

NORTHWEST EMC

Walt Disney Parks and Resorts US, Inc.

TPv2 (DAP 2)

SAR Evaluation Report # SYNA0197 Rev 01

Evaluated to the following SAR specification:

FCC 2.1093:2016

FCC 15.247:2016

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: September 15, 2016
Walt Disney Parks and Resorts US, Inc.
Model: TPv2 (DAP 2)

Applicable Standard

Test Description	Specification	Test Method	Pass/Fail
SAR Evaluation	FCC 15.247:2016 FCC 2.1093:2016	FCC KDB 865664 D01 v01r04 FCC KDB 865664 D02 v01r02 FCC KDB 248227 D01 V02r02 FCC KDB 447498 D01 v06 IEEE Std 1528:2013	Pass

Highest SAR Values:

Frequency (MHz)	Extremity (W/kg) 10g	Limit (W/kg) 10g	Exposure Environment
902.75	0.23	4.0	General Population

Deviations From Test Standards

None

Approved By:

Don Facticeau, IS Manager

REVISION HISTORY

Revision Number	Description	Date	Page Number
01	Updated to correct the system description	3/3/17	6

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission – Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

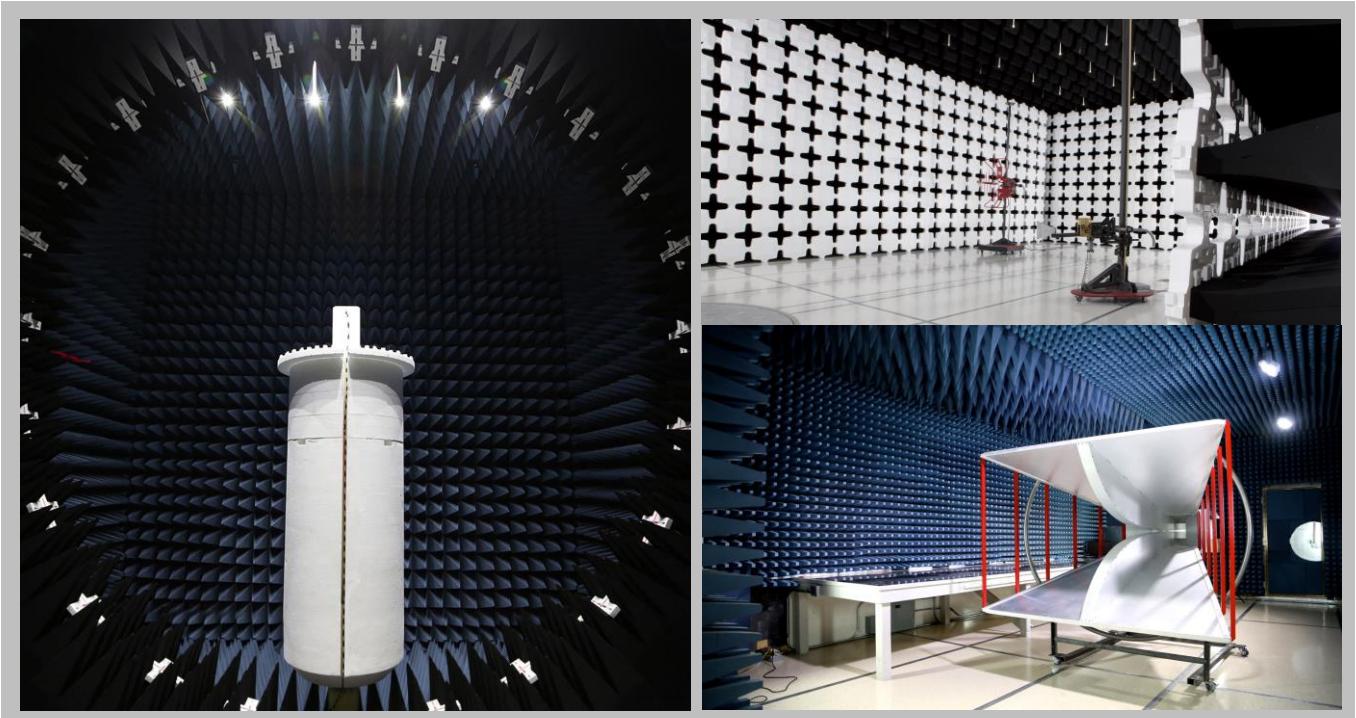
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:


<http://www.nwemc.com/accreditations/>

<http://gsi.nist.gov/global/docs/cabs/designations.html>

FACILITIES

California	Minnesota	New York	Oregon	Texas	Washington
Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
NVLAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code: 201049-0	NVLAP Lab Code: 200629-0
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Walt Disney Parks and Resorts US, Inc.
Address:	PO Box 10000
City, State, Zip:	Lake Buena Vista, FL 32830
Test Requested By:	Brian Piquette of Synapse Product Development LLC
Model:	TPv2 (DAP 2)
First Date of Test:	September 15, 2016
Last Date of Test:	September 15, 2016
Receipt Date of Samples:	September 15, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The TPv2 (DAP2) Multi-Media Reader is part of a proprietary data acquisition system. It provides an HF RFID reader, UHF RFID reader, Bluetooth LE Host interface and a 2.4GHz RF interface to read data from proprietary RFID and RF media that are held in the hand or worn on the wrist. This RFID/RF tag data can be then sent over an Ethernet connection to a data collection/concentration object. The TPv2 (DAP2) is designed to be mounted in several known stanchions which provide the final weatherproof enclosure for the product.

Please see the external photos exhibit, the internal photos exhibit, and the antenna info exhibit for details regarding the EUT configuration and antenna location. These exhibits are part of the FCC application filed for this product.

Compliance with 2.1093 for the Class II Permissive change of the UHF RFID radio, FCC ID: TWYPJRS500 also contained in the system is shown in this document.

Compliance with FCC RF exposure requirements for 2.1093 portable devices for the TPv2 (DAP 2) which includes the 2.4 GHz DTS radio and for the Class II Permissive Change to the Bluetooth/Bluetooth Low Energy radio, FCC ID: SQGBT800 contained in the system are not shown in this document. A separate SAR extremity exclusion will be part of the FCC certification filing.

PRODUCT DESCRIPTION

Testing Requirements

Testing Locations

The EUT will be mounted in stanchions where only the face of the product is exposed to users. This face is also the side closest to the transmitting antenna.

Simultaneous Transmission

The EUT does have simultaneous transmission capability. Simultaneous SAR exposure assessment will be included as part of the FCC Certification filing.

Testing Objective:

Only a user's hand or wrist will be closer than 20cm to the transmit antenna. The 900 MHz RFID radio failed the extremity SAR exclusion, so this SAR report was necessary. Therefore, this testing is to demonstrate compliance of the radio with the extremity SAR requirements of FCC 2.1093.

Scope

The stand-alone SAR evaluation documented in this report is for the 900 MHz UHF RFID radio in the EUT.

CONFIGURATIONS

Configuration SYNA0197- 1

Software/Firmware Running during test	
Description	Version
UHFTool (900 MHz)	0.0

EUT	
Description	Manufacturer
Access Point	Walt Disney Parks and Resorts US, Inc.

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power Cable	No	2m	No	Access Point	DC Power Supply

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	9/15/2016	SAR Evaluation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TISSUE – EQUIVALENT LIQUID DESCRIPTION

Characterization of tissue-equivalent liquid dielectric properties

Per IEEE 1528: 2013, Section 5.3.2, the permittivity and conductivity of the tissue material should be measured at least within 24 hours of any full-compliance test. The measured values must be within +/- 5% of the target values. The temperature variation in the liquid during SAR measurements must be within +/- 2 degrees C of that recorded when the dielectric properties were measured.

The dielectric parameters of the tissue-equivalent liquids were measured within 24 hours of the start of testing using the SPEAG DAKS:200 dielectric assessment kit. The dielectric measurements were made across the frequency range of the liquid. The attached data sheets show that the dielectric parameters of the liquid were within the required 5% tolerances.

Target values of dielectric parameters

Per KDB 865664 D01 v01r04, Appendix A:

"The head tissue dielectric parameters recommended by IEEE Std 1528-2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE Std 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in IEEE Std 1528."

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

TISSUE – EQUIVALENT LIQUID DESCRIPTION

Composition of Ingredients for Liquid Tissue Phantoms

Northwest EMC uses tissue-equivalent liquids prepared by SPEAG and confirmed by them to be within +/- 5% from the target values. Their recipes are based upon the following formulations as found in IEEE 1528:2013 Annex C (head) and IEC 62209-2:2010 Annex E (body):

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation:

HEAD

**Table C.1—Suggested recipes for achieving target dielectric parameters:
300 MHz to 900 MHz**

Frequency (MHz)	300	450	450	450	835	835	900	900	900	900
Reference	[B118]	[B118]	[B172]	[B74]	[B118]	[B74]	[B118]	[B196]	[B172]	[B74]
Ingredients (% by weight)										
1.2-Propanediol	—	—	—	—	—	—	—	64.81	—	—
Bactericide	0.19	0.19	0.50	—	0.10	—	0.10	—	0.50	—
Diacetin	—	—	48.90	—	—	—	—	—	49.20	—
DGBE	—	—	—	—	—	—	—	—	—	—
HEC	0.98	0.98	—	—	1.00	—	1.00	—	—	—
NaCl	5.95	3.95	1.70	1.96	1.45	1.25	1.48	0.79	1.10	1.35
Sucrose	55.32	56.32	—	—	57.00	—	56.50	—	—	—
Triton X-100	—	—	—	—	—	—	—	—	—	—
Tween 20	—	—	—	49.51	—	48.39	—	—	—	48.34
Water	37.56	38.56	48.90	48.53	40.45	50.36	40.92	34.40	49.20	50.31

