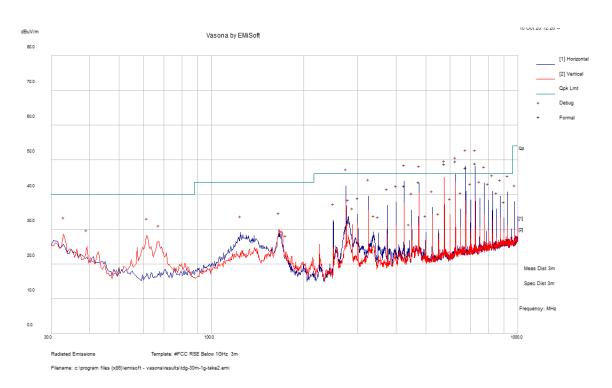
**Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

### 6.6 Test Environmental Conditions

| Temperature:       | 22-25 °C  |
|--------------------|-----------|
| Relative Humidity: | 42-48 %   |
| ATM Pressure:      | 102.1 kPa |

The testing was performed by Zhao Zhao from 2020-09-17 and 2020-09-24 in 5m chamber 3.

### 6.7 Summary of Test Results


According to the data hereinafter, the EUT <u>complied with FCC Title 47, Part 15C and RSS-247</u> standard's radiated emissions limits, and had the worst margin of:

| Mode: Transmitting |                    |                                       |                    |
|--------------------|--------------------|---------------------------------------|--------------------|
| Margin<br>(dB)     | Frequency<br>(MHz) | Polarization<br>(Horizontal/Vertical) | Mode, channel      |
| -3.45              | 425.021            | Horizontal                            | 2480 MHz, 8DPSK BT |

Please refer to the following table and plots for specific test result details

### **6.8** Spurious Emissions Test Results

### 1) 30 MHz – 1 GHz Worst Case, Measured at 3 meters



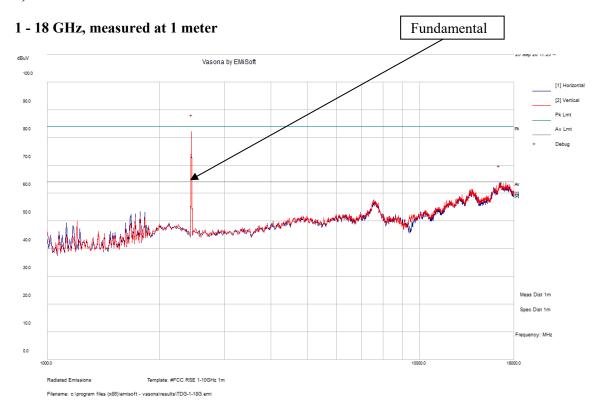
| Frequency<br>(MHz) | Corrected<br>Amplitude<br>(dBµV/m) | Antenna<br>Height<br>(cm) | Antenna<br>Polarity<br>(H/V) | Turntable<br>Azimuth<br>(degrees) | Limit<br>(dBµV/m) | Margin<br>(dB) | Comment |
|--------------------|------------------------------------|---------------------------|------------------------------|-----------------------------------|-------------------|----------------|---------|
| 725.0085           | 48.94                              | 107                       | Н                            | 123                               | 70.02             | -21.08         | Pass    |
| 675.03425          | 47.85                              | 114                       | Н                            | 293                               | 70.02             | -22.17         | Pass    |
| 625.0235           | 49.69                              | 126                       | Н                            | 121                               | 70.02             | -20.33         | Pass    |
| 575.02075          | 48.93                              | 143                       | Н                            | 16                                | 70.02             | -21.09         | Pass    |
| 425.021            | 42.55                              | 201                       | Н                            | 88                                | 46                | -3.45          | Pass    |
| 475.01225          | 43.58                              | 183                       | Н                            | 162                               | 70.02             | -26.44         | Pass    |

Note: The limit for those frequencies who didn't fall in the restricted band was calculated from the worst case of the average measurement of the fundamental signal.

