
RADIO TEST REPORT

The device described below is tested by Dongguan Nore Testing Center Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and E.U.T.'s performance criterion. The test results, data evaluation, test procedures, and equipment of configurations shown in this report were made in accordance with the procedures in ANSI C63.10(2013).

Applicant : Shenzhen Smart Device Technology Co., LTD
Address : SSMEC Building, Gao Xin Nan First Avenue Hi-Tech Park South, Nanshan, Shenzhen, China
Manufacturer /Factory : Shenzhen Smart Device Technology Co., LTD
Address : SSMEC Building, Gao Xin Nan First Avenue Hi-Tech Park South, Nanshan, Shenzhen, China
E.U.T. : IoT-3399E
Brand Name : N/A
Model No. : IoT-3399E
FCC ID : 2AITM-IOT-3399E
Measurement Standard : FCC PART 15.247
Date of Receiver : June 31, 2018
Date of Test : June 31, 2018 to November 21, 2018
Date of Report : November 21, 2018

This Test Report is Issued Under the Authority of :

Prepared by

Sundiy Jiang / Engineer

Approved & Authorized Signer

Lori Fan / Authorized Signatory

This test report is for the customer shown above and their specific product only. This report applies to above tested sample only and shall not be reproduced in part without written approval of Dongguan Nore Testing Center Co., Ltd.

Table of Contents

1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST	5
1.2 RELATED SUBMITTAL(S) / GRANT (S)	8
1.3 TEST METHODOLOGY	8
1.4 EQUIPMENT MODIFICATIONS	8
1.5 SUPPORT DEVICE	8
1.6 TEST FACILITY AND LOCATION	9
1.7 SUMMARY OF TEST RESULTS.....	10
2. SYSTEM TEST CONFIGURATION.....	11
2.1 EUT CONFIGURATION	11
2.2 SPECIAL ACCESSORIES	11
2.3 DESCRIPTION OF TEST MODES	11
2.4 EUT EXERCISE	11
3. CONDUCTED EMISSIONS TEST.....	12
3.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION).....	12
3.2 TEST CONDITION.....	12
3.3 MEASUREMENT RESULTS	12
4. MAX. CONDUCTED OUTPUT POWER	15
4.1 MEASUREMENT PROCEDURE	15
4.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION).....	15
4.3 MEASUREMENT RESULTS	15
5. 6DB BANDWIDTH.....	16
5.1 MEASUREMENT PROCEDURE	16
5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION).....	16
5.3 MEASUREMENT RESULTS	16
6. POWER SPECTRAL DENSITY.....	19
6.1 MEASUREMENT PROCEDURE	19
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION).....	19
6.3 MEASUREMENT RESULTS	19
7. BAND EDGE AND CONDUCTED SPURIOUS EMISSIONS	22
7.1 REQUIREMENT AND MEASUREMENT PROCEDURE.....	22
7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION).....	22
7.3 MEASUREMENT RESULTS	22

8. RADIATED SPURIOUS EMISSIONS AND RESTRICTED BANDS.....	27
8.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	27
8.2 MEASUREMENT PROCEDURE	28
8.3 LIMIT	29
8.4 MEASUREMENT RESULTS	29
9. ANTENNA APPLICATION	34
9.1 ANTENNA REQUIREMENT.....	34
9.2 MEASUREMENT RESULTS	34
10. TEST EQUIPMENT LIST.....	35

Revision History of This Test Report

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test

E.U.T. : IoT-3399E

Main model number : IoT-3399E

Additional Model number : N/A

Description of model difference : N/A.

Brand Name : N/A

E.U.T. Type : Class B

Rating : DC 12V(from external adapter or terminal product)

Test Voltage : AC 120V/60Hz (adapter input)

Hardware version : IoT-3399E-V2.0

Software version : Android7.1

Note : N/A

Remark : This report only applies to BT V4.1(BLE) function.

Technical Specification:

BT Function

Version	:	V4.1(BLE)
Frequency Range	:	2402-2480MHz
Modulation Type	:	GFSK
Number of Channel	:	40
Channel Space	:	2MHz
Antenna Type	:	External plastic rod antenna
Antenna Gain	:	3.5dBi

BLE (V4.1) Channel List

Channel	Frequency MHz						
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	22	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

Note: According to section 15.31(m), regards to the operating frequency range over 10MHz, the Lowest, Middle, and the Highest frequency of channel were selected to perform the test. The selected frequency see below:

Channel	Frequency MHz
1	2402
20	2440
40	2480

Test SW version

RFTestTool-user-5.6_sign

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: **2AITM-IOT-3399E** filing to comply with Section 15.247 of the FCC Part 15(2017), Subpart C Rule.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters. All other measurements were made in accordance with the procedures in 47 CFR part 2.

1.4 Equipment Modifications

Not available for this EUT intended for grant.

1.5 Support Device

Notebook	: Manufacturer: Lenovo Model: TP00067A P/N: SL10G10768 S/N: PF-0DS3YC 15/12 CE, FCC: DOC
Adapter (For notebook)	: Manufacturer: Lenovo Model: ADLX65NLC3A I/P: AC 100-240V 50-60Hz, 1.8A O/P: DC 20V 3.25A
Antenna	: Provided by the Manufacturer Manufacturer: BGS M/N: SMT-006 Antenna Gain: 3.5dBi
Adapter	: Provided by the Manufacturer Manufacturer: BSY M/N: BSY018B120150V U I/P: AC100-240V ~50/60Hz, 0.4A O/P: 12V1.5A

1.6 Test Facility and Location

Site Description

EMC Lab : Listed by CNAS, August 13, 2018
The certificate is valid until August 13, 2024
The Laboratory has been assessed and proved to
be in compliance with CNAS/CL01
The Certificate Registration Number is L5795.

Listed by A2LA, November 01, 2017
The certificate is valid until December 31, 2019
The Laboratory has been assessed and proved to
be in compliance with ISO17025
The Certificate Registration Number is 4429.01

Listed by FCC, November 06, 2017
The Designation Number is CN1214
Test Firm Registration Number: 907417

Listed by Industry Canada, June 08, 2017
The Certificate Registration Number. Is 46405-9743

Name of Firm : Dongguan Nore Testing Center Co., Ltd.
(Dongguan NTC Co., Ltd.)

Site Location : Building D, Gaosheng Science & Technology Park,
Zhouxi Longxi Road, Nancheng District, Dongguan
City, Guangdong Province, China

1.7 Summary of Test Results

FCC Rules	Description Of Test	Uncertainty	Result
§15.207 (a)	AC Power Conducted Emission	±1.06dB	Compliant
§15.247(b)(3)	Max. Conducted Output Power	±1.06dB	Compliant
§15.247(a)(2)	6dB Bandwidth	±1.42 x10 ⁻⁴ %	Compliant
§15.247(e)	Power Spectral Density	±1.06dB	Compliant
§15.247(d)	Band Edge and Conducted Spurious Emissions	±1.70dB	Compliant
§15.247(d),§15.209, §15.205	Radiated Spurious Emissions and Restricted Bands	±3.70dB	Compliant
§15.203	Antenna Requirement	N/A	Compliant

2. System Test Configuration

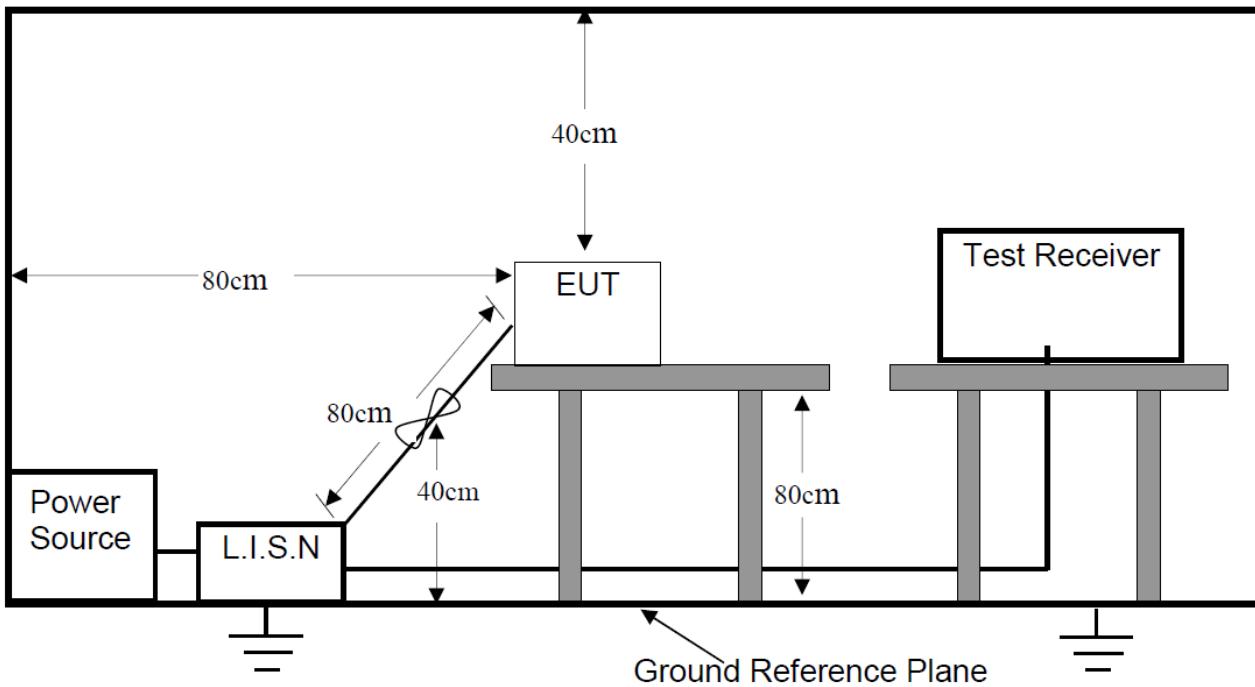
2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 Special Accessories

Not available for this EUT intended for grant.