**Table C.2—Suggested recipes for achieving target dielectric parameters:
1450 MHz to 2000 MHz**

Frequency (MHz)	1450	1800	1800	1800	1800	1800	1900	1900	1950	2000
Reference	[B118]	[B118]	[B196]	[B196]	[B172]	[B74]	[B118]	[B196]	[B74]	[B118]
Ingredients (% by weight)										
1.2-Propanediol	—	—	—	—	—	—	—	—	—	—
Bactericide	—	—	—	—	0.50	—	—	—	—	—
Diacetin	—	—	—	—	49.43	—	—	—	—	—
DGBE	45.51	47.00	13.84	44.92	—	—	44.92	13.84	45.00	50.00
HEC	—	—	—	—	—	—	—	—	—	—
NaCl	0.67	0.36	0.35	0.18	0.64	0.50	0.18	0.35	—	—
Sucrose	—	—	—	—	—	—	—	—	—	—
Triton X-100	—	—	30.45	—	—	—	—	30.45	—	—
Tween 20	—	—	—	—	—	45.27	—	—	—	—
Water	53.82	52.64	55.36	54.90	49.43	54.23	54.90	55.36	55.00	50.00

TISSUE – EQUIVALENT LIQUID DESCRIPTION

**Table C.3—Suggested recipes for achieving target dielectric parameters:
 2100 MHz to 5800 MHz**

Frequency (MHz)	2100	2100	2450	2450	3000	5200	5800
Reference	[B118]	[B196]	[B196]	[B172]	[B196]		
Ingredients (% by weight)							
1,2-Propanediol	—	—	—	—	—	—	—
Bactericide	—	—	—	0.50	—	—	—
Diacetin	—	—	—	49.75	—	—	—
DGBE	50.00	7.99	7.99	—	7.99	—	—
HEC	—	—	—	—	—	—	—
NaCl	—	0.16	0.16	—	0.16	—	—
Sucrose	—	—	—	—	—	—	—
Triton X-100	—	19.97	19.97	—	19.97	17.24	17.24
Diethylenglycol monohexylether	—	—	—	—	—	17.24	17.24
Water	50.00	71.88	71.88	49.75	71.88	65.52	65.52

BODY

Frequency (MHz)	30	50	144	450	835	900		
Recipe source number	3	3	2	2	3	2	2	4
Ingredients (% by weight)								
Deionised water	48,30	48,30	53,53	55,12	48,30	48,53	56	50,36
Tween			44,70	43,31		49,51		48,39
Oxidised mineral oil						44		44
Diethylenglycol monohexylether								
Triton X-100								
Diacetin	50,00	50,00			50,00			
DGBE								
NaCl	1,60	1,60	1,77	1,57	1,60	1,96		1,25
Additives and salt	0,10	0,10			0,10			1,35

Frequency (MHz)	1 800	2 450	4 000	5 000	5 200	5 800	6 000
Recipe source number	2	4	4	4	1	1	4
Ingredients (% by weight)							
Deionised water	54,23	56	56	56	56	65,53	65,53
Tween	45,27						
Oxidised mineral oil		44	44	44	44		44
Diethylenglycol monohexylether					17,24	17,24	
Triton X-100					17,24	17,24	
Diacetin							
DGBE							
NaCl	0,50						
Additives and salt							

TISSUE – EQUIVALENT LIQUID

Date:	09/15/2016	Temperature:	23.8°C
Tissue:	Body, MSL900, 900MHz	Liquid Temperature:	22°C
Tested By:	Pick One	Relative Humidity:	43.1%
Job Site:	EV08	Bar. Pressure:	1016.8 mb

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2016	FCC KDB 865664 D01 v01r04
FCC 2.1093:2016	FCC KDB 865664 D02 v01r02
	FCC KDB 248227 D01 V02r02
	FCC KDB 447498 D01 v06
	IEEE Std 1528:2013

RESULTS

Frequency (MHz)	Actual Values		Target Values		Deviation (%)	
	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity	Relative Permittivity	Conductivity
900	56.69	1.052	55.0	1.05	-3.07	-0.19

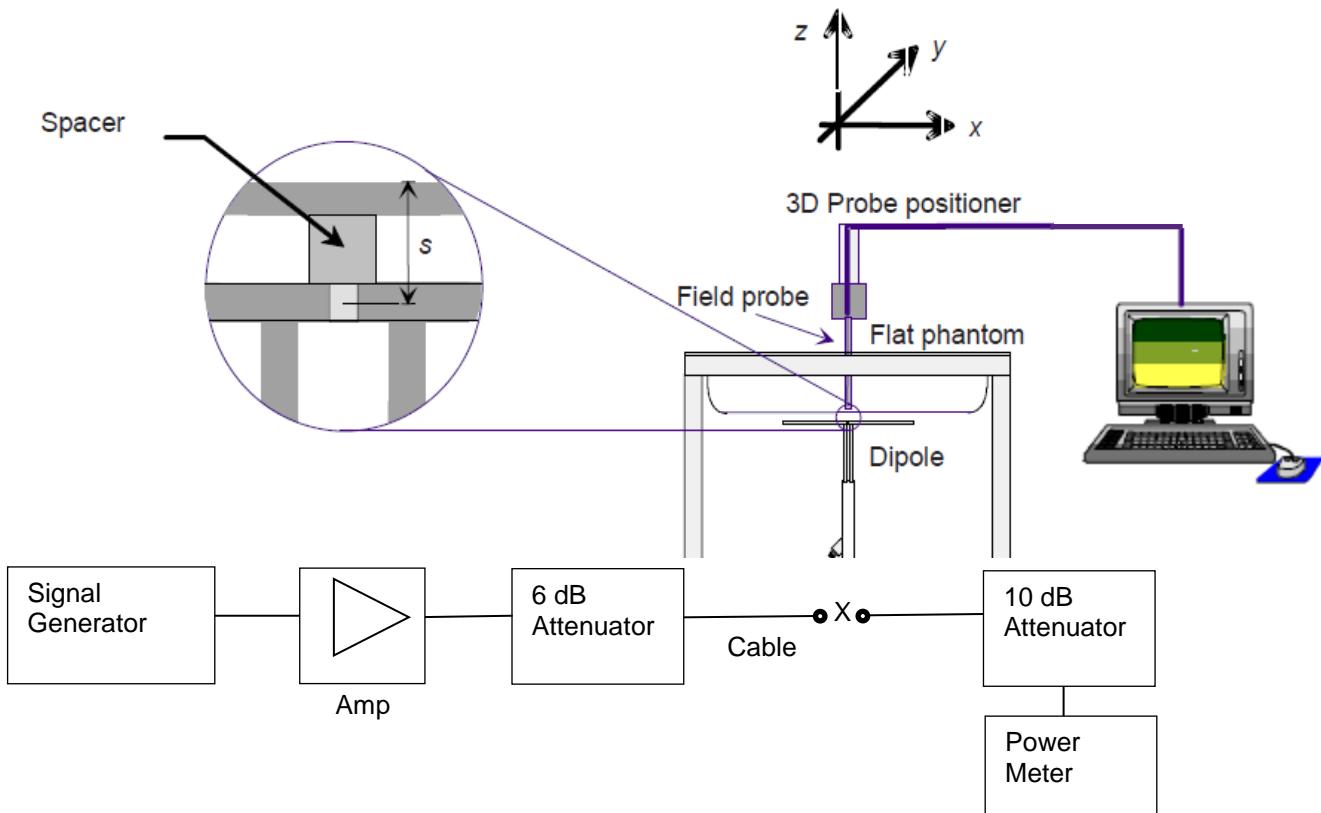
Frequency (MHz)	Relative Permittivity	Conductivity
800	57.38	0.954
800	57.38	0.954
810	57.41	0.963
820	57.35	0.972
820	57.35	0.972
830	57.24	0.978
840	57.15	0.992
850	57.04	1.001
850	57.04	1.001
860	57.01	1.013
870	56.96	1.021
880	56.82	1.035
880	56.82	1.035
890	56.74	1.041
900	56.69	1.052
910	56.61	1.059
910	56.61	1.059
920	56.55	1.068
930	56.4	1.08
940	56.4	1.09
940	56.4	1.09
950	56.3	1.102
960	56.17	1.111
970	56.14	1.121
970	56.14	1.121
980	56.02	1.129
990	55.94	1.141

SAR SYSTEM VERIFICATION DESCRIPTION

REQUIREMENT

Per IEEE 1528, Section 8.2.1, "System checks are performed prior to compliance tests and the results must always be within $\pm 10\%$ of the target value corresponding to the test frequency, liquid, and the source used. The target values are 1 g or 10 g averaged SAR values measured on systems having current system validation and calibration status, and using the system check setup as shown in Figure 14. These target values should be determined using a standard source."

TEST DESCRIPTION


Within 24 hours of a measurement, then every 72 hours thereafter, Northwest EMC used the system validation kit (calibrated reference dipole) to test whether the system was operating within its specifications. The validation was performed in the indicated bands by making SAR measurements of the reference dipole with the phantom filled with the tissue-equivalent liquid. First, a signal generator and power amplifier were used to produce a 100mW level as measured with a power meter at the antenna terminals of the dipole (X). Then, the reference dipole was positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. A low loss and low relative permittivity spacer was used to establish the correct distance between the center axis of the reference dipole and the liquid.

For the reference dipoles, the spacing distance s is given by:

$$s = 15\text{mm, } +/ - 0.2\text{mm for } 300\text{MHz} \leq f \geq 1000 \text{ MHz}$$

$$s = 10\text{mm, } +/ - 0.2\text{mm for } 1000\text{MHz} \leq f \geq 6000\text{MHz}$$

The measured 1 g and 10 g spatial average SAR values were normalized to a 1W dipole input power for comparison to the calibration data. The results are summarized in the attached table. The deviation is less than 10% in all cases, indicating that the system performance check was within tolerance.