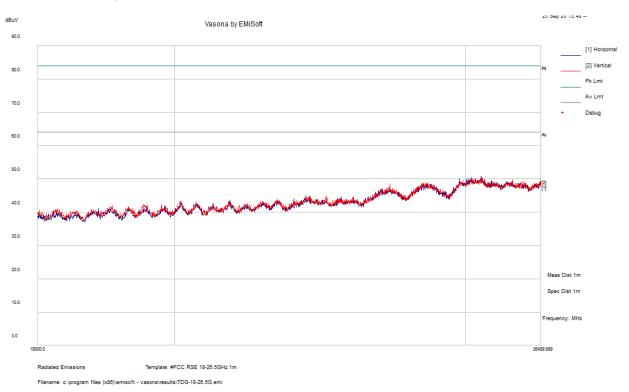
### 2) Above 1 GHz, measured at 3 meters

### **GFSK**

| Freq. | S.A.           | Turntable         | ,           | Test Anten        | na            | Cable        | Pre-         | Cord.               | FCC/I          | SED         | G        |
|-------|----------------|-------------------|-------------|-------------------|---------------|--------------|--------------|---------------------|----------------|-------------|----------|
| (MHz) | Reading (dBμV) | Azimuth (degrees) | Height (cm) | Polarity<br>(H/V) | Factor (dB/m) | Loss<br>(dB) | Amp.<br>(dB) | Reading<br>(dBμV/m) | Limit (dBµV/m) | Margin (dB) | Comments |
|       |                |                   |             |                   | Low Char      | nnel 2402    | MHz          |                     |                |             |          |
| 2402  | 65.08          | 81                | 147         | V                 | 32.6          | 5.59         | 0            | 103.27              | -              | -           | Peak     |
| 2402  | 67.24          | 219               | 120         | Н                 | 32.6          | 5.59         | 0            | 105.43              | -              | -           | Peak     |
| 2402  | 60.08          | 81                | 147         | V                 | 32.6          | 5.59         | 0            | 98.27               | -              | -           | Ave      |
| 2402  | 61.83          | 219               | 120         | Н                 | 32.6          | 5.59         | 0            | 100.02              | -              | -           | Ave      |
| 2390  | 47.01          | 81                | 147         | V                 | 32.6          | 5.59         | 36.34        | 48.86               | 74             | -25.14      | Peak     |
| 2390  | 46.33          | 219               | 120         | Н                 | 32.6          | 5.59         | 36.34        | 48.18               | 74             | -25.82      | Peak     |
| 2390  | 34.26          | 81                | 147         | V                 | 32.6          | 5.59         | 36.34        | 36.11               | 54             | -17.89      | Ave      |
| 2390  | 34.58          | 219               | 120         | Н                 | 32.6          | 5.59         | 36.34        | 36.43               | 54             | -17.57      | Ave      |
| 4804  | 43.95          | 0                 | 100         | V                 | 35            | 9.89         | 35.43        | 53.41               | 74             | -20.59      | Peak     |
| 4804  | 44.21          | 0                 | 100         | Н                 | 35            | 9.89         | 35.43        | 53.67               | 74             | -20.33      | Peak     |
| 4804  | 32.32          | 0                 | 100         | V                 | 35            | 9.89         | 35.43        | 41.78               | 54             | -12.22      | Ave      |
| 4804  | 32.74          | 0                 | 100         | Н                 | 35            | 9.89         | 35.43        | 42.20               | 54             | -11.80      | Ave      |