2.3 Description of test modes


The EUT has been tested under continuous operating condition (The duty cycle >98%). Test program used to control the EUT staying in continuous transmitting mode. The Lowest, Middle and highest channel were chosen for testing, and modulation type GFSK was tested, but only the worst case data is shown in this report.

2.4 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

3. Conducted Emissions Test

3.1 Test SET-UP (Block Diagram of Configuration)

3.2 Test Condition

Test Requirement: FCC Part 15.207

Frequency Range: 150KHz ~ 30MHz

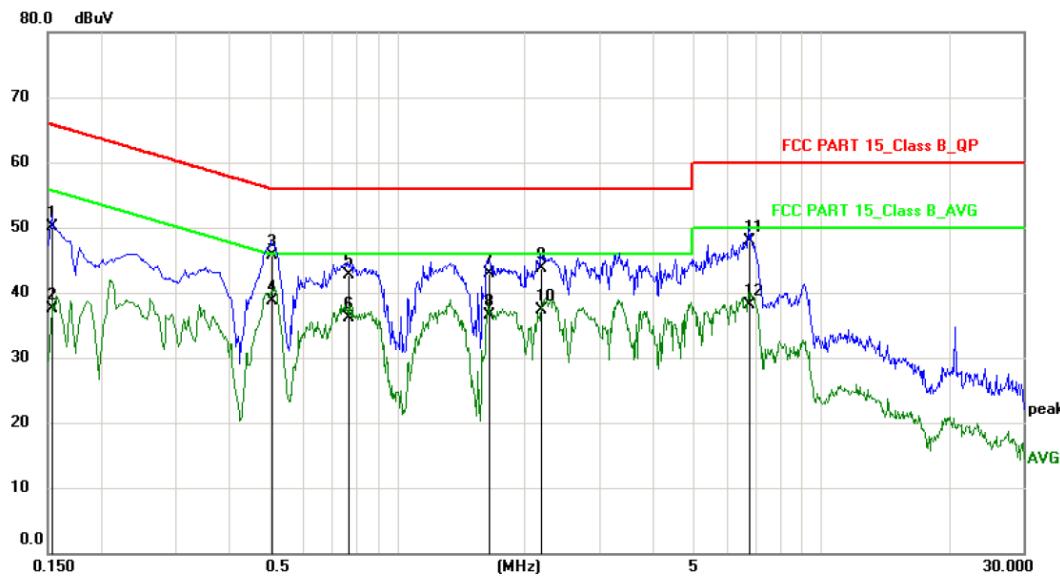
Detector: RBW 9KHz, VBW 30KHz

Operation Mode: TX

3.3 Measurement Results

Please refer to following plots of the worst case: GFSK High channel.

Dongguan NTC Co., Ltd.
 Tel: +86-769-22022444 Fax: +86-769-22022799
 Web: [Http://www.ntc-c.com](http://www.ntc-c.com)


Conducted Emission Measurement

File :IoT-3399E

Data #:11

Date: 2018-8-4

Time: 10:46:32

Site

Phase:

L1

Temperature: 26

Limit: FCC PART 15_Class B_QP

Power: AC 120V/60Hz

Humidity: 50 %

EUT: IoT-3399E

M/N: IoT-3399E

Mode: TX(BLE)

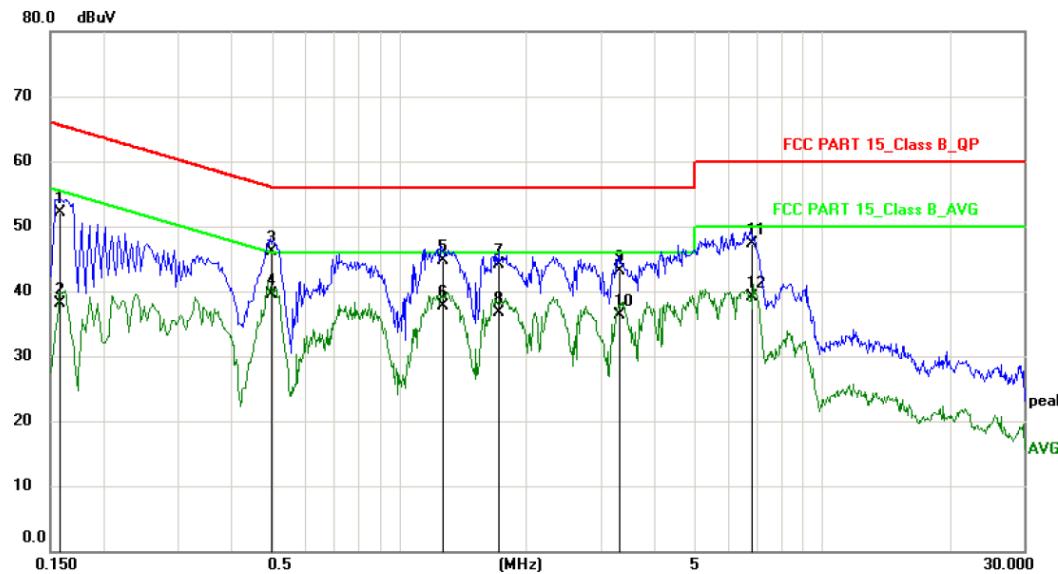
Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dB	Detector	Comment
1		0.1539	39.50	10.60	50.10	65.79	-15.69	QP
2		0.1539	26.90	10.60	37.50	55.79	-18.29	AVG
3		0.5060	35.17	10.63	45.80	56.00	-10.20	QP
4	*	0.5060	28.17	10.63	38.80	46.00	-7.20	AVG
5		0.7660	32.03	10.67	42.70	56.00	-13.30	QP
6		0.7660	25.53	10.67	36.20	46.00	-9.80	AVG
7		1.6411	32.20	10.70	42.90	56.00	-13.10	QP
8		1.6411	25.80	10.70	36.50	46.00	-9.50	AVG
9		2.1819	33.10	10.70	43.80	56.00	-12.20	QP
10		2.1819	26.60	10.70	37.30	46.00	-8.70	AVG
11		6.7500	37.18	10.72	47.90	60.00	-12.10	QP
12		6.7500	27.38	10.72	38.10	50.00	-11.90	AVG

*:Maximum data x:Over limit !:over margin

⟨Reference Only

Dongguan NTC Co., Ltd.
 Tel: +86-769-22022444 Fax: +86-769-22022799
 Web: [Http://www.ntc-c.com](http://www.ntc-c.com)


Conducted Emission Measurement

File : IoT-3399E

Data #:12

Date: 2018-8-4

Time: 10:54:26

Site

Phase:

N

Temperature: 26

Limit: FCC PART 15_Class B_QP

Power: AC 120V/60Hz

Humidity: 50 %

EUT: IoT-3399E

M/N: IoT-3399E

Mode: TX(BLE)

Note:

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.1580	41.60	10.60	52.20	65.57	-13.37	QP	
2		0.1580	27.50	10.60	38.10	55.57	-17.47	AVG	
3		0.4979	35.57	10.63	46.20	56.03	-9.83	QP	
4	*	0.4979	28.87	10.63	39.50	46.03	-6.53	AVG	
5		1.2660	34.10	10.70	44.80	56.00	-11.20	QP	
6		1.2660	27.10	10.70	37.80	46.00	-8.20	AVG	
7		1.7177	33.50	10.70	44.20	56.00	-11.80	QP	
8		1.7177	26.10	10.70	36.80	46.00	-9.20	AVG	
9		3.3220	32.49	10.71	43.20	56.00	-12.80	QP	
10		3.3220	25.59	10.71	36.30	46.00	-9.70	AVG	
11		6.7900	36.58	10.72	47.30	60.00	-12.70	QP	
12		6.7900	28.48	10.72	39.20	50.00	-10.80	AVG	

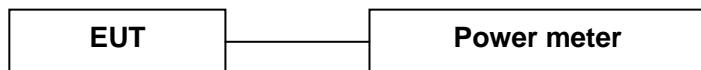
*:Maximum data

x:Over limit

!:over margin

(Reference Only)

4. Max. Conducted Output Power


4.1 Measurement Procedure

Maximum Conducted Output power at Antenna Terminals, FCC Rules 15.247(b)(3):

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

4.2 Test SET-UP (Block Diagram of Configuration)

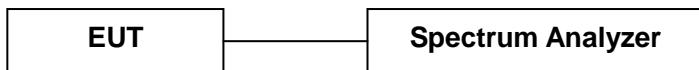
4.3 Measurement Results

Please refer to following table.