SAR SYSTEM VERIFICATION

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2016 FCC 2.1093:2016	FCC KDB 865664 D01 v01r04 FCC KDB 865664 D02 v01r02 FCC KDB 248227 D01 V02r02 FCC KDB 447498 D01 v06 IEEE Std 1528:2013

RESULTS

Date	Liquid part number and frequency	Conducted Power into the Dipole (dBm)	Correction Factor	Measured		Normalized to 1W		Target (Normalized to 1W) Get from Dipole Calibration Certificate		% Difference	
				1g	10g	1g	10g	1g	10g	1g	10g
9/15/2016	MSL 900 (900 MHz)	24.83	3.29	3.33	2.21	10.96	7.27	10.90	7.07	0.55	2.83

SAR SYSTEM VERIFICATION

Tested By:	Luke Richardson	Room Temperature (°C):	23.6°C
Date:	9/15/2016	Liquid Temperature (°C):	21.8°C
Configuration:		Humidity (%RH):	43.6%

MSL900 System Check_900MHz 9-15-16

DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D900 (900.0 MHz); Frequency: 900 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $\sigma = 0 \text{ S/m}$, $\epsilon_r = 1$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 900 \text{ MHz}$; $\sigma = 1.052 \text{ S/m}$; $\epsilon_r = 56.692$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

System Check/System Check/Z Scan (1x1x21): Measurement grid: $dx=20\text{mm}$, $dy=20\text{mm}$, $dz=5\text{mm}$

Maximum value of Total (measured) = 60.00 V/m

System Check/System Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 56.98 V/m; Power Drift = -0.04 dB

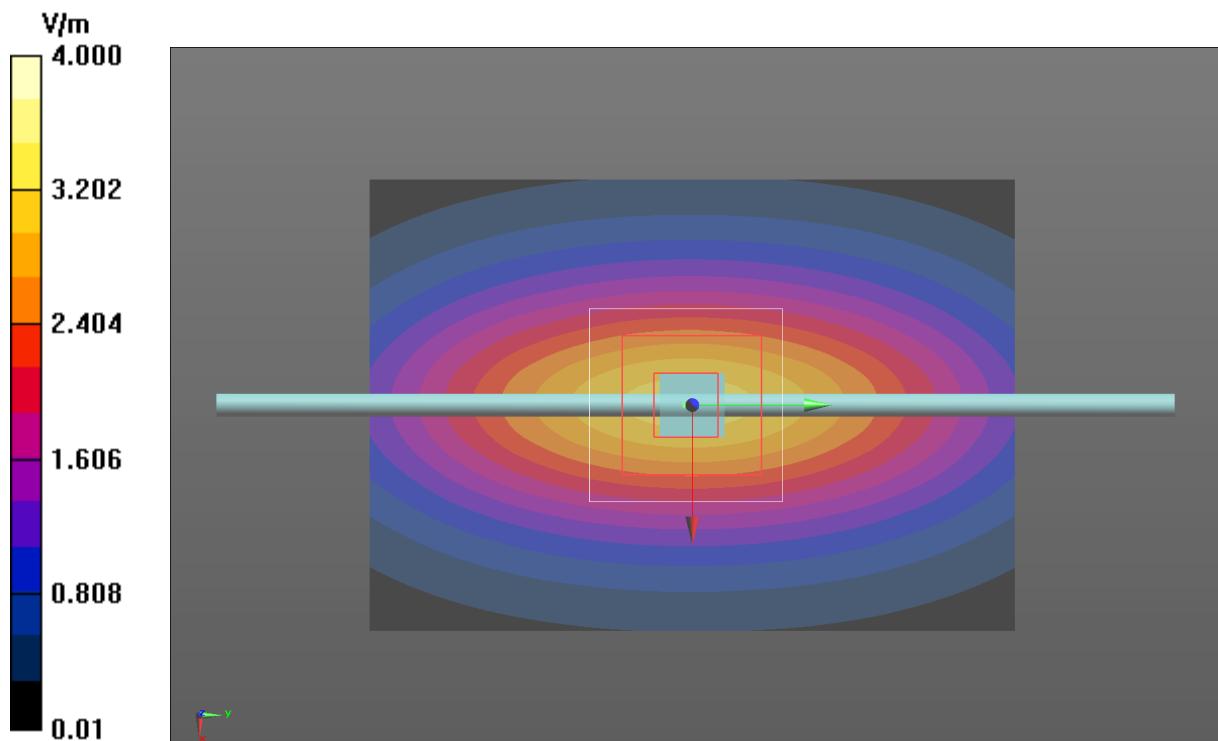
Peak SAR (extrapolated) = 4.88 W/kg

SAR(1 g) = 3.33 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 3.34 W/kg

System Check/System Check/Area Scan (71x101x1): Interpolated grid: $dx=1.000 \text{ mm}$, $dy=1.000 \text{ mm}$

Maximum value of SAR (interpolated) = 3.34 W/kg


Maximum value of SAR (measured) = 3.79 W/kg

Approved By

SAR SYSTEM VERIFICATION

MSL900 System Check_900MHz 9-15-16

OUTPUT POWER DESCRIPTION

900 MHz Band

The UHF Radio was tested at the channel with the highest conducted output power unless the reported SAR was greater than 2.0 W/kg for 10-g, then the other required channels would have been measured.

Output power measurements are on the following pages.

OUTPUT POWER DATA

EUT:	TPv2 (DAP 2)	Work Order:	SYNA0197
Serial Number:	850-1631035	Date:	09/15/16
Customer:	Walt Disney Parks and Resorts US, Inc.	Temperature:	23.6
Attendees:	None	Relative Humidity:	43.2%
Customer Project:	None	Bar. Pressure:	1016..1
Tested By:	Luke Richardson	Job Site:	EV08
Power:	24 VDC	Configuration:	SYNA0197-1

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2016	FCC KDB 865664 D01 v01r04
FCC 2.1093:2016	FCC KDB 865664 D02 v01r02 FCC KDB 248227 D01 V02r02 FCC KDB 447498 D01 v06 IEEE Std 1528:2013

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Channel	Frequency (MHz)	Modulation Type	Conducted Output Power	
			dBm	mW
Low	902.750	ASK	18.11	64.674
Mid	915.250	ASK	17.94	62.169
High	927.250	ASK	17.69	58.859

TEST RESULTS

NORTHWEST
EMC

Test Configurations

Test Locations

The EUT is intended to be mounted with only the device face exposed to users. Many of the units are mounted in a "stanchion". This limits the RF exposure cases to the top (face) of the product. All other sides will have a distance greater than 20cm away from the body or head.

Summary

The following table summarizes the measured SAR values. The EUT was transmitting at nearly 100% duty cycle.

Per FCC KDB 447498, the measured SAR values were scaled to the maximum tune-up tolerance limit. The results are referred to as the "Reported SAR" values. The following formula was used to calculate the linear SAR scaling factor:

$$\text{SAR scaling factor} = 10^{((\text{Maximum Rated Power}^1 \text{ (dBm)} - \text{Measured Power (dBm)}) / 10)}$$

$$\text{SAR scaling factor} = 10^{((23-18.1) / 10)}$$

$$\text{SAR scaling factor} = 3.09$$

SAR TEST DATA

EUT:	TPv2 (DAP 2)	Work Order:	SYNA0197
Customer:	Walt Disney Parks and Resorts US, Inc.	Job Site:	EV08
Attendees:	None	Customer Project:	None

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2016	FCC KDB 865664 D01 v01r04
FCC 2.1093:2016	FCC KDB 865664 D02 v01r02
	FCC KDB 248227 D01 V02r02
	FCC KDB 447498 D01 v06
	IEEE Std 1528:2013

COMMENTS

None

DEVIATIONS FROM TEST STANDARD

None

RESULTS

Frequency Band	Transmit Frequency (MHz)	Transmit Channel	Transmit Mode	Body-Worn Accessory	EUT Position	SAR Drift During Test (dB)	Measured 1g SAR Level (mW/g)	Measured 10g SAR Level (mW/g)	Scaled 1g SAR Level (mW/g)	Scaled 10g SAR Level (mW/g)	Test#
900	902.75	Low	ASK	None	Front	0.02	0.124	0.074	0.38	0.23	1a

SAR TEST DATA

Tested By:	Luke Richardson	Room Temperature (°C):	23.6°C
Date:	9/15/2016 1:15:55 PM	Liquid Temperature (°C):	21.8°C
Serial Number:	850-1631035	Humidity (%RH):	43.1%
Configuration:	SYNA0197-1	Bar. Pressure (mb):	1016.2 mb
Comments:	None		

Test 1a

DUT: Access Point; Type: Sample; Serial: 850-1631035

Communication System: UID 0, CW (0); Communication System Band: D900 (900.0 MHz); Frequency: 902.75 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): $f = 902.75$ MHz; $\sigma = 1.054$ S/m; $\epsilon_r = 56.671$; $\rho = 1000$ kg/m³, Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/Body/Reference scan (71x71x1): Interpolated grid: dx=3.000 mm, dy=3.000 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.132 W/kg

Body/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.17 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.216 W/kg

SAR(1 g) = 0.124 W/kg; SAR(10 g) = 0.074 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.146 W/kg