| 7206  | 45.07          | 0                 | 100         | V                 | 36.1          | 9.83         | 35.82        | 55.18               | 74             | -18.82      | Peak     |
| 7206  | 44.86          | 0                 | 100         | Н                 | 36.1          | 9.83         | 35.82        | 54.97               | 74             | -19.03      | Peak     |
| 7206  | 32.12          | 0                 | 100         | V                 | 36.1          | 9.83         | 35.82        | 42.23               | 54             | -11.77      | Ave      |
| 7206  | 32.33          | 0                 | 100         | Н                 | 36.1          | 9.83         | 35.82        | 42.44               | 54             | -11.56      | Ave      |
|       |                |                   |             |                   | Mid Chanı     | nel 2441 N   | ИНz          |                     |                |             |          |
| 2441  | 65.06          | 179               | 152         | V                 | 32.8          | 5.59         | 0            | 103.45              | -              | -           | Peak     |
| 2441  | 66.58          | 227               | 132         | Н                 | 32.8          | 5.59         | 0            | 104.97              | -              | -           | Peak     |
| 2441  | 60.18          | 179               | 152         | V                 | 32.8          | 5.59         | 0            | 98.57               | -              | -           | Ave      |
| 2441  | 61.33          | 227               | 132         | Н                 | 32.8          | 5.59         | 0            | 99.72               | -              | -           | Ave      |
| 4882  | 43.77          | 0                 | 100         | V                 | 35.2          | 10.96        | 35.43        | 54.5                | 74             | -19.5       | Peak     |
| 4882  | 43.48          | 0                 | 100         | Н                 | 35.2          | 10.96        | 35.43        | 54.21               | 74             | -19.79      | Peak     |
| 4882  | 32.53          | 0                 | 100         | V                 | 35.2          | 10.96        | 35.43        | 43.26               | 54             | -10.74      | Ave      |
| 4882  | 32.08          | 0                 | 100         | Н                 | 35.2          | 10.96        | 35.43        | 42.81               | 54             | -11.19      | Ave      |
| 7323  | 44.91          | 0                 | 100         | V                 | 36.1          | 10.95        | 35.82        | 56.14               | 74             | -17.86      | Peak     |
| 7323  | 44.57          | 0                 | 100         | Н                 | 36.1          | 10.95        | 35.82        | 55.8                | 74             | -18.2       | Peak     |
| 7323  | 31.64          | 0                 | 100         | V                 | 36.1          | 10.95        | 35.82        | 42.87               | 54             | -11.13      | Ave      |
| 7323  | 32.07          | 0                 | 100         | Н                 | 36.1          | 10.95        | 35.82        | 43.3                | 54             | -10.7       | Ave      |