Modulation:	GFSK	Humidity :	50 %
Temperature :	24 °C	Test Date :	November 14, 2018
Test By:	Sance		
Test Result:	PASS		

Frequency MHz	Data Rate Mbps	Peak Output Power dBm	Limit dBm
Low Channel: 2402	1	0.63	30
Middle Channel: 2440	1	1.26	30
High Channel: 2480	1	1.94	30

5. 6dB Bandwidth

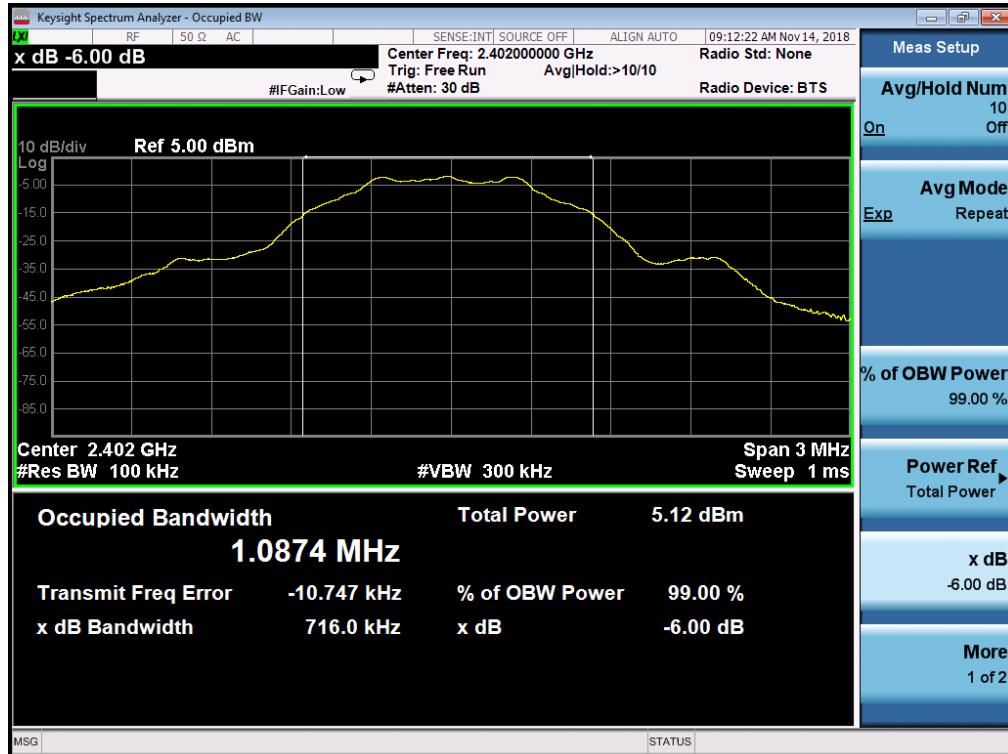

5.1 Measurement Procedure

DTS 6dB Channel Bandwidth, FCC Rule 15.247(a)(2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074(v03r05):

1. For 6dB bandwidth, Set the RBW = 100KHz.
2. Set the VBW $\geq 3 \times$ RBW
3. Detector = peak.
4. Sweep time = auto couple.
5. Trace mode = max hold.
6. Allow trace to fully stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

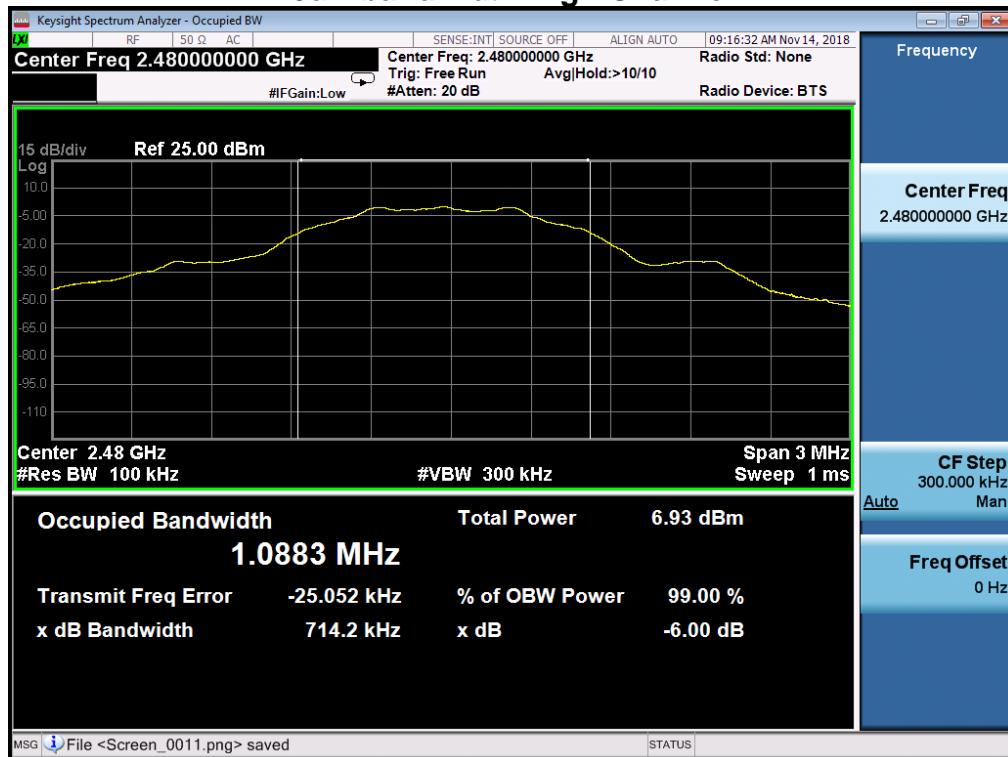
5.2 Test SET-UP (Block Diagram of Configuration)


5.3 Measurement Results

Please refer to following table and plots.

Modulation:	GFSK		
Temperature :	22 °C	Humidity :	53 %
Test By:	Sance	Test Date :	November 14, 2018
Test Result:	PASS		

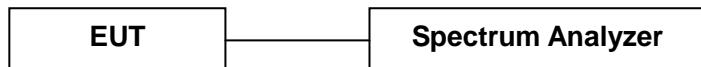
Frequency MHz	Data Rate Mbps	6dB Bandwidth KHz	Limit
Low Channel: 2402	1	716.0	>500KHz
Middle Channel: 2440	1	717.0	>500KHz
High Channel: 2480	1	714.2	>500KHz


6dB bandwidth Low Channel

6dB bandwidth Middle Channel

6dB bandwidth High Channel

6. Power Spectral Density

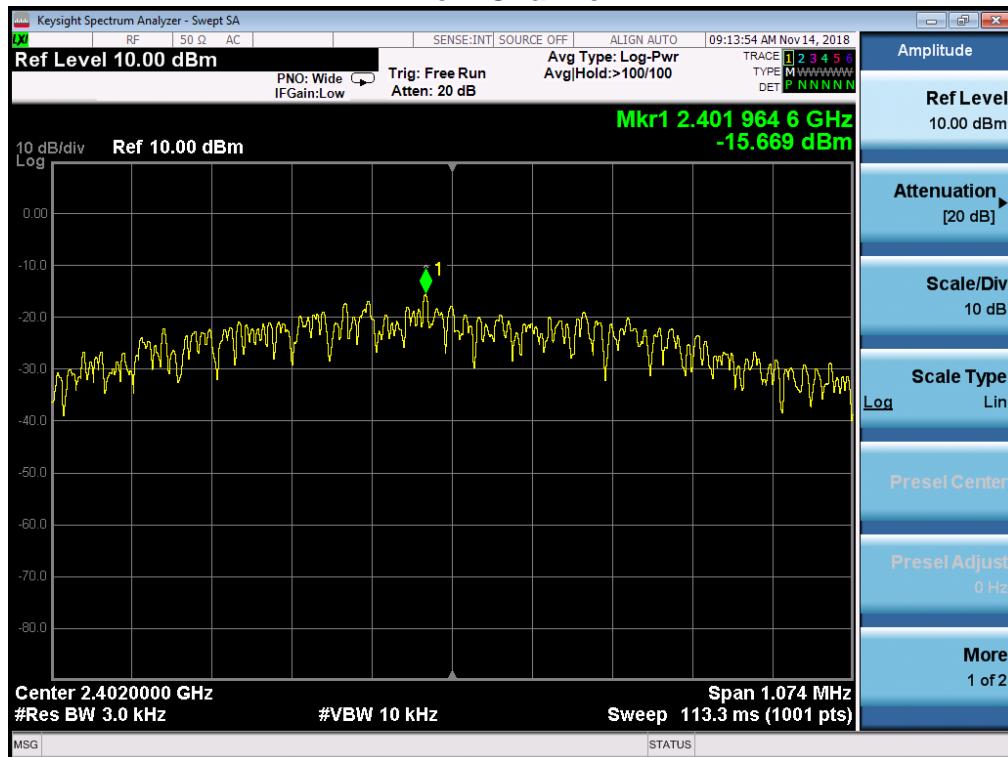

6.1 Measurement Procedure

The power spectral density, FCC Rule 15.247(e):