Body/Body/Area scan (81x41x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

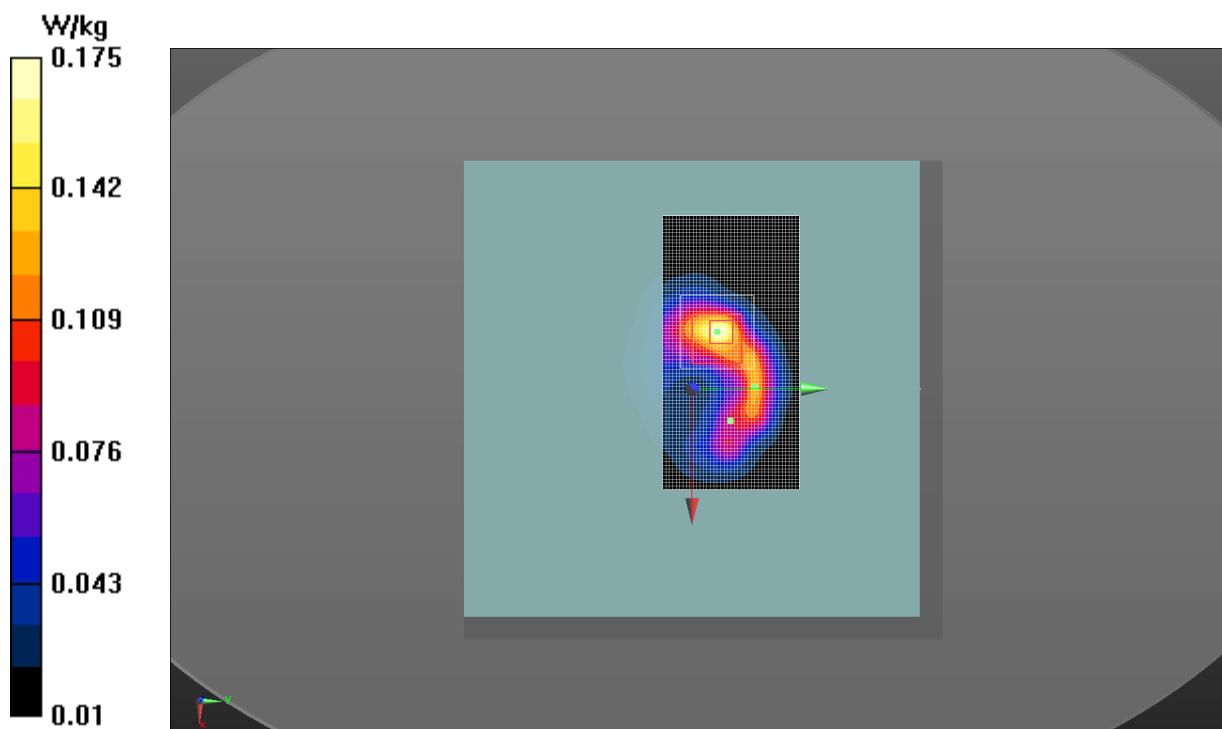
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.176 W/kg

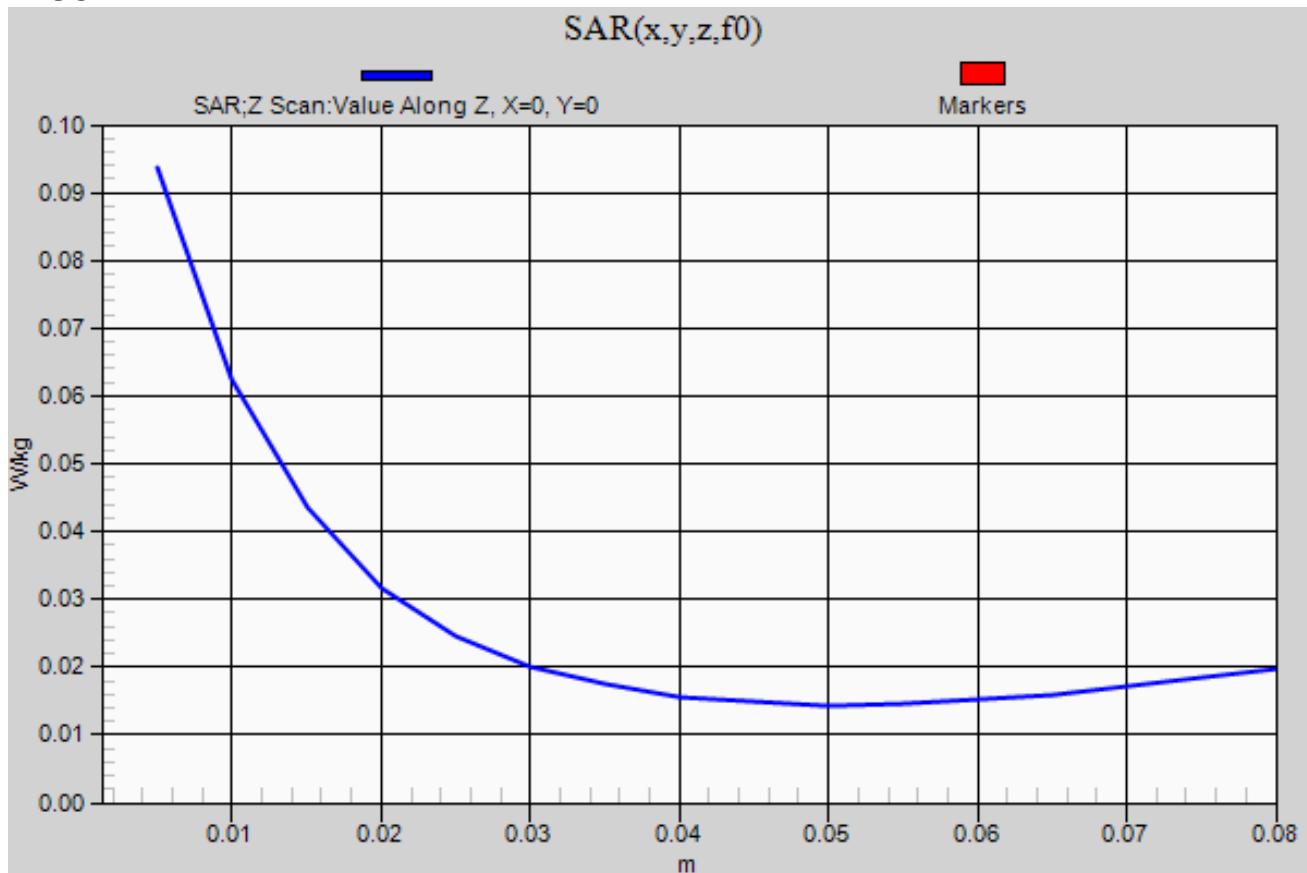
Body/Body/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of Total (measured) = 9.424 V/m