| Freq.  | S.A.           | Turntable<br>Azimuth |             | Test Anten        | na            | Cable<br>Loss | Pre-         | Cord.            | FCC/I             | SED            | Comments |
|--------|----------------|----------------------|-------------|-------------------|---------------|---------------|--------------|------------------|-------------------|----------------|----------|
| (MHz)  | Reading (dBµV) | (degrees)            | Height (cm) | Polarity<br>(H/V) | Factor (dB/m) | (dB)          | Amp.<br>(dB) | Reading (dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Comments |
|        |                |                      |             |                   | High Chan     | nel 2480 l    | MHz          |                  |                   |                |          |
| 2480   | 64.88          | 187                  | 120         | V                 | 33            | 5.59          | 0            | 103.47           | -                 | -              | Peak     |
| 2480   | 66.33          | 231                  | 127         | Н                 | 33            | 5.59          | 0            | 104.92           | -                 | -              | Peak     |
| 2480   | 59.28          | 187                  | 120         | V                 | 33            | 5.59          | 0            | 97.87            | -                 | -              | Ave      |
| 2480   | 60.49          | 231                  | 127         | Н                 | 33            | 5.59          | 0            | 99.08            | -                 | -              | Ave      |
| 2483.5 | 47.36          | 187                  | 120         | V                 | 33            | 5.6           | 36.34        | 49.62            | 74                | -24.38         | Peak     |
| 2483.5 | 48.11          | 231                  | 127         | Н                 | 33            | 5.6           | 36.34        | 50.37            | 74                | -23.63         | Peak     |
| 2483.5 | 34.59          | 187                  | 120         | V                 | 33            | 5.6           | 36.34        | 36.85            | 54                | -17.15         | Ave      |
| 2483.5 | 34.47          | 231                  | 127         | Н                 | 33            | 5.6           | 36.34        | 36.73            | 54                | -17.27         | Ave      |
| 4960   | 44.08          | 0                    | 100         | V                 | 35.4          | 11.07         | 35.43        | 55.12            | 74                | -18.88         | Peak     |
| 4960   | 43.78          | 0                    | 100         | Н                 | 35.4          | 11.07         | 35.43        | 54.82            | 74                | -19.18         | Peak     |
| 4960   | 32.17          | 0                    | 100         | V                 | 35.4          | 11.07         | 35.43        | 43.21            | 54                | -10.79         | Ave      |
| 4960   | 33.06          | 0                    | 100         | Н                 | 35.4          | 11.07         | 35.43        | 44.10            | 54                | -9.90          | Ave      |
| 7440   | 44.94          | 0                    | 100         | V                 | 36.1          | 12.73         | 35.9         | 57.87            | 74                | -16.13         | Peak     |
| 7440   | 45.13          | 0                    | 100         | Н                 | 36.1          | 12.73         | 35.9         | 58.06            | 74                | -15.94         | Peak     |
| 7440   | 31.96          | 0                    | 100         | V                 | 36.1          | 12.73         | 35.9         | 44.89            | 54                | -9.11          | Ave      |
| 7440   | 32.34          | 0                    | 100         | Н                 | 36.1          | 12.73         | 35.9         | 45.27            | 54                | -8.73          | Ave      |