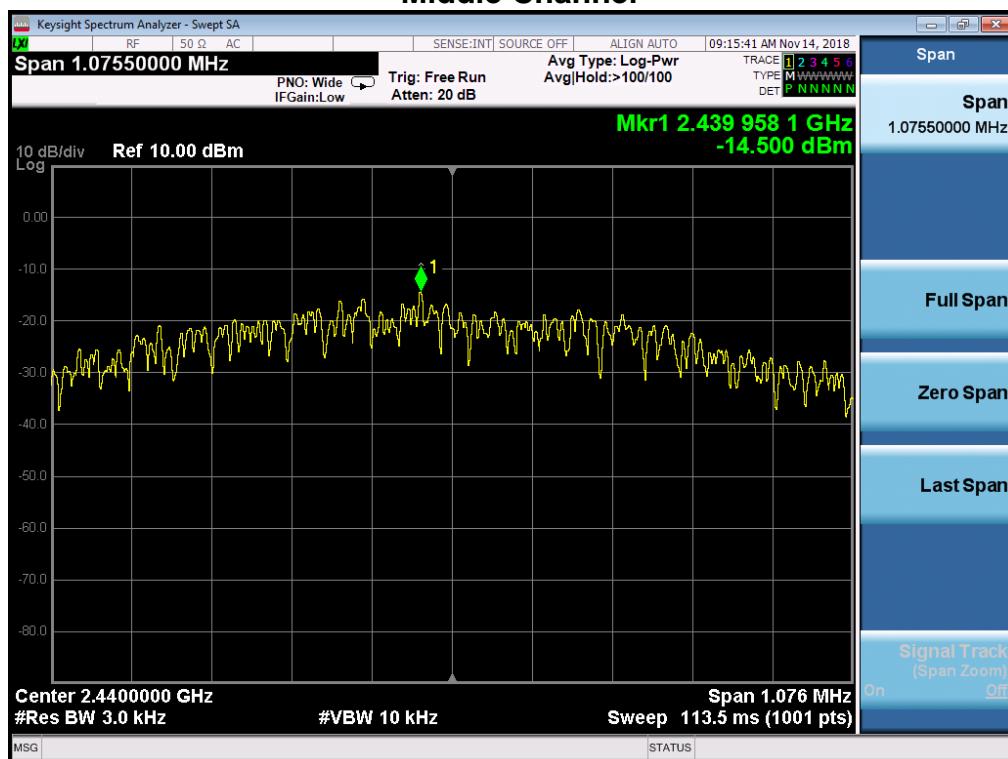
The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074 (v05):

1. Set analyzer center frequency to DTS channel center frequency.
2. Set the span to 1.5 times the DTS bandwidth.
3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
4. Set the VBW $\geq 3 \times \text{RBW}$.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum amplitude level within the RBW.
10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

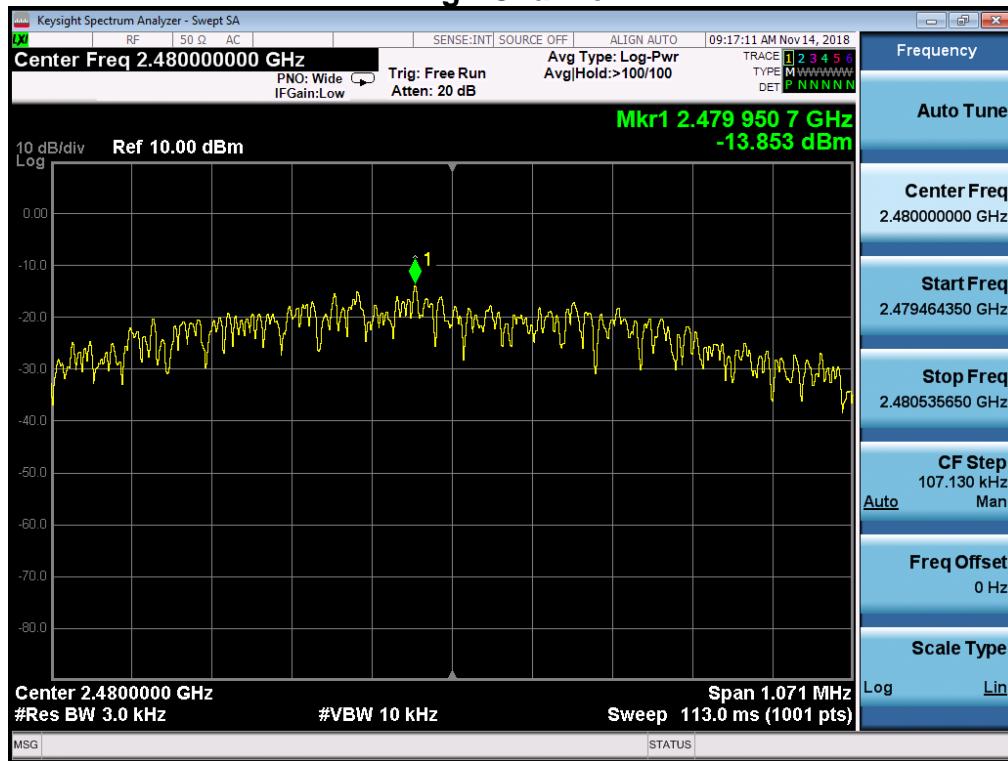
6.2 Test SET-UP (Block Diagram of Configuration)


6.3 Measurement Results

Please refer to following table and plots.


Modulation:	GFSK		
Temperature :	22 °C	Humidity :	53 %
Test By:	Sance	Test Date :	November 14, 2018
Test Result:	PASS		

Frequency MHz	Data Rate Mbps	PSD dBm/3kHz	Limit dBm/3kHz
Low Channel: 2402	1	-15.669	8
Middle Channel: 2440	1	-14.500	8
High Channel: 2480	1	-13.853	8


Low Channel

Middle Channel

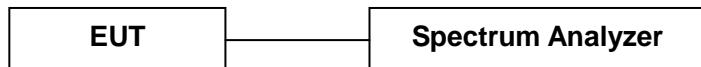
High Channel

7. Band Edge and Conducted Spurious Emissions

7.1 Requirement and Measurement Procedure

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

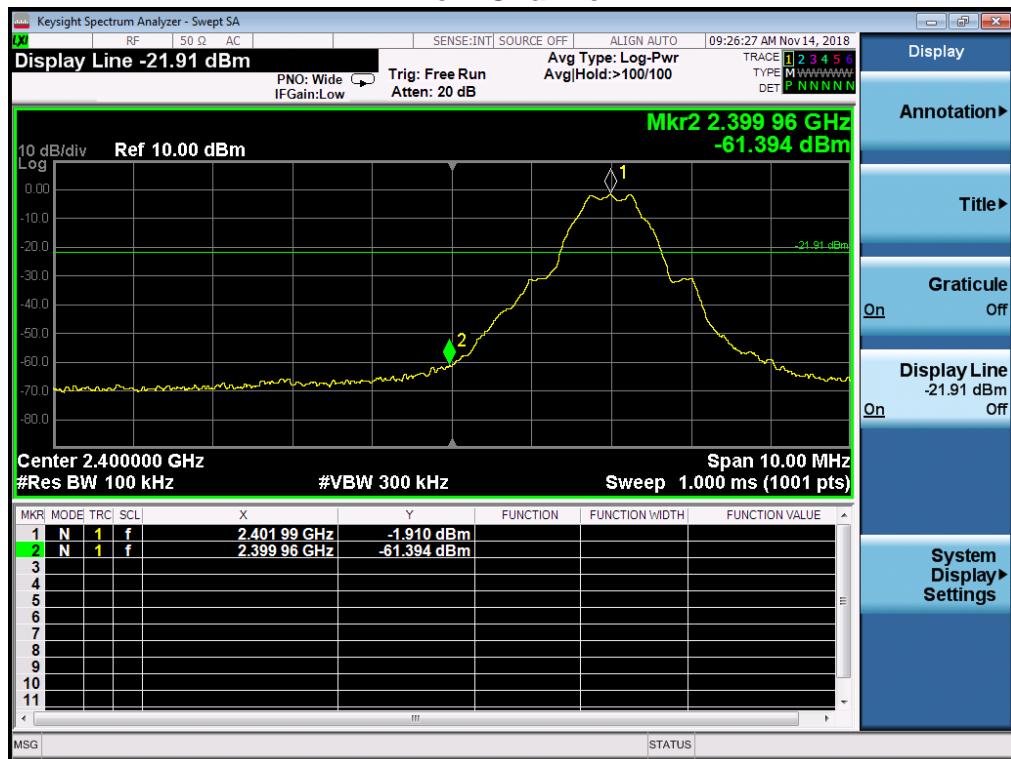
The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below.