Maximum value of SAR (measured) = 0.0936 W/kg

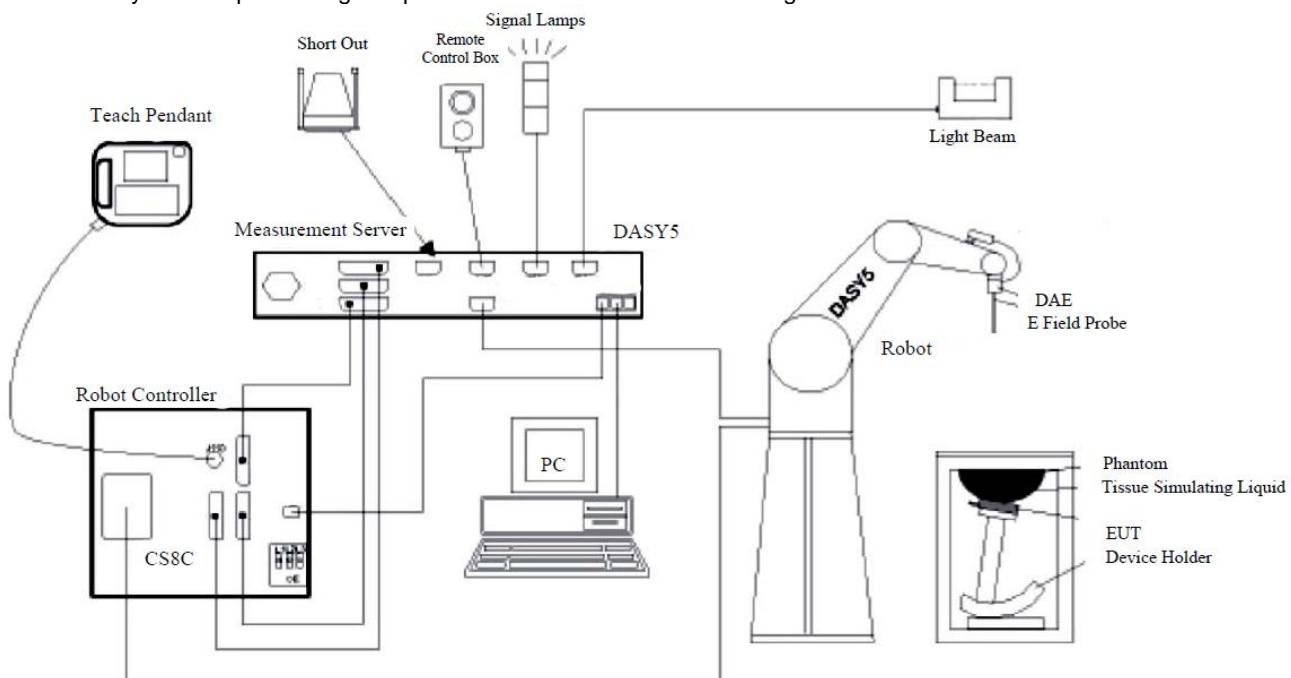
Approved By


SAR TEST DATA

Test 1a

SAR TEST DATA

Z-SCAN


SYSTEM AND TEST SITE DESCRIPTION

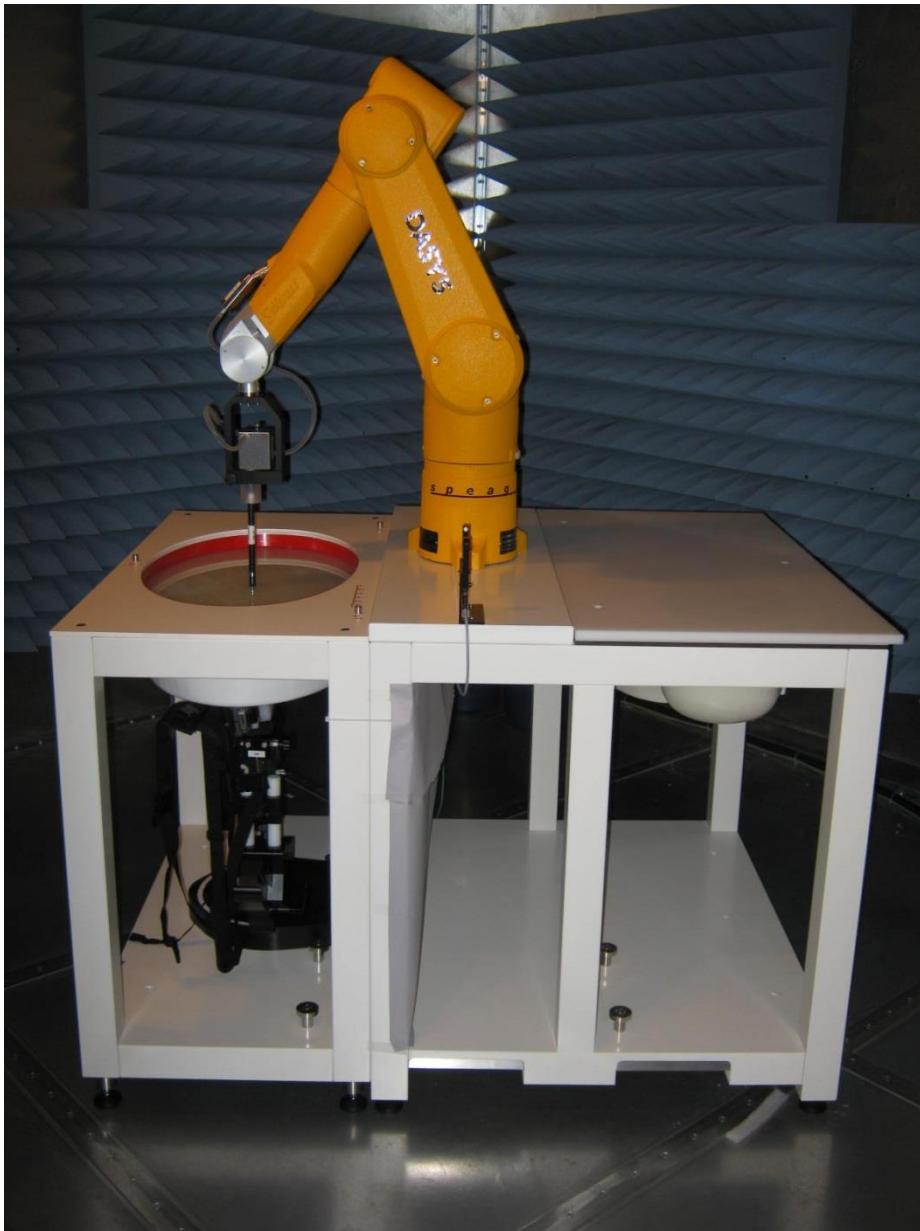
SAR MEASUREMENT SYSTEM

Schmid & Partner Engineering AG, DASY52

Northwest EMC selected the leader in SAR evaluation systems to provide the measurement tools for this evaluation. SPEAG's DASY52 is the fastest and most accurate scanner on the market. It is fully compatible with all world-wide standards for transmitters operating at the ear or within 20cm of the body. It provides full compatibility with IEC 62209-1, IEC 62209-2, IEEE 1528 as well as national adaptations such as FCC OET-65c and Korean Std. MIC #2000-93

The DASY52 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom, oval flat phantom, device holder, tissue simulating liquids, and validation dipole kits.


SYSTEM AND TEST SITE DESCRIPTION

TEST SITE

Northwest EMC, Lab EV08

The SAR measurement system is located in a semi-anechoic chamber. This provides an ambient free environment that also eliminates reflections.

The chamber is 12 ft wide by 16 ft long x 8 ft high. A dedicated HVAC unit provides +/- 1 degree C temperature control.

TEST EQUIPMENT

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier	Mini Circuits	ZHL-5W-2G-S+	TRZ	NCR ¹	0 mo
Antenna - Dipole	SPEAG	D900V2	ADP	10/26/2015	12 mo
DAE	SPEAG	SD 000 D04 EJ	SAH	10/8/2015	12 mo
Device Holder	SPEAG	N/A	SAW	NCR	0 mo
Fixture/Kit - Calibration/Verification	SPEAG	DAKS:200	IPR	3/17/2016	36 mo
Generator - Signal	Agilent	V2920A	TIH	NCR	0 mo
Light Beam Unit	SPEAG	SE UKS 030 AA	SAD	NCR	0 mo
Meter - Power	Agilent	N1913A	SQR	10/30/2015	12 mo
Power Sensor	Agilent	E9300H	SQO	10/30/2015	12 mo
Probe	SPEAG	DAKS-3.5	IPRA	11/17/2015	36 mo
SAR - Tissue Test Solution	SPEAG	MSL 900	SAT	At start of testing	
SAR Probe	SPEAG	ES3DV3	SAF	11/12/2015	12 mo
SAR Test System	Staeubli	DAY5	SAK	11/1/2013	36 mo
SAR Test System	SPEAG	QD OVA 001 BB	SAC	NCR	0 mo
SAR Test System	Staeubli	TX60LSPEAG	SAA	NCR	0 mo
SAR Test System	Staeubli	N/A	SAJ	NCR	0 mo
SAR Test System	Staeubli	CS8C	SAI	NCR	0 mo
Thermometer	Omega Engineering, Inc.	HH311	DUI	1/26/2015	36 mo
Universal Radio Communication Tester	Agilent	E5515C	BSV	NCR	0 mo

Note 1: The output of the signal generator / amplifier is verified with the calibrated power meter listed above.

MEASUREMENT UNCERTAINTY

MEASUREMENT UNCERTAINTY BUDGETS PER IEEE 1528:2013

300-3000 MHz Range								
Uncertainty Component	Tolerance (+/- %)	Probability Distribution	Divisor	$c_i(1g)$	$c_i(10g)$	$u_i(1g)$ (+/-%)	$u_i(10g)$ (+/-%)	v_i
Measurement System								
Probe calibration (k=1)	5.5	normal	1	1	1	5.5	5.5	∞
Axial isotropy	4.7	rectangular	1.732	0.707	0.707	1.9	1.9	∞
Hemispherical isotropy	9.6	rectangular	1.732	0.707	0.707	3.9	3.9	∞
Boundary effect	1.0	rectangular	1.732	1	1	0.6	0.6	∞
Linearity	4.7	rectangular	1.732	1	1	2.7	2.7	∞
System detection limits	1.0	rectangular	1.732	1	1	0.6	0.6	∞
Readout electronics	0.3	normal	1	1	1	0.3	0.3	∞
Response time	0.8	rectangular	1.732	1	1	0.5	0.5	∞
Integration time	2.6	rectangular	1.732	1	1	1.5	1.5	∞
RF ambient conditions - noise	1.7	rectangular	1.732	1	1	1.0	1.0	∞
RF Ambient Reflections	0.0	rectangular	1.732	1	1	0.0	0.0	∞
Probe positioner mechanical tolerance	0.4	rectangular	1.732	1	1	0.2	0.2	∞
Probe positioner with respect to phantom shell	2.9	rectangular	1.732	1	1	1.7	1.7	∞
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	1.0	rectangular	1.732	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	normal	1	1	1	2.9	2.9	145
Device Holder	3.6	normal	1	1	1	3.6	3.6	5
Power Drift	5.0	rectangular	1.732	1	1	2.9	2.9	∞
Phantom and tissue parameters								
Phantom Uncertainty - shell thickness tolerances	4.0	rectangular	1.732	1	1	2.3	2.3	∞
Liquid conductivity - deviation from target values	5.0	rectangular	1.732	0.64	0.43	1.8	1.2	∞
Liquid conductivity - measurement uncertainty	6.5	normal	1	0.64	0.43	4.2	2.8	∞
Liquid permittivity - deviation from target values	5.0	rectangular	1.732	0.6	0.49	1.7	1.4	∞
Liquid permittivity - measurement uncertainty	3.2	normal	1	0.6	0.49	1.9	1.6	∞
Combined Standard Uncertainty	RSS				11.2	10.6	387	
Expanded Measurement Uncertainty (95% Confidence/	normal (k=2)				22.5	21.2		

DIPOLE CALIBRATION

NORTHWEST
EMC

Dipole Calibration

Key points:

1. Dipoles need to be sent to the manufacturer for calibration every 3 years.
2. For those years where they are not sent to the manufacturer the following two parameters are verified annually:
 - a. The return-loss. If it deviates by more than 20% from the calibration data or does not meet the required -20 dB return-loss specification, then it fails the verification and must be sent to the manufacturer for repair and calibration.
 - b. The real and imaginary parts of the impedance. If it deviates by more than 5Ω from the calibration data, then it fails the verification and must be sent to the manufacturer for repair and calibration.

The return loss and complex impedance were verified to meet the FCC's criteria within one year of the manufacturer's calibration. The calibration data is used for the SAR system verification. The verification data shows that the dipole characteristics have not changed and the calibration data continues to be valid.

Please see attached calibration and verification data.

Dipole Verification

Performed by Northwest EMC, Inc.