### 8DPSK


| Freq. | S.A.<br>Reading | Turntable<br>Azimuth | ,           | Test Anten        | na            | Cable        | Pre-         | Cord.<br>Reading | FCC/I             | SED            | Comments |
|-------|-----------------|----------------------|-------------|-------------------|---------------|--------------|--------------|------------------|-------------------|----------------|----------|
| (MHz) | (dBµV)          | (degrees)            | Height (cm) | Polarity<br>(H/V) | Factor (dB/m) | Loss<br>(dB) | Amp.<br>(dB) | (dBµV/m)         | Limit<br>(dBµV/m) | Margin<br>(dB) | Comments |
|       |                 |                      |             |                   | Low Char      | nnel 2402    | MHz          |                  |                   |                |          |
| 2402  | 64.88           | 81                   | 147         | V                 | 32.6          | 5.59         | 0            | 103.07           | -                 | -              | Peak     |
| 2402  | 66.84           | 219                  | 120         | Н                 | 32.6          | 5.59         | 0            | 105.03           | -                 | -              | Peak     |
| 2402  | 60.19           | 81                   | 147         | V                 | 32.6          | 5.59         | 0            | 98.38            | -                 | -              | Ave      |
| 2402  | 61.64           | 219                  | 120         | Н                 | 32.6          | 5.59         | 0            | 99.83            | -                 | -              | Ave      |
| 2390  | 46.88           | 81                   | 147         | V                 | 32.6          | 5.59         | 36.34        | 48.73            | 74                | -25.27         | Peak     |
| 2390  | 46.87           | 219                  | 120         | Н                 | 32.6          | 5.59         | 36.34        | 48.72            | 74                | -25.28         | Peak     |
| 2390  | 34.48           | 81                   | 147         | V                 | 32.6          | 5.59         | 36.34        | 36.33            | 54                | -17.67         | Ave      |
| 2390  | 34.66           | 219                  | 120         | Н                 | 32.6          | 5.59         | 36.34        | 36.51            | 54                | -17.49         | Ave      |
| 4804  | 44.17           | 0                    | 100         | V                 | 35            | 9.89         | 35.43        | 53.63            | 74                | -20.37         | Peak     |
| 4804  | 43.69           | 0                    | 100         | Н                 | 35            | 9.89         | 35.43        | 53.15            | 74                | -20.85         | Peak     |
| 4804  | 32.00           | 0                    | 100         | V                 | 35            | 9.89         | 35.43        | 41.46            | 54                | -12.54         | Ave      |
| 4804  | 31.64           | 0                    | 100         | Н                 | 35            | 9.89         | 35.43        | 41.10            | 54                | -12.90         | Ave      |
| 7206  | 45.33           | 0                    | 100         | V                 | 36.1          | 9.83         | 35.82        | 55.44            | 74                | -18.56         | Peak     |
| 7206  | 45.71           | 0                    | 100         | Н                 | 36.1          | 9.83         | 35.82        | 55.82            | 74                | -18.18         | Peak     |
| 7206  | 33.41           | 0                    | 100         | V                 | 36.1          | 9.83         | 35.82        | 43.52            | 54                | -10.48         | Ave      |
| 7206  | 33.22           | 0                    | 100         | Н                 | 36.1          | 9.83         | 35.82        | 43.33            | 54                | -10.67         | Ave      |
|       |                 |                      |             |                   | Middle Ch     | annel 244    | 1MHz         |                  |                   |                |          |
| 2441  | 65.11           | 179                  | 152         | V                 | 32.8          | 5.59         | 0            | 103.5            | -                 | -              | Peak     |
| 2441  | 67.34           | 227                  | 132         | Н                 | 32.8          | 5.59         | 0            | 105.73           | -                 | -              | Peak     |
| 2441  | 61.42           | 179                  | 152         | V                 | 32.8          | 5.59         | 0            | 99.81            | -                 | -              | Ave      |
| 2441  | 62.18           | 227                  | 132         | Н                 | 32.8          | 5.59         | 0            | 100.57           | -                 | -              | Ave      |
| 4882  | 43.51           | 0                    | 100         | V                 | 35.2          | 10.96        | 35.43        | 54.24            | 74                | -19.76         | Peak     |
| 4882  | 43.09           | 0                    | 100         | Н                 | 35.2          | 10.96        | 35.43        | 53.82            | 74                | -20.18         | Peak     |
| 4882  | 31.45           | 0                    | 100         | V                 | 35.2          | 10.96        | 35.43        | 42.18            | 54                | -11.82         | Ave      |
| 4882  | 31.56           | 0                    | 100         | Н                 | 35.2          | 10.96        | 35.43        | 42.29            | 54                | -11.71         | Ave      |
| 7323  | 44.03           | 0                    | 100         | V                 | 36.1          | 10.95        | 35.82        | 55.26            | 74                | -18.74         | Peak     |
| 7323  | 44.24           | 0                    | 100         | Н                 | 36.1          | 10.95        | 35.82        | 55.47            | 74                | -18.53         | Peak     |
| 7323  | 32.63           | 0                    | 100         | V                 | 36.1          | 10.95        | 35.82        | 43.86            | 54                | -10.14         | Ave      |
| 7323  | 32.88           | 0                    | 100         | Н                 | 36.1          | 10.95        | 35.82        | 44.11            | 54                | -9.89          | Ave      |

| Freq.  | S.A.           | Turntable<br>Azimuth |             | Test Anten        | na            | Cable<br>Loss | Pre-         | Cord.            | FCC/I             | SED            | Comments |
|--------|----------------|----------------------|-------------|-------------------|---------------|---------------|--------------|------------------|-------------------|----------------|----------|
| (MHz)  | Reading (dBµV) | (degrees)            | Height (cm) | Polarity<br>(H/V) | Factor (dB/m) | (dB)          | Amp.<br>(dB) | Reading (dBμV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Comments |
|        |                |                      |             |                   | High Cha      | nnel 2480     | MHz          |                  |                   |                |          |
| 2480   | 66.34          | 187                  | 120         | V                 | 33            | 5.59          | 0            | 104.93           | -                 | -              | Peak     |
| 2480   | 67.35          | 231                  | 127         | Н                 | 33            | 5.59          | 0            | 105.94           | -                 | -              | Peak     |
| 2480   | 61.22          | 187                  | 120         | V                 | 33            | 5.59          | 0            | 99.81            | -                 | -              | Ave      |
| 2480   | 62.08          | 231                  | 127         | Н                 | 33            | 5.59          | 0            | 100.67           | -                 | -              | Ave      |
| 2483.5 | 48.19          | 187                  | 120         | V                 | 33            | 5.6           | 36.34        | 50.45            | 74                | -23.55         | Peak     |
| 2483.5 | 48.66          | 231                  | 127         | Н                 | 33            | 5.6           | 36.34        | 50.92            | 74                | -23.08         | Peak     |
| 2483.5 | 33.56          | 187                  | 120         | V                 | 33            | 5.6           | 36.34        | 35.82            | 54                | -18.18         | Ave      |
| 2483.5 | 34.75          | 231                  | 127         | Н                 | 33            | 5.6           | 36.34        | 37.01            | 54                | -16.99         | Ave      |
| 4960   | 43.60          | 0                    | 100         | V                 | 35.4          | 11.07         | 35.43        | 54.64            | 74                | -19.36         | Peak     |
| 4960   | 43.25          | 0                    | 100         | Н                 | 35.4          | 11.07         | 35.43        | 54.29            | 74                | -19.71         | Peak     |
| 4960   | 32.11          | 0                    | 100         | V                 | 35.4          | 11.07         | 35.43        | 43.15            | 54                | -10.85         | Ave      |
| 4960   | 32.05          | 0                    | 100         | Н                 | 35.4          | 11.07         | 35.43        | 43.09            | 54                | -10.91         | Ave      |
| 7440   | 45.37          | 0                    | 100         | V                 | 36.1          | 12.73         | 35.9         | 58.30            | 74                | -15.70         | Peak     |
| 7440   | 44.61          | 0                    | 100         | Н                 | 36.1          | 12.73         | 35.9         | 57.54            | 74                | -16.46         | Peak     |
| 7440   | 32.96          | 0                    | 100         | V                 | 36.1          | 12.73         | 35.9         | 45.89            | 54                | -8.11          | Ave      |
| 7440   | 33.14          | 0                    | 100         | Н                 | 36.1          | 12.73         | 35.9         | 46.07            | 54                | -7.93          | Ave      |

### 3) Co-location



### 18 GHz-26.5 GHz, measured at 1 meter



| The Detection Group, Inc.      | , 7       | FCC ID: 2AK4V-DT-450, IC: 22517-DT450 |
|--------------------------------|-----------|---------------------------------------|
| 7 Annex A – Test Setup Pho     | otographs |                                       |
| Please refer to the attachment |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |
|                                |           |                                       |

|      | Detection Group, Inc.             | FCC ID: 2AK4V-DT-450, IC: 22517-DT450 |
|------|-----------------------------------|---------------------------------------|
| 8    | Annex B- EUT External Photographs |                                       |
| Plea | ase refer to the attachment       |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |
|      |                                   |                                       |

| Annex C- EUT Internal Photographs ease refer to the attachment |  |
|----------------------------------------------------------------|--|
| ease refer to the attachment                                   |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |
|                                                                |  |

### 10 Annex D (Normative) - ISO/IEC 17025 Certificate and Scope of Accreditation



# **Accredited Laboratory**

A2LA has accredited

### BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

### **Electrical Testing**

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This laboratory also meets A2LA R222

- Specific Requirements EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 2<sup>nd</sup> day of October 2018.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3297.02 Valid to February 28, 2021 Revised December 04, 2020

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Please follow the web link below for a full ISO 17025 scope

https://www.a2la.org/scopepdf/3297-02.pdf

--- END OF REPORT ---