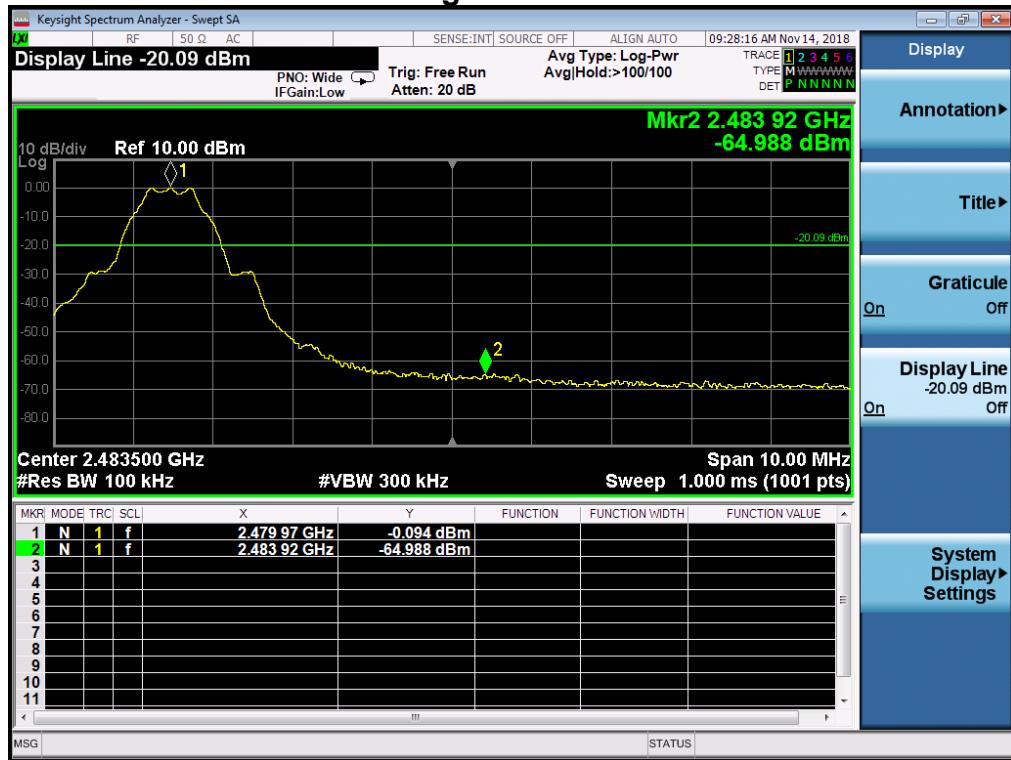

MEASUREMENT PROCEDURE REF

1. Set the RBW = 100 kHz.
2. Set the VBW \geq 300 kHz.
3. Detector = peak.
4. Sweep time = auto couple.
5. Trace mode = max hold.
6. Allow trace to fully stabilize.
7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

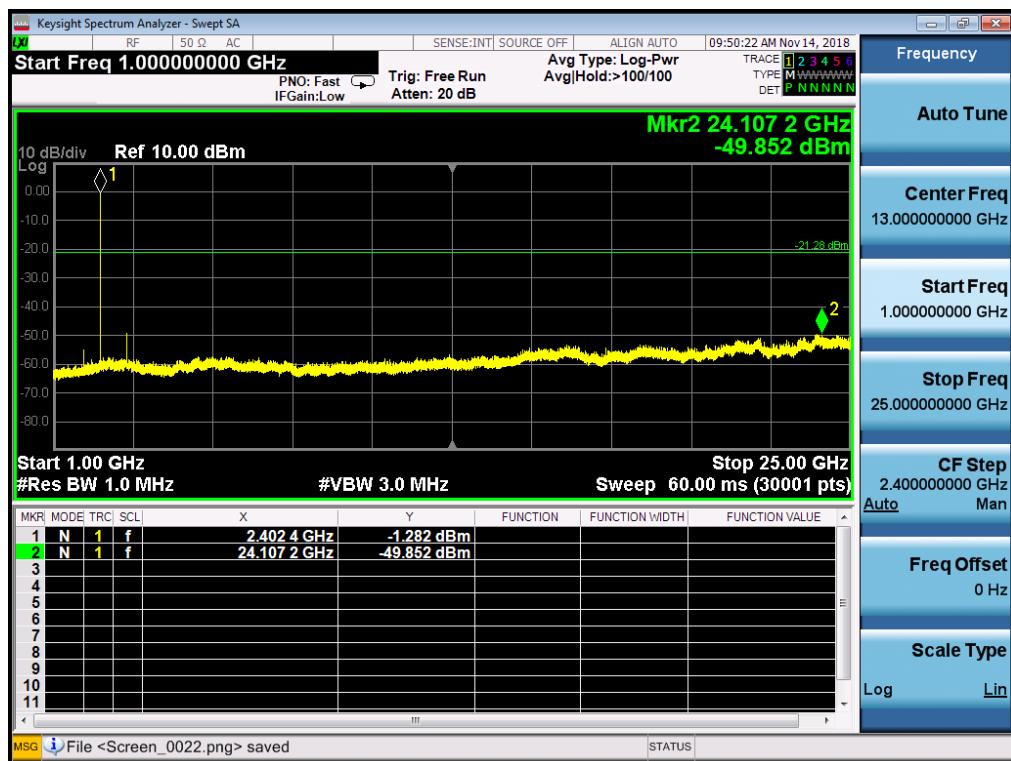
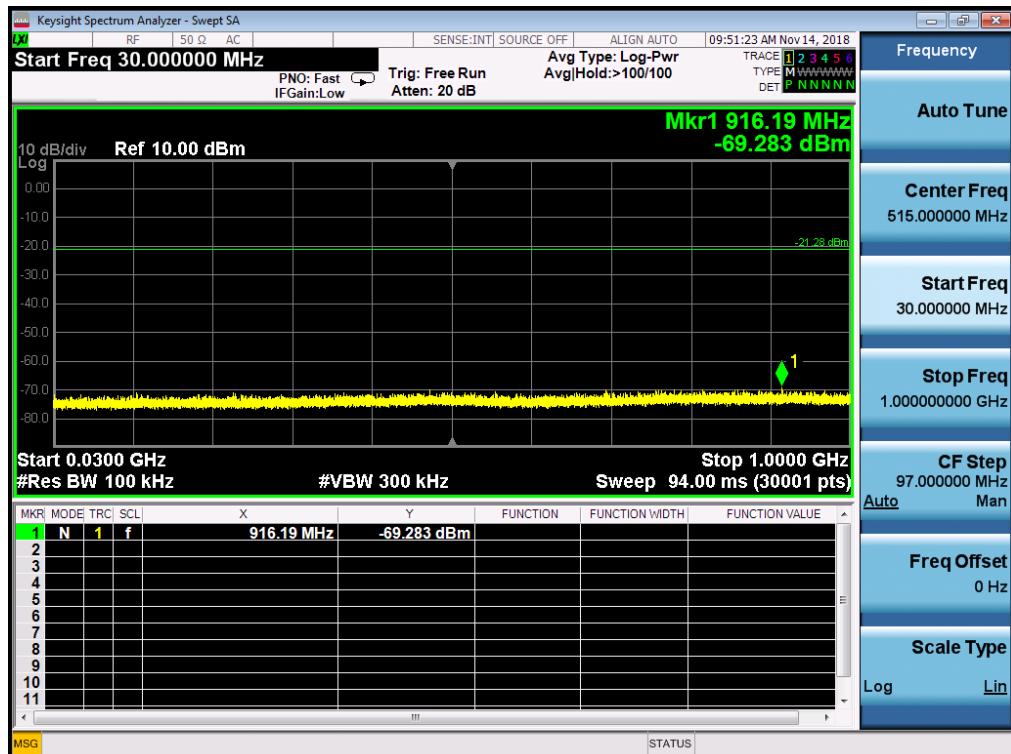
MEASUREMENT PROCEDURE OOB