ADP

Calibration Certificate/Report

10/2015cbe

Description:	Antenna, Dipole 900MHz SAR			Cal Date:	102615
Equipment Code:	ADP			Temperature:	21.0°C
Model:	D900V2			Humidity:	48%
Manufacturer:	SPEAG	Tester:	Carl Engholm	Pressure:	1016mb
Certificate No.:	ADP 102615	Power:	N/A	Calibration Site:	EV CAL
TEST SPECIFICATIONS					
Calibration Procedure:	KDB 450824 D02 Dipole SAR Validation Verification v01r01			Version:	2013
TEST PARAMETERS					
Device Received In Tolerance:	Yes	Calibration Frequency: 900 MHz			
Equipment Used to perform calibration					
Item:	Network Analyzer	Identifier:	NAP	Model:	Agilent E5061B
Item:	50 Ohm Termination	Identifier:	NAHA	Model:	Agilent 85032-60017
Item:	Short	Identifier:	N/A	Model:	Agilent 54202
Item:	Open	Identifier:	N/A	Model:	Agilent 54266
Item:	Head TSL	Identifier:	SAS	Model:	HSL 900
Item:	Body TSL	Identifier:	SAT	Model:	MSL 900
COMMENTS, OPINIONS and INTERPRETATIONS					
Body TSL only					
Measurement Uncertainty					
	Probability Distribution	Impedance (dB)	Insertion Loss (dB)	Value (dB)	Value (+/- %)
Expanded uncertainty U (level of confidence = 95%)	normal (k=2)	+/- 0.80	+/- 0.80	N/A	N/A
DEVIATIONS FROM TEST STANDARD					
None					
RESULTS					
Pass					
This measurement was a calibration verification. (Instrument parameters are within tolerances.)					
CALIBRATION DATA ATTACHED					

Verification Data - Head						
DUT	Antenna, Dipole 900MHz SAR					
Model	D900V2					
S/N	ADP					
Date	102615					
Temperature	21.0°C					
Humidity	48%					
Pressure	1016mb					
Operator	Carl Engholm					
Verification Data - Body						
DUT	Antenna, Dipole 900MHz SAR					
Model	D900V2					
S/N	ADP					
Date	102615					
Temperature	21.0°C					
Humidity	48%					
Pressure	1016mb					
Operator	Carl Engholm					
Antenna Parameters with Head TSL						
900 MHz						
	Real	Imaginary (j)				
Impedance (ohms)	50.5	-6.7				
Return Loss (dB)	-24.2					
Manufacturer's Cal Data from 11-03-2014						
	Real	Imaginary (j)				
Impedance (ohms)	51.0	-5.7				
Return Loss (dB)	-24.9					
Antenna Parameters with Body TSL						
900 MHz						
	Real	Imaginary (j)				
Impedance (ohms)	45.1	-8.2				
Return Loss (dB)	-21.2					
Manufacturer's Cal Data from 11-03-2014						
	Real	Imaginary (j)				
Impedance (ohms)	46.4	-7.9				
Return Loss (dB)	-20.9					

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **Northwest EMC**

Certificate No: **D900V2-1d106_Nov14**

CALIBRATION CERTIFICATE

Object **D900V2 - SN: 1d106**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **November 03, 2014**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by: Name **Michael Weber** Function **Laboratory Technician**

Signature

Approved by: **Katja Pokovic** Technical Manager

Issued: November 7, 2014

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.0 \pm 6 %	0.93 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	10.6 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.75 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	54.3 \pm 6 %	1.03 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	10.9 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	7.07 W/kg \pm 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 5.7 $j\Omega$
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.4 Ω - 7.9 $j\Omega$
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.412 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 22, 2009

DASY5 Validation Report for Head TSL

Date: 03.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d106

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: $f = 900$ MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³

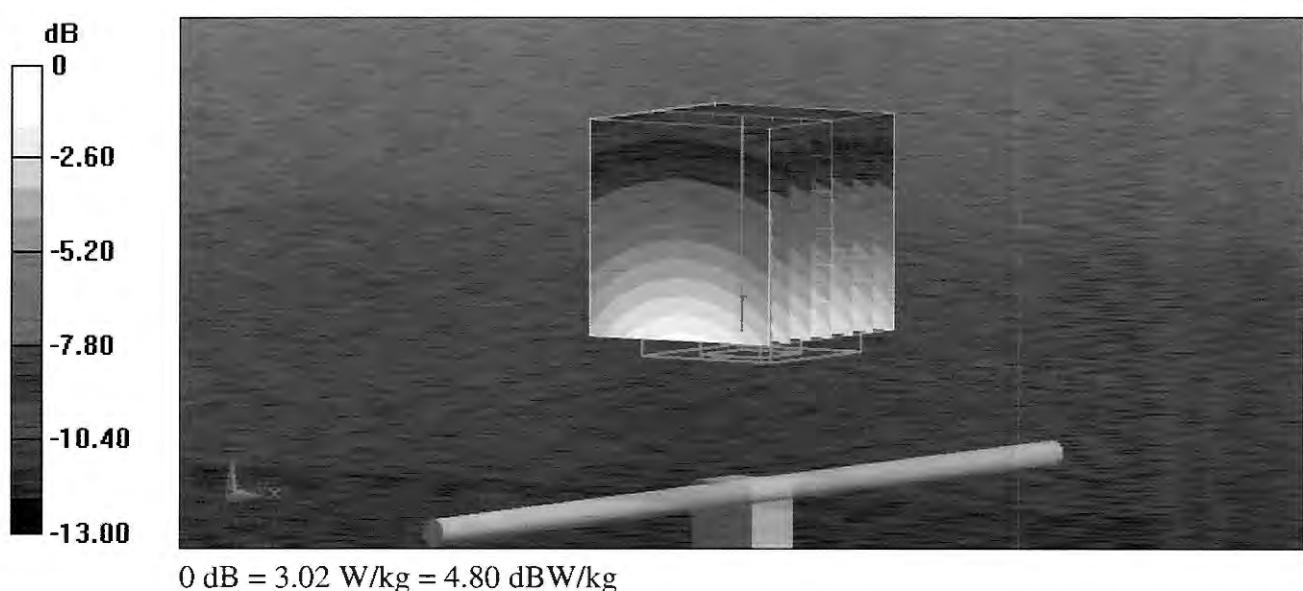
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

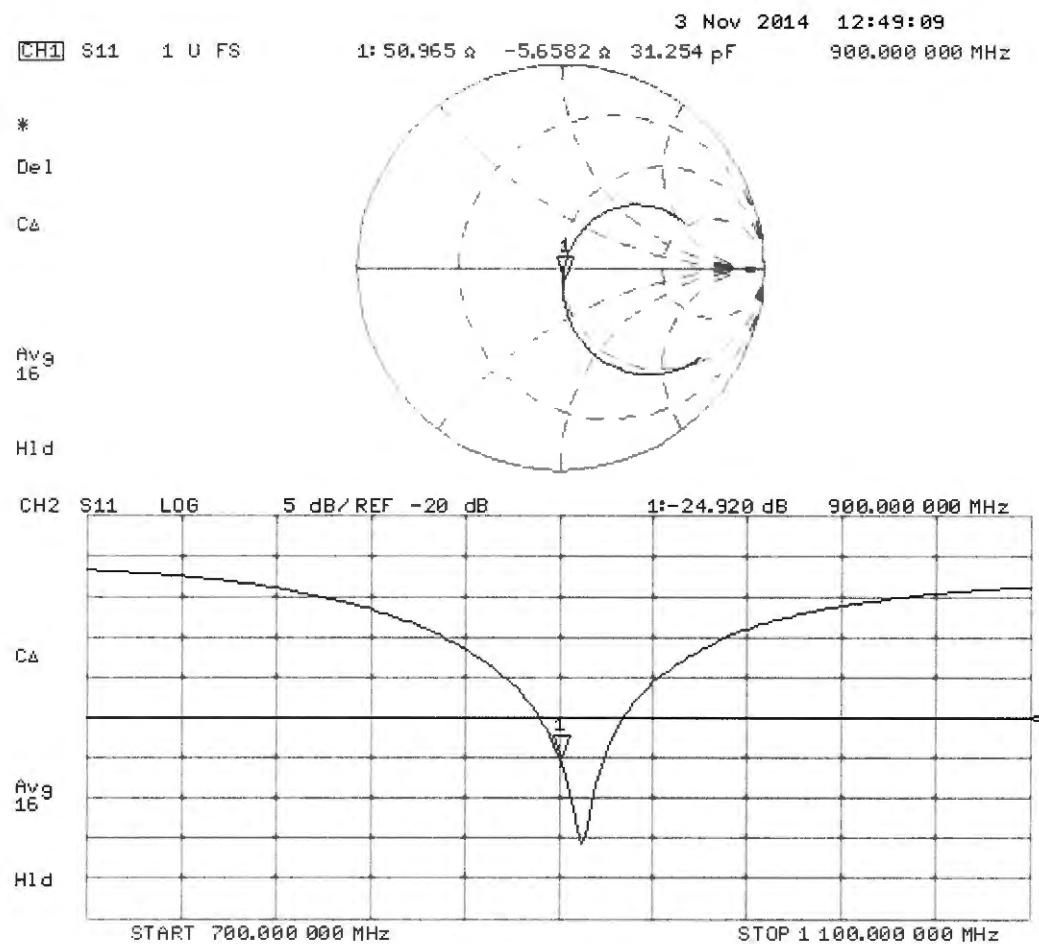
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 58.77 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 3.85 W/kg

SAR(1 g) = 2.57 W/kg; SAR(10 g) = 1.65 W/kg

Maximum value of SAR (measured) = 3.02 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 03.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d106

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: $f = 900$ MHz; $\sigma = 1.03$ S/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