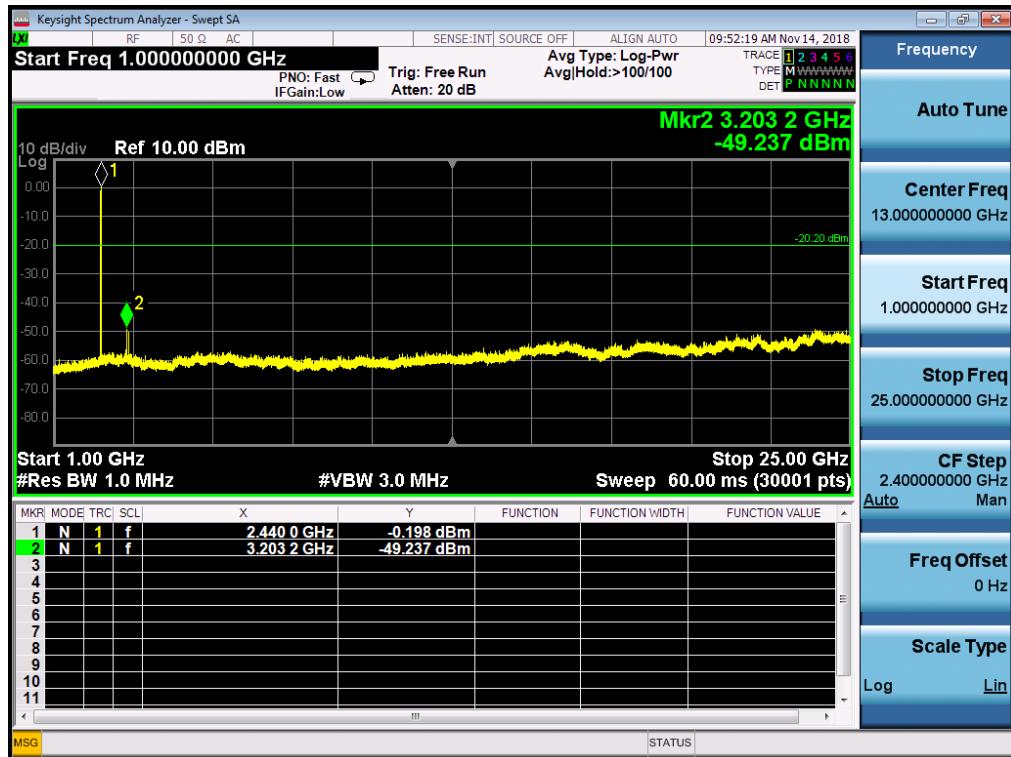
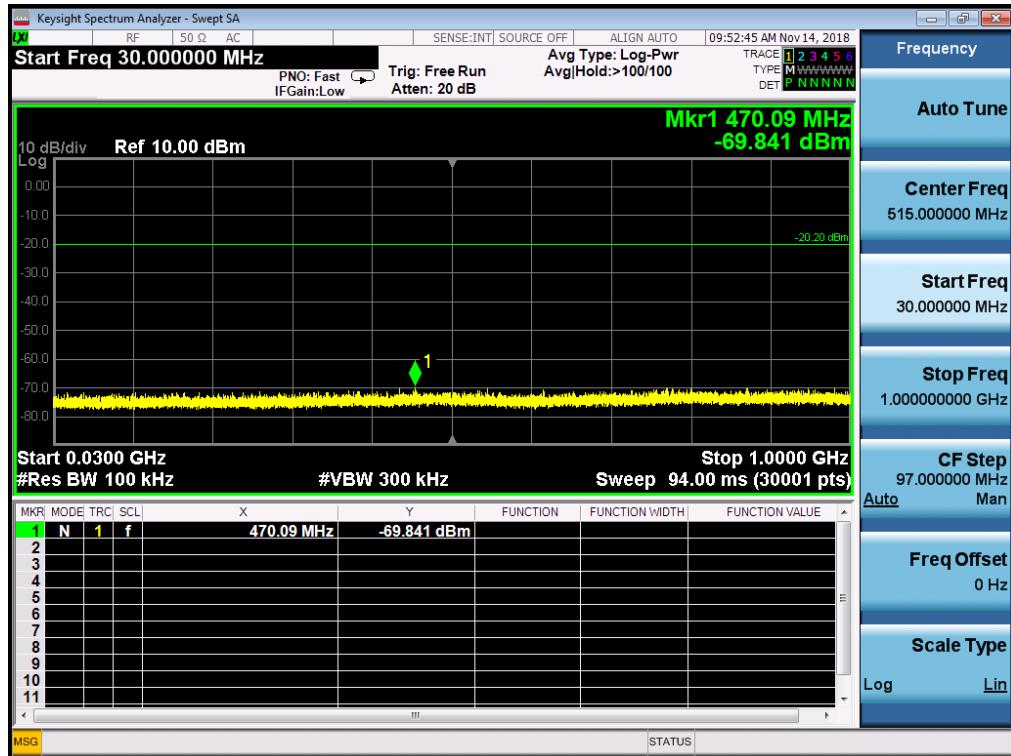
1. Set RBW = 100 kHz.
2. Set VBW \geq 300 kHz.
3. Detector = peak.
4. Sweep = auto couple.
5. Trace Mode = max hold.
6. Allow trace to fully stabilize.
7. Use the peak marker function to determine the maximum amplitude level.

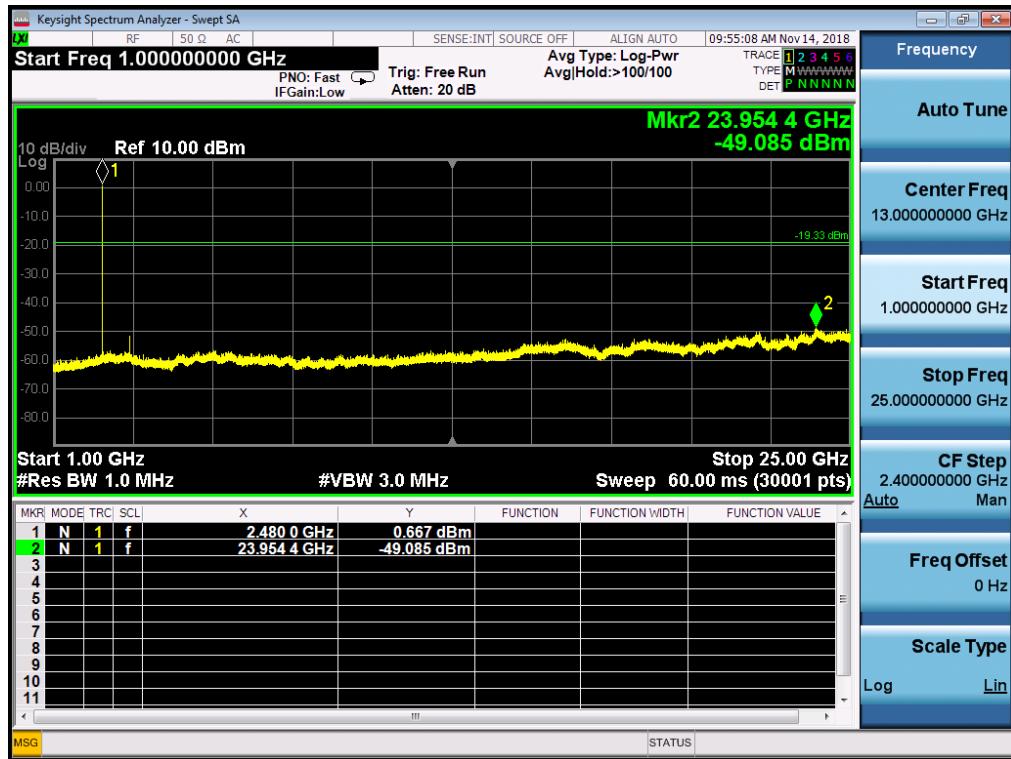
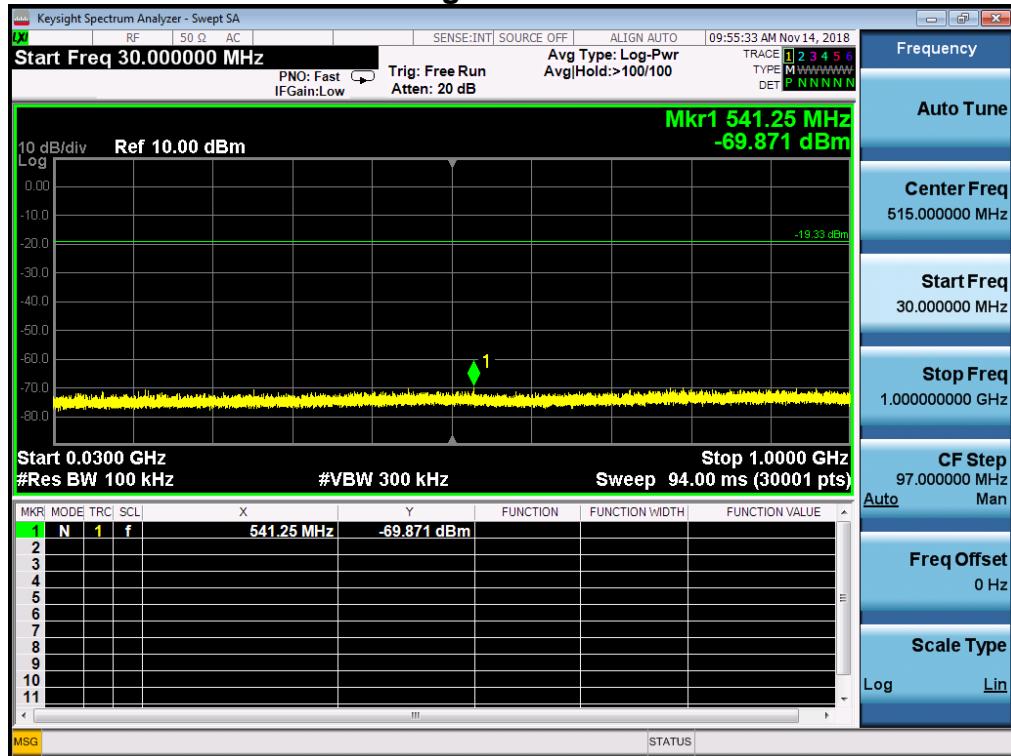

7.2 Test SET-UP (Block Diagram of Configuration)


7.3 Measurement Results

The test plots and table showed all spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband. Please refer to below plots.

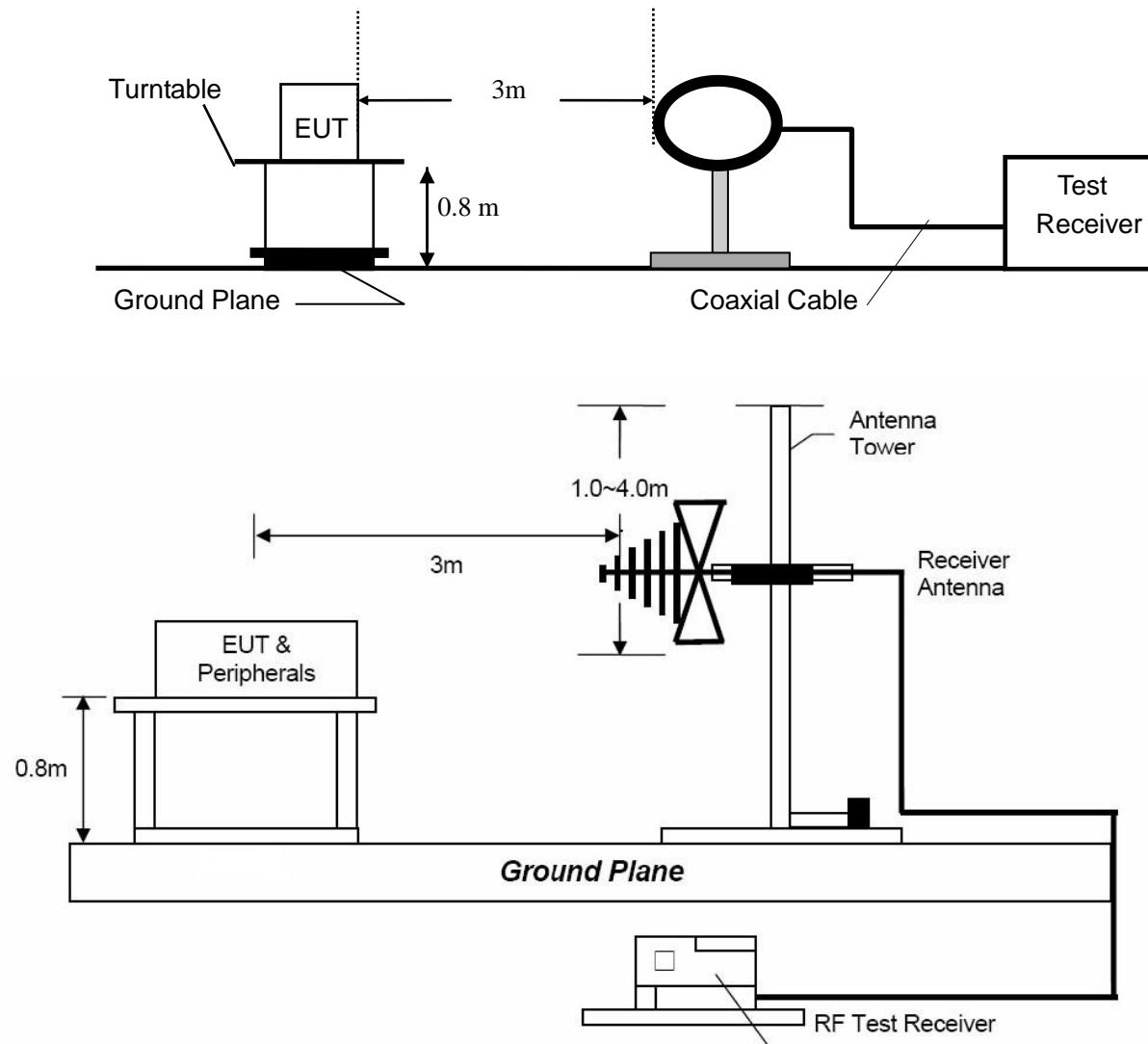


Band Edge Low Channel



High Channel

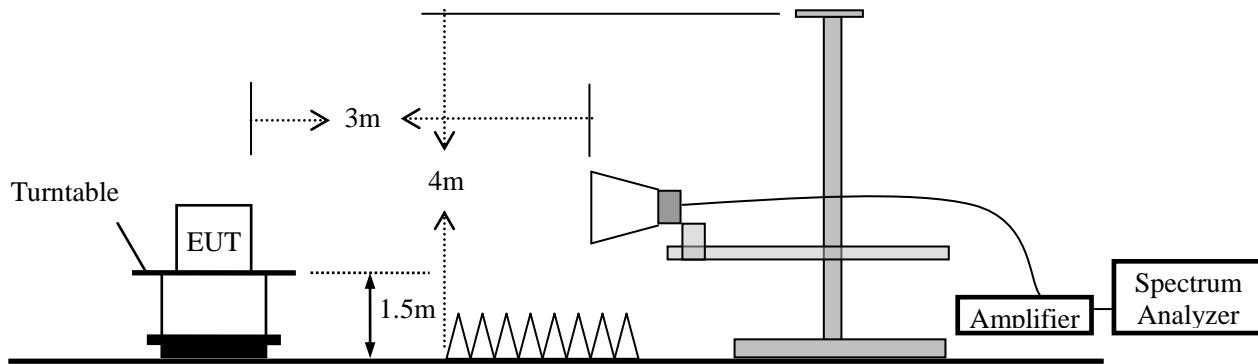


Conducted Spurious Emissions Low Channel

Middle Channel

High Channel



Note: Sweep points=30001pts


8. Radiated Spurious Emissions and Restricted Bands

8.1 Test SET-UP (Block Diagram of Configuration)

8.1.1 Radiated Emission Test Set-Up, Frequency Below 30MHz

8.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz

8.2 Measurement Procedure

- a. Blow 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:
The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
	Average	1 MHz	10 Hz

8.3 Limit

Frequency range MHz	Distance Meters	Field Strengths Limit (15.209)
		μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

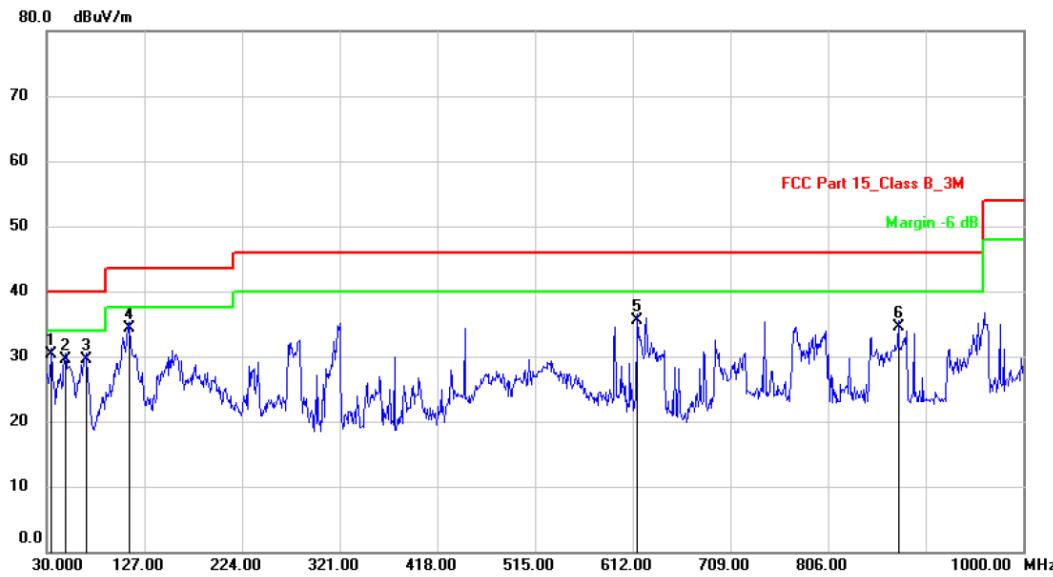
Remark:

- (1) Emission level (dB) μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.

8.4 Measurement Results

Please refer to following plots of the worst case: GFSK High channel.

Dongguan NTC Co., Ltd.
 Tel:+86-769-22022444 Fax:+86-769-22022799
 Web: [Http://www.ntc-c.com](http://www.ntc-c.com)


Radiated Emission Measurement

File : IoT-3399E

Data :#15

Date: 2018-10-12

Time: 13:15:42

Site: 3m Chamber

Polarization: **Vertical**

Temperature: 26

Limit: FCC Part 15_Class B_3M

Power: AC120V/60Hz

Humidity: 47 %

EUT: IoT-3399E

Distance: 3m

M/N: IoT-3399E

Mode: TX(BLE)

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Antenna Height	Table Degree	Comment
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree
1		34.8500	46.47	-16.17	30.30	40.00	-9.70	QP		
2		48.4299	42.92	-13.42	29.50	40.00	-10.50	QP		
3		69.7699	46.91	-17.31	29.60	40.00	-10.40	QP		
4	*	111.4800	50.52	-16.12	34.40	43.50	-9.10	QP		
5		616.8500	42.55	-7.05	35.50	46.00	-10.50	QP		
6		875.8400	35.75	-1.15	34.60	46.00	-11.40	QP		

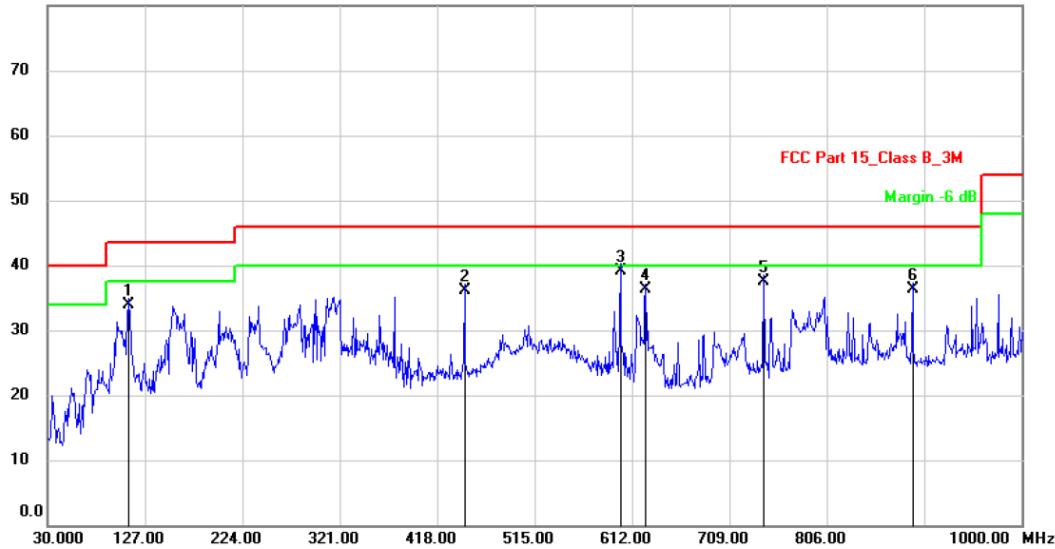
*:Maximum data x:Over limit !:over margin

(Reference Only)

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Dongguan NTC Co., Ltd.
 Tel: +86-769-22022444 Fax: +86-769-22022799
 Web: [Http://www.ntc-c.com](http://www.ntc-c.com)

Radiated Emission Measurement


File : IoT-3399E

Data : #16

Date: 2018-10-12

Time: 13:22:37

80.0 dBuV/m

Site: 3m Chamber

Polarization: **Horizontal**

Temperature: 26

Limit: FCC Part 15_Class B_3M

Power: AC120V/60Hz

Humidity: 47 %

EUT: IoT-3399E

Distance: 3m

M/N: IoT-3399E

Mode: TX(BLE)

Note:

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table	
			Level	Factor	ment					
		MHz	dBuV	dB/m	dBuV/m	dB	Detector	cm	degree	Comment
1		110.5100	46.16	-12.26	33.90	43.50	-9.60	QP		
2		445.1600	44.18	-8.08	36.10	46.00	-9.90	QP		
3	*	600.3600	44.20	-5.00	39.20	46.00	-6.80	QP		
4		625.5800	41.39	-5.09	36.30	46.00	-9.70	QP		
5		742.9500	40.26	-2.76	37.50	46.00	-8.50	QP		
6		891.3600	37.50	-1.20	36.30	46.00	-9.70	QP		

*:Maximum data x:Over limit !:over margin

(Reference Only)

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Modulation: GFSK
 Frequency Range: 1-25GHz
 Test Result: PASS
 Measured Distance: 3m
 Test By: Lee

Test Date : November 14, 2018
 Temperature : 24 °C
 Humidity : 47 %

Freq. (MHz)	Ant.Pol. (H/V)	Reading Level(dBuV)		Factor (dB/m)	Emission Level (dBuV)		Limit 3m (dBuV/m)		Margin (dB)	
		PK	AV		PK	AV	PK	AV	PK	AV
Operation Mode: TX Mode (Low)										
4804	V	50.29	38.43	6.30	56.59	44.73	74.00	54.00	-11.41	-9.27
7206	V	45.15	30.67	10.44	55.59	41.11	74.00	54.00	-18.41	-12.89

4804	H	53.42	40.79	6.30	59.72	47.09	74.00	54.00	-14.28	-6.91
7206	H	45.71	31.14	10.44	56.15	41.58	74.00	54.00	-17.85	-12.42

Operation Mode: TX Mode (Mid)										
4880	V	49.61	32.83	6.60	56.21	39.43	74.00	54.00	-17.79	-14.57
7320	V	46.14	31.02	10.55	56.69	41.57	74.00	54.00	-17.31	-12.43

4880	H	49.89	34.78	6.60	56.49	41.38	74.00	54.00	-17.51	-12.62
7320	H	46.71	31.02	10.55	57.26	41.57	74.00	54.00	-16.74	-12.43

Operation Mode: TX Mode (High)										
4960	V	45.73	32.83	6.89	52.62	39.72	74.00	54.00	-21.38	-14.28
7440	V	46.52	30.94	10.60	57.12	41.54	74.00	54.00	-16.88	-12.46

4960	H	47.60	33.78	6.89	54.49	40.67	74.00	54.00	-19.51	-13.33
7440	H	45.93	32.02	10.60	56.53	42.62	74.00	54.00	-17.47	-11.38

Other harmonics emissions are lower than 10dB below the allowable limit.

Note:

- (1) All Readings are Peak Value and AV.
- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss – Amplifier Gain
- (4) Data of measurement within this frequency range shown “ --- ” in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
- (5) Measurement uncertainty : $\pm 3.7\text{dB}$.
- (6) Horn antenna used for the emission over 1000MHz.

Spurious Emission in restricted band:

Operation Mode: TX Test Date : November 14, 2018
Frequency Range: Above 1GHz Temperature : 24 °C
Test Result: PASS Humidity : 47 %
Measured Distance: 3m Test By: Lee

Freq. (MHz)	Ant.Pol. (H/V)	Reading Level(dBuV)		Factor (dB/m)	Emission Level (dBuV)		Limit 3m (dBuV/m)		Margin (dB)	
		PK	AV		PK	AV	PK	AV	PK	AV
2399.000	H	64.03	48.25	0.13	64.16	48.38	74.00	54.00	-9.84	-5.62
2399.000	V	59.20	43.28	0.13	59.33	43.61	74.00	54.00	-14.67	-10.39
2483.560	H	57.34	44.05	0.34	57.68	44.39	74.00	54.00	-16.32	-9.61
2483.560	V	50.03	39.15	0.34	50.37	39.49	74.00	54.00	-23.63	-14.51

Note: (1) All Readings are Peak Value and AV.
(2) Emission Level= Reading Level+Probe Factor +Cable Loss
(3) Measurement uncertainty : ±3.7dB

9. Antenna Application

9.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

9.2 Measurement Results

The antenna is External plastic rod antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 3.5dBi, So, the antenna is consider meet the requirement.

10. Test Equipment List

Description	Manufacturer	Model Number	Serial Number	Characteristics	Calibration Date	Calibration Due Date
Test Receiver	Rohde & Schwarz	ESCI7	100837	9KHz~7GHz	Mar. 14, 2018	Mar. 13, 2019
Antenna	Schwarzbeck	VULB9162	9162-010	30MHz~7GHz	Mar. 23, 2018	Mar. 22, 2019
Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	20Hz~26.5GHz	Mar. 14, 2018	Mar. 13, 2019
Spectrum Analyzer	Keysight	N9020A	MY54200831	20Hz~26.5GHz	Apr. 24, 2018	Apr. 23, 2019
Spectrum Analyzer	Rohde & Schwarz	FSV40	101003	10Hz~40GHz	Apr. 24, 2018	Apr. 23, 2019
Horn Antenna	Schwarzbeck	BBHA9170	9170-372	15GHz~40GHz	Mar. 23, 2018	Mar. 22, 2019
Pre-Amplifier	EMCI	EMC 184045	980102	18GHz~40GHz	Apr. 24, 2018	Apr. 23, 2019
Power Sensor	DARE	RPR3006W	15I00041SN O64	100MHz~6GHz	Mar. 14, 2018	Mar. 13, 2019
Communication Tester	Rohde & Schwarz	CMW500	149004	70MHz~6GHz	Mar. 14, 2018	Mar. 13, 2019
Horn Antenna	COM-Power	AH-118	071078	500MHz~18GHz	Mar. 23, 2018	Mar. 22, 2019
Pre-Amplifier	HP	HP 8449B	3008A00964	1GHz~26.5GHz	Mar. 14, 2018	Mar. 13, 2019
Pre-Amplifier	HP	HP 8447D	1145A00203	100KHz~1.3GHz	Mar. 14, 2018	Mar. 13, 2019
Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	9KHz~30MHz	Apr. 24, 2018	Apr. 23, 2019
Temperature & Humidity Chamber	REMAFEE	SYHR225L	N/A	-40~150°C	Apr. 24, 2018	Apr. 23, 2019
DC Source	MY	MY8811	N/A	0~30V	N/A	N/A
Temporary antenna connector	TESCOM	SS402	N/A	9KHz~25GHz	N/A	N/A
Power Meter	Anritsu	ML2495A	1139001	100K-65GHz	Apr. 24, 2018	Apr. 23, 2019
Power Sensor	Anritsu	MA2411B	100345	300M-40GHz	Apr. 24, 2018	Apr. 23, 2019
Test Software	EZ	EZ_EMCA	N/A	N/A	N/A	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

---End---