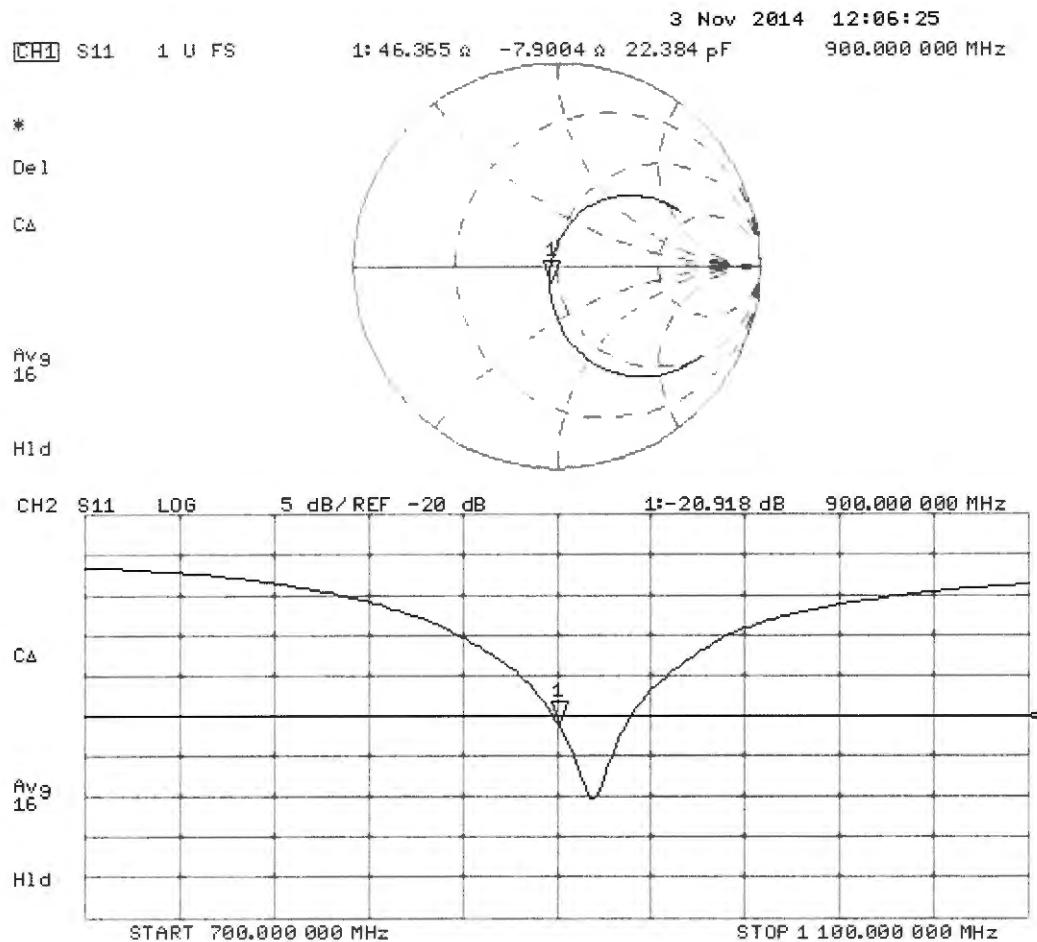
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.98, 5.98, 5.98); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 57.08 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 3.97 W/kg

SAR(1 g) = 2.69 W/kg; SAR(10 g) = 1.75 W/kg

Maximum value of SAR (measured) = 3.15 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 0108**

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client

Northwest EMC

Certificate No: **ES3-3246 Nov15**

CALIBRATION CERTIFICATE

Object **ES3DV3 - SN:3246**

Calibration procedure(s)

QA CAL-01-v9, QA CAL-12-v9, QA CAL-23-v5, QA CAL-25-v6
 Calibration procedure for documentic E-field probe

Calibration date: **November 12, 2015**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name	Function	Signature
	Claudio Leubler	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TS	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TS / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not affect the E^2 -field uncertainty inside TS (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z$: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TS corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the *NORMx* (no uncertainty required).

Probe ES3DV3

SN:3246

Manufactured: May 5, 2009
Calibrated: November 12, 2015

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3246

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.41	1.17	1.17	$\pm 10.1\%$
DCP (mV) ^B	106.0	105.9	106.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	229.8	$\pm 3.5\%$
		Y	0.0	0.0	1.0		200.5	
		Z	0.0	0.0	1.0		203.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3246

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.47	6.47	6.47	0.24	2.32	± 12.0 %
835	41.5	0.90	6.27	6.27	6.27	0.23	2.37	± 12.0 %
900	41.5	0.97	6.15	6.15	6.15	0.42	1.58	± 12.0 %
1750	40.1	1.37	5.33	5.33	5.33	0.61	1.28	± 12.0 %
1900	40.0	1.40	5.14	5.14	5.14	0.49	1.44	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

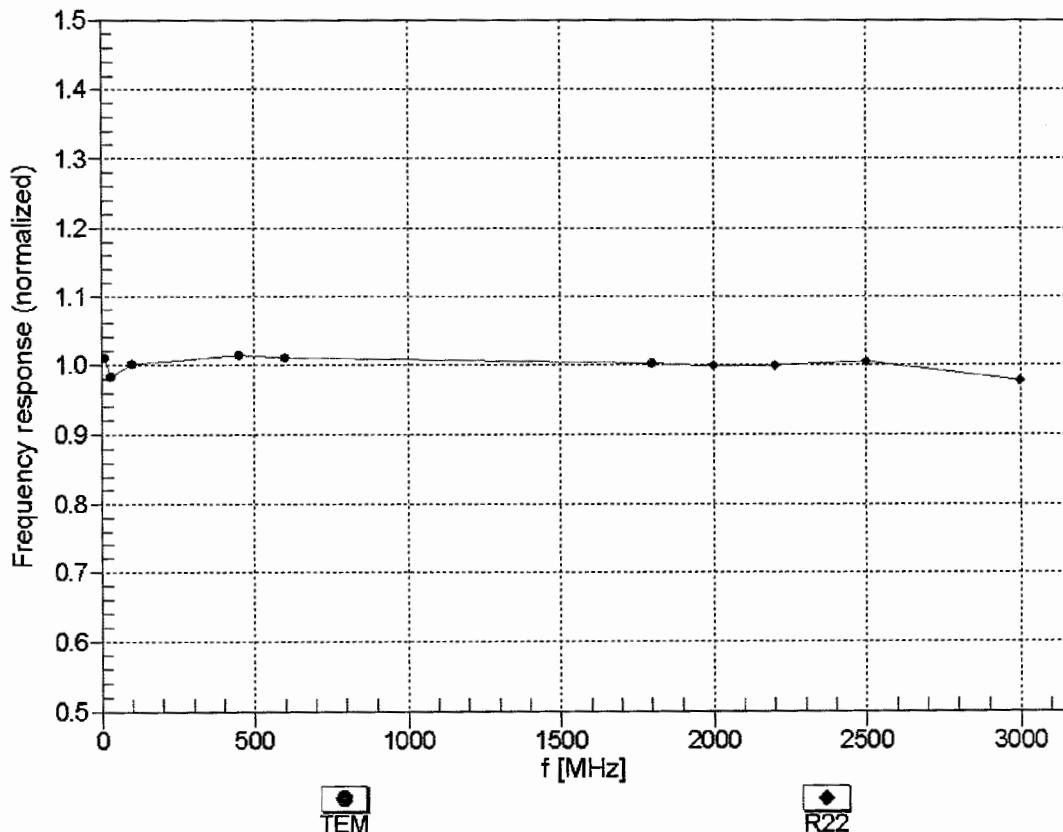
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3246

Calibration Parameter Determined in Body Tissue Simulating Media

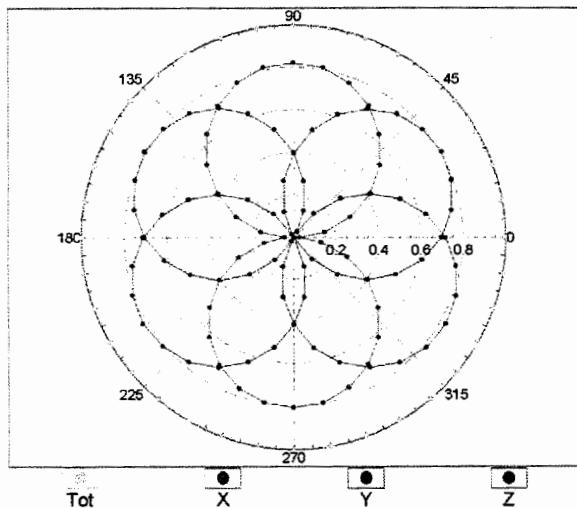
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	7.22	7.22	7.22	0.15	1.80	± 13.3 %
750	55.5	0.96	6.40	6.40	6.40	0.37	1.69	± 12.0 %
835	55.2	0.97	6.26	6.26	6.26	0.32	1.89	± 12.0 %
900	55.0	1.05	6.23	6.23	6.23	0.80	1.14	± 12.0 %
1750	53.4	1.49	4.96	4.96	4.96	0.35	1.97	± 12.0 %
1900	53.3	1.52	4.79	4.79	4.79	0.49	1.63	± 12.0 %

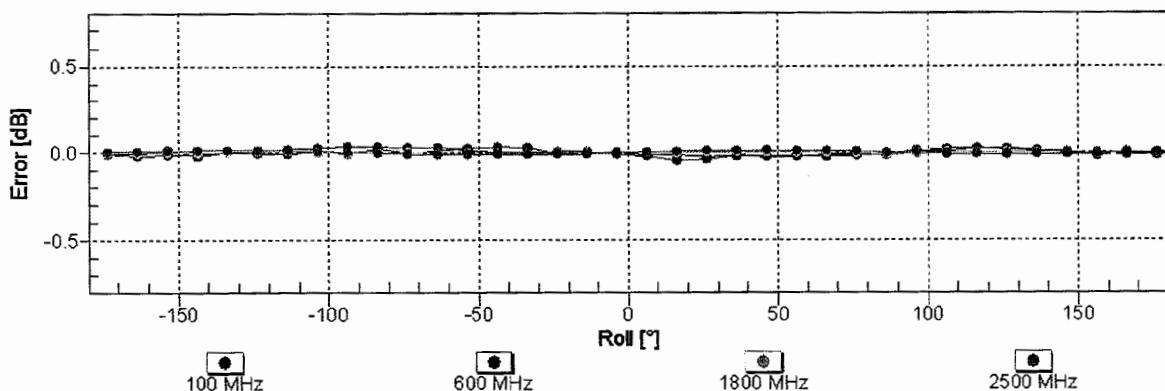
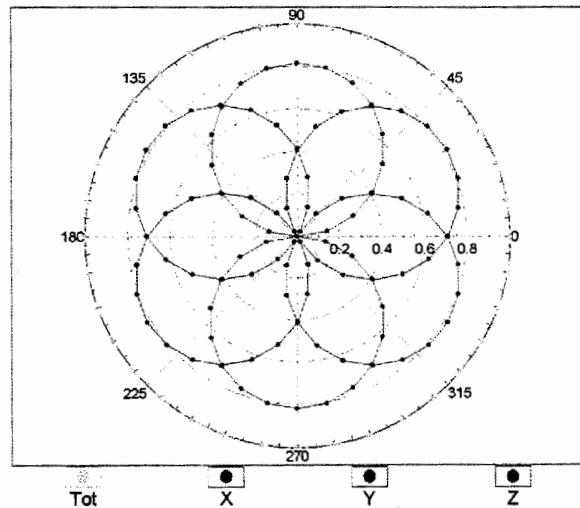

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

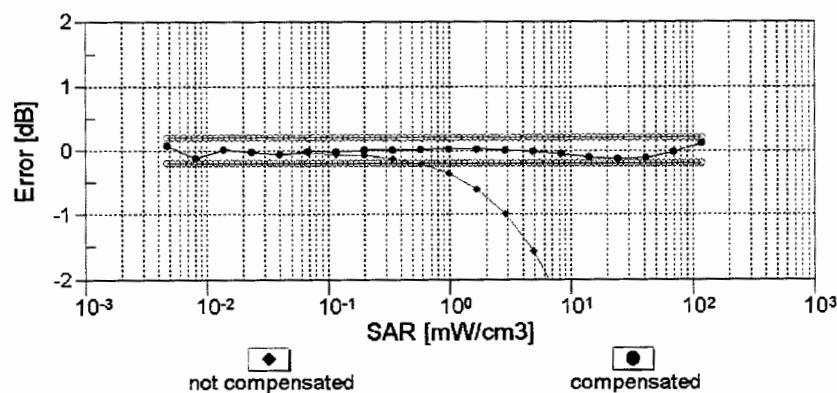
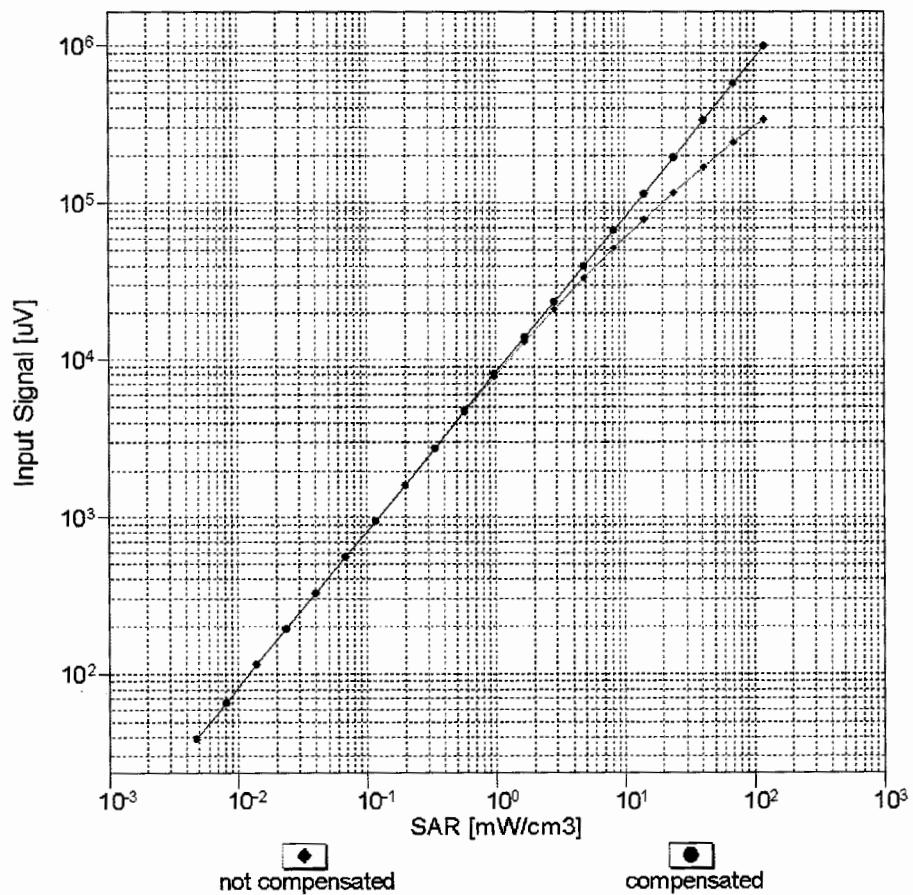
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

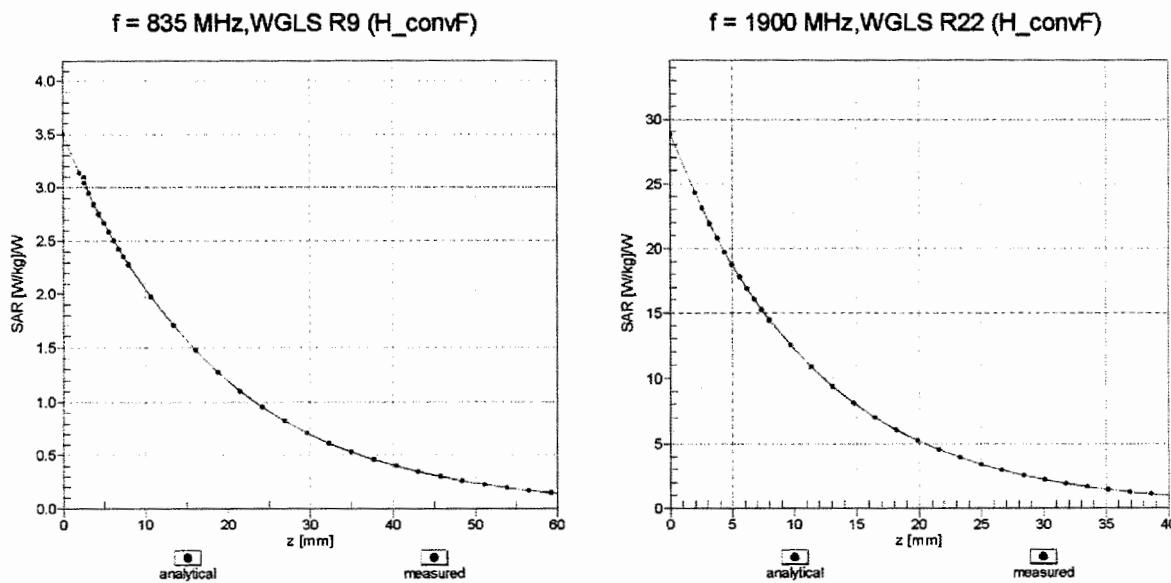
Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

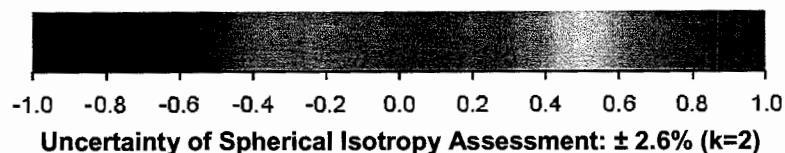
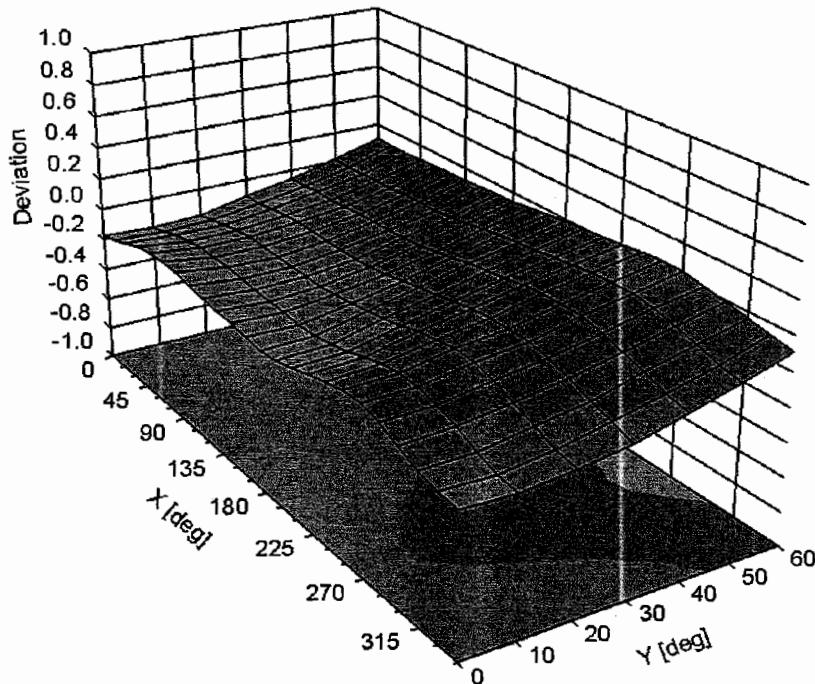



f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)


Dynamic Range $f(\text{SAR}_{\text{head}})$

(TEM cell , $f_{\text{eval}} = 1900$ MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900$ MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3246

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-3.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm