

Test Report

Product name: INTOUCH430A

Trademark: INSTORE SCREEN

Model no. : INTOUCH430A

Series Model(s). : INTOUCH43***, (* can be A-Z, a-z, 0-9, or blank for

marketing purpose only)

FCC ID...... 2AI56-INTOUCH430A

Report No T220505001-RF01

Test Standards FCC Part15, Subpart C(15.247)

ANSI C63.10-2013

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

Report No: T220505001-RF01

Applicant: HKC Corporation Limited

Address of applicant Building 1,2,3, Huike Industrial Park, Minying Industrial Zone,

ShuiTian, ShiYan, Baoan, Shenzhen, China

Manufacturer: Instorescreen LLC

Manufacturer Address...... 2338 Immokalee Rd, Unit 220 Naples, FL 34110

Date of Test Date..... May.05,2022 to Jun.15,2022

Testing Engineer

Reviewed By

Approved Signatory

The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CSIC within 15 days

since the date when the report is received. It will not be taken into consideration beyond this limit.

Page 2 of 45

Report No: T220505001-RF01

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	Nov.11,2022	Initial Issue	ALL	Adil Yang

	Table of Contents	Page
1. TE	EST SUMMARY	4
1.1.	TEST DESCRIPTION	4
1.2.	TEST FACILITY	5
1.3.	MEASUREMENT UNCERTAINTY	5
2. GE	ENERAL INFORMATION	6
2.1.	GENERAL DESCRIPTION OF EUT	_
2.2.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	7
2.3.	MEASUREMENT INSTRUMENTS LIST	8
2.4.	DESCRIPTION OF THE TEST MODES	······································
2.5.	TEST SOFTWARE AND POWER LEVEL	
2.6.	BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	
2.7.	DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.8.	ENVIRONMENTAL CONDITIONS FOR TESTING	12
3. EN	MC TEST	13
3.1.	CONDUCTED EMISSION MEASUREMENT	13
3.2.	RADIATED EMISSION MEASUREMENT	16
3.3.	CONDUCTED SPURIOUS & BAND EDGE EMISSION	25
3.4.	POWER SPECTRAL DENSITY TEST	
3.5.	6DB BANDWIDTH TEST	
3.6.	MAXIMUM CONDUCTED OUTPUT POWER TEST	40
3.7.	ANTENNA REQUIREMENT	43
4. TE	EST PHOTOS	44
5. EL	JT PHOTOS	45

1. TEST SUMMARY

1.1. TEST DESCRIPTION

Test procedures according to the technical standards:

FCC Part 15, Subpart C(15.247)					
Item	Clause	Result	Remark		
Conducted Emission	15.207	PASS			
Output Power	15.247(b)(3)	PASS			
Radiated Spurious Emission	15.247(c)	PASS			
Conducted Spurious & Band Edge Emission	15.247(d)	PASS			
Power Spectral Density	15.247(e)	PASS			
6dB Bandwidth	15.247(a)(2)	PASS			
Restricted bands of operation	15.205	PASS			
Band Edge Emission	15.247(d)/15.209(a)	PASS			
Antenna Requirement	15.203	PASS			

Note:

- 1) "N/A" denotes test is not applicable in this Test Report.
- 2) All tests are according to ANSI C63.10-2013.
- 3) The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.
- 4) The information of measurement uncertainty is available upon the customer's request.

1.2. TEST FACILITY

Shenzhen Central Standard International Center Co., Ltd.

Room 201, Building 1, Mogen Fashion Industrial Park, No. 10, Shilongzai Road, Xinshi Community, Dalang Street, Longhua District, Shenzhen

The test facility is recognized, certified or accredited by the following organizatios:

CNAS – Registration NO.: L11671

FCC - Registration NO.: 0031378433 Designation Number: CN1317

IC – CAB identifier: CN0051 A2LA – Lab Cert. No.: 6426.01

1.3. MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Central Standard International Center Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for Shenzhen Central Standard International Center Co., Ltd.

Test Items	Measurement Uncertainty	Notes
RF output power, conducted	±0.59dB	(1)
Unwanted Emissions, conducted	±2.20dB	(1)
All emissions, radiated 9KHz-30MHz	±4.44dB	(1)
All emissions, radiated 30-1GHz	±4.48dB	(1)
All emissions, radiated 1G-6GHz	±5.08dB	(1)
All emissions, radiated>6G	±5.08dB	(1)
Conducted Emission (9KHz-150KHz)	±1.60dB	(1)
Conducted Emission (150KHz-30MHz)	±3.68dB	(1)

Note(1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. GENERAL DESCRIPTION OF EUT

EUT(Product Specifications)				
Product Name:	INTOUCH430A			
Model:	INTOUCH430A			
Series Model(s):	INTOUCH43***, (* can be A-Z, a-z, 0-9, or blank for marketing purpose only)			
Power supply:	100-240V~ 50/60Hz 1.1A			
Hardware version:	T30G			
Software version:	20220526			
WIFI-2.4G (RF Specification	s)			
Supported type:	802.11b, 802.11g, 802.11n(HT20)			
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)			
Operation frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz			
Operation bandwidth:	20MHz			
Channel number:	11			
Channel separation:	5MHz			
Antenna type:	Dipole antenna			
Antenna gain:	3.99dBi			

Note1: For a more detailed features description, please refer to the manufacture's specifications or the user's manual.

Note2: Full tests were applied to model T220505001-Y01/01 only in this document.

2.2. DESCRIPTION OF TEST MODES AND TEST FREQUENCY

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting mode for testing.

Operation Frequency List WIFI:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
01	2412	08	2447
02	2417	09	2452
03	2422	10	2457
04	2427	11	2462
05	2432		
06	2437		
07	2442		

Note: Bold font is the channel selected for testing

For 802.11b/g/n(20MHz)					
Test Channel	EUT Channel	Test Frequency (MHz)			
lowest	CH01	2412			
middle	CH06	2437			
highest	CH11	2462			

2.3. MEASUREMENT INSTRUMENTS LIST

	RF Connected Test						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Previously calibration data	Latest calibration data	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY50200 391	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
2	Power sensor	KEYSIGHT	U2021XA	MY55080 015	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
3	Power sensor	KEYSIGHT	U2021XA	MY54250 016	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
4	Power sensor	KEYSIGHT	U2021XA	MY54250 020	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
5	Power sensor	KEYSIGHT	U2021XA	MY54210 030	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
6	Vector Signal Generator	Agilent	N5182A	MY50140 130	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
7	Signal generator	Agilent	SML03	100925	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
8	Power sensor Box	MWRFtest	N/A	N/A	N/A	N/A	N/A
9	RF Switch Box	MWRFtest	MW100- RFCB	N/A	N/A	N/A	N/A
10	MTS 8310	MWRFtest			V: 2.0.0.0		

	Radiation Test equipment						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Previously calibration data	Latest calibration data	Calibrated until
1	EMI TEST RECEIVE R	R&S	ESIB26	100342	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
2	Amplifier	HP	8447F	2634A020 50	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
3	Amplifier	Agilent	8449B	4035A001 16	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
4	Loop Antenna	SCHNARZB ECK	FMZB151 9B	00023	/	Nov. 17, 2021	Nov. 16, 2022
5	Bilog Antenna	Schwarzbeck	VULB- 9168	VULB916 8-250	Jul. 28, 2021	Jul. 26, 2022	Jul. 25, 2025
6	Horn Antenna	AARONIAAG	Powerlog 70180	3980	Jul. 28, 2021	Jul. 05, 2022	Jul. 04, 2025
7	Horn Antenna	A-INFOMW	LB- 180400- KF	J2110206 57	/	Sep. 28, 2021	Sep. 27, 2022
8	3M Chamber	Maor	9*6*6		/	May. 04, 2020	May. 03, 2023
10	EZ-EMC	Farad			V3.1		

	Mains Terminal Disturbance Voltage Test equipment						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Previously calibration data	Latest calibration data	Calibrated until
1	EMI Test Receiver	R&S	ESRP3	101936	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
2	LISN	R&S	ENV216	100002	Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
3	LISN	MEB	NNB 42		Jun. 15, 2021	Jun. 14, 2022	Jun. 13, 2023
4	Shelding Room	Maor	8*4*3		/	May. 04, 2020	May. 03, 2023
5	EZ-EMC	Fara			V3.1		

Note:

1) The cable loss has calculated in test result which connection between each test instruments.

2.4. DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11b CH1	1 Mbps
Mode 2	TX IEEE 802.11b CH6	1 Mbps
Mode 3	TX IEEE 802.11 b CH11	1 Mbps
Mode 4	TX IEEE 802.11g CH1	6 Mbps
Mode 5	TX IEEE 802.11g CH6	6 Mbps
Mode 6	TX IEEE 802.11g CH11	6 Mbps
Mode 7	TX IEEE 802.11n 20 CH1	6.5 Mbps
Mode 8	TX IEEE 802.11n 20 CH6	6.5 Mbps
Mode 9	TX IEEE 802.11n 20 CH11	6.5 Mbps

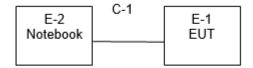
Note:

- 1) The measurements are performed at the high, middle, low available channels.
- 2) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- 3) For radiated emission 9kHz-1 GHz test, the IEEE 802.11n20 Channel 06 is found to be the worst case and recorded.
- 4) This test was performed with EUT in X, Y, Z position and worst case was found when EUT in X position.
- 5) For radiated emission above 1 GHz test, 1GHz-25GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.

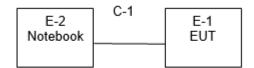
For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode10: Working

2.5. TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Power Class	Software For Testing
		802.11b		N/A	
WIFI(2.4G)	2.4G WIFI	802.11g	Ant: 3.99	N/A	EspRFTestTool v2.8 Manual
		802.11n(HT20)		N/A	


Note: The power class cannot be manually adjusted in the software.

2.6. BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

a. Radiated Spurious Emission Test

b. Conducted Emission Test

2.7. DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT **UNITS**

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories							
Item	Item Equipment Mfr/Brand Model/Type No. Serial No. No						
N/A	N/A	N/A	N/A	N/A	N/A		

Support units						
Item	m Equipment Mfr/Brand Model/Type No. Serial No. N					
E-2	Notebook	Lenovo	ThinkPad E575	N/A	N/A	
C-1	USB Cable	N/A	100cm	N/A	N/A	

Note:

- 1) The support equipment was authorized by Declaration of Confirmation.
- 2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.

2.8. ENVIRONMENTAL CONDITIONS FOR TESTING

Test Item	Temperature (°C)	Relative Humidity (%)	Test Voltage	Tested by
Conducted Emission	27.1	58.0	AC 120V/60Hz	Jeno Wu
Output Power	26.0	64.0	AC 120V/60Hz	Adil Yang
Radiated Spurious Emission	27.1	65.0	AC 120V/60Hz	Adil Yang
Conducted Spurious & Band Edge Emission	26.0	64.0	AC 120V/60Hz	Adil Yang
Power Spectral Density	26.0	64.0	AC 120V/60Hz	Adil Yang
6dB Bandwidth	26.0	64.0	AC 120V/60Hz	Adil Yang
Restricted bands of operation	26.0	64.0	AC 120V/60Hz	Adil Yang
Band Edge Emission	27.1	65.0	AC 120V/60Hz	Adil Yang

Shenzhen Central Standard International Center Co., Ltd. Tel.: (86)0755-85283385

3. EMC TEST

3.1. CONDUCTED EMISSION MEASUREMENT

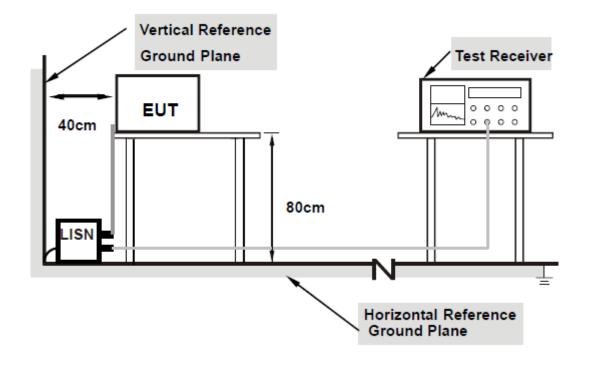
Limit

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)			
FREQUENCT (IVITIZ)	Quasi-peak	Average		
0.15 - 0.5	66 - 56 *	56 - 46 *		
0.5 - 5	56	46		
5 - 30	60	50		

Note:

- 1) The tighter limit applies at the band edges.
- 2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
RBW	9 kHz

Test Procedure

- a) The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d) LISN at least 80 cm from nearest part of EUT chassis.
- e) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Test Setup

Note:

- 1) Support units were connected to second LISN.
- 2) Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

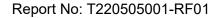
EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Data Sample

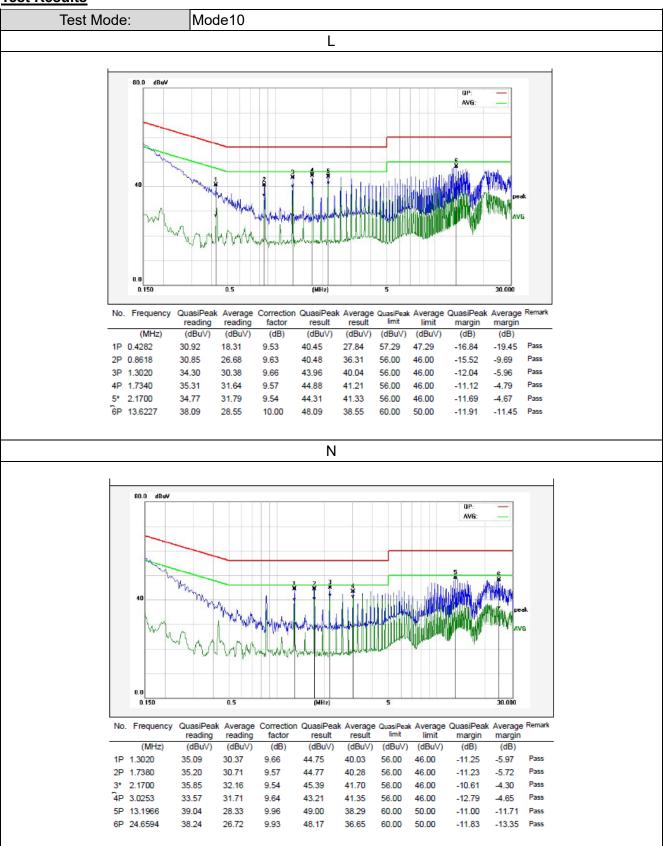
No.	Frequency		ding SuV)	Correct		sult V/m)		mit ıV/m)		rgin B)	Remark
	(MHz)	QP	AVG	Factor (dB/m)	QP	AVG	QP	AVG	QP	AVG	
X	XX.XXXX	39.01	34.65	9.78	48.79	44.43	60	50	-11.21	-5.57	Pass/fail

Frequency (MHz), emission frequency in MHz;


QP/AVG Reading (dBuV), uncorrected analyzer / receiver reading;

Correct Factor(dB), insertion loss of LISN + cable loss;

Result (dBuV), QP/AVG Reading in dBuV + Correct factor in dB


Limit (dBuV/m), limit stated in standard;

Margin (dB), result in dBuV – limit in dBuV.

Test Results

3.2. RADIATED EMISSION MEASUREMENT

Limit

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
PREQUENCT (MINZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- 1) The limit for radiated test was performed according to FCC PART 15C.
- 2) The tighter limit applies at the band edges.
- 3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Shenzhen Central Standard International Center Co., Ltd. Tel.: (86)0755-85283385

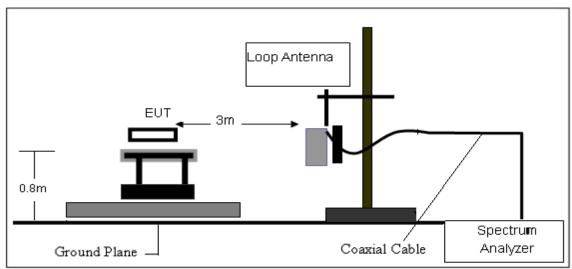
For Radiate	For Radiated Emission					
Spectrum Parameter	Setting					
Attenuation	Auto					
Detector	Peak/QP/AVG					
Start Frequency	9 KHz/150KHz(Peak/QP/AVG)					
Stop Frequency	150KHz/30MHz(Peak/QP/AVG)					
	200Hz (From 9kHz to 0.15MHz)/					
DD /VD (aminaion in rectuiated bond)	9KHz (From 0.15MHz to 30MHz);					
RB / VB (emission in restricted band)	200Hz (From 9kHz to 0.15MHz)/					
	9KHz (From 0.15MHz to 30MHz)					
A 44 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -	A. 4.					
Attenuation	Auto					
Detector	Peak/QP					
Start Frequency	30 MHz(Peak/QP)					
Stop Frequency	1000 MHz (Peak/QP)					
RB / VB (emission in restricted band)	120 KHz / 300 KHz					
A.(:						
Attenuation	Auto					
Detector	Peak/AVG					
Start Frequency	1000 MHz(Peak/AVG)					
Stop Frequency	10th carrier hamonic(Peak/AVG)					
RB / VB (emission in restricted band)	1 MHz / 3 MHz(Peak)					
	1 MHz/1/T MHz(AVG)					
For Restr	icted band					
Spectrum Parameter	Setting					
Detector	Peak/AVG					
Beteator	Lower Band Edge: 2310 to 2410 MHz					
Start/Stop Frequency	Upper Band Edge: 2476 to 2500 MHz					
	1 MHz / 3 MHz(Peak)					
RB / VB	1 MHz/1/T MHz(AVG)					
	1 Wil 12 17 1 Wil 12 (7 (V O)					
Receiver Parameter	Setting					
Attenuation	Auto					
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for Peak & AVG					
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP					
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for Peak & AVG					
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP					
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP					

Test Procedure

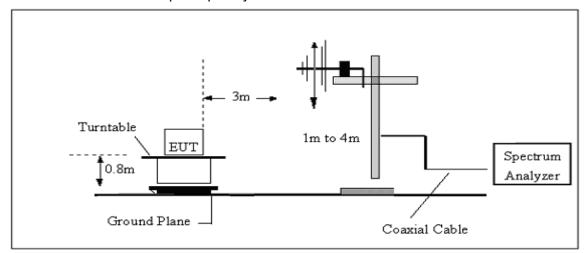
- a) The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b) The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

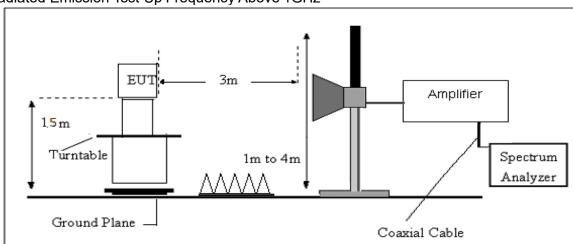
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


DEVIATION FROM TEST STANDARD

No deviation.



Test Setup


1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.5 Unless otherwise a special

operating condition is specified in the follows during the testing.

Data Sample

Below 1GHz:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
X	XXX.XXXX	42.72	2.48	45.20	74.00	-28.80	QP

Frequency (MHz), emission frequency in MHz;

Reading (dBuV), uncorrected analyzer / receiver reading;

Correct Factor(dB/m), antenna factor +cable loss – amplifier gain

Result (dBuV/m), reading in dBuV +Correct factor in dB/m

Limit (dBuV/m), limit stated in standard;

Margin (dB), result in dBuV/m - limit in dBuV/m

QP, quasi-peak reading.

Above 1GHz:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	XXXX.XXX	42.72	2.48	45.20	74.00	-28.80	peak
2	XXXX.XXX	32.75	2.48	35.23	54.00	-18.77	AVG

Frequency (MHz), emission frequency in MHz;

Reading (dBuV), uncorrected analyzer / receiver reading;

Correct Factor(dB/m), antenna factor +cable loss – amplifier gain

Result (dBuV/m), reading in dBuV +Correct factor in dB/m

Limit (dBuV/m), limit stated in standard;

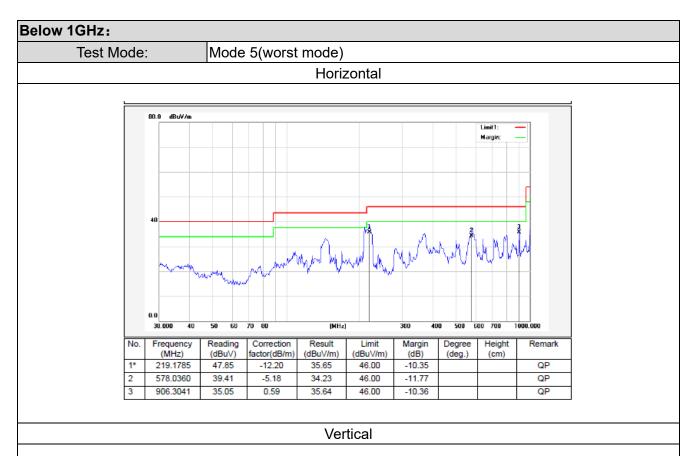
Margin (dB), result in dBuV/m - limit in dBuV/m

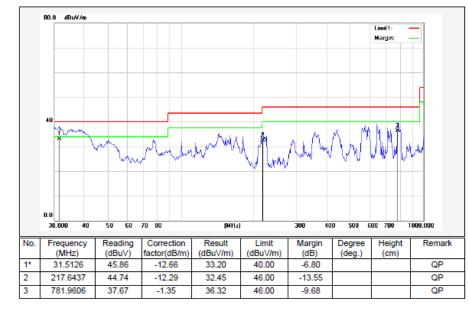
peak, peak reading;

AVG, average reading.

Test Result

	9KHz-30MHz									
Temperature:			27.1℃		Relative Humidity:		' :	65.0%		
Test Voltag	Test Voltage: A				Р	olarization:		1		
Test Mode:			TX Mode							
Freq.	Rea	ding	Factor	Res	sult	Limit	Margin	Test Result		
(MHz)	(dBu	V/m)	(dB)	(dBu	V/m)	(dBuV/m)	(dB)	Test Nesult		
	_	-						Pass		
	_	_		-	-			Pass		


Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

Above 1GHz:

802.11 b-Low (worst mode) Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1189.393	50.81	-4.20	46.61	74.00	-27.39	peak
2	1189.393	31.52	-4.20	27.32	54.00	-26.68	AVG
3	1574.618	45.37	-1.17	44.20	74.00	-29.80	peak
4	1574.618	27.68	-1.17	26.51	54.00	-27.49	AVG
5	4987.319	39.41	10.78	50.19	74.00	-23.81	peak
6	4987.319	28.82	10.78	3960	54.00	-14.40	AVG

802.11 b-Low (worst mode) Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.476	53.54	-4.15	49.39	74.00	-24.61	peak
2	1195.476	34.71	-4.15	30.56	54.00	-23.44	AVG
3	1863.310	50.27	0.51	50.78	74.00	-23.22	peak
4	1863.310	29.64	0.51	30.15	54.00	-23.85	AVG
5	4987.319	39.02	10.78	49.80	74.00	-24.20	peak
6	4987.319	28.76	10.78	39.54	54.00	-14.46	AVG

802.11 b-High (worst mode) Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.476	52.18	-4.15	48.03	74.00	-25.97	peak
2	1195.476	33.11	-4.15	28.96	54.00	-25.04	AVG
3	4787.883	43.60	10.41	54.01	74.00	-19.99	peak
4	4787.883	34.61	10.41	45.02	54.00	-8.98	AVG
5	4961.942	43.17	10.74	53.91	74.00	-20.09	peak
6	4961.942	31.43	10.74	42.17	54.00	-11.83	AVG

802.11 b-High (worst mode) Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1195.476	52.18	-4.15	48.03	74.00	-25.97	peak
2	1195.476	33.29	-4.15	29.14	54.00	-24.86	AVG
3	4787.883	41.60	10.41	52.01	74.00	-21.99	peak
4	4787.883	31.45	10.41	41.86	54.00	-12.14	AVG
5	4961.942	42.67	10.74	53.41	74.00	-20.59	peak
6	4961.942	31.41	10.74	42.15	54.00	-11.85	AVG

Node:

- 1. Measuring frequencies from 1GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4、Margin (dB), result in dBuV/m limit in dBuV/m.

Restricted band Requirements 802.11 n(HT20)-Low (worst mode)

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2332.144	49.47	2.50	51.97	74.00	-22.03	peak
2	2332.144	33.62	2.50	36.12	54.00	-17.88	AVG
3	2390.000	47.43	2.71	50.14	74.00	-23.86	peak
4	2390.000	30.55	2.71	33.26	54.00	-20.74	AVG

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2387.896	53.44	2.70	56.14	74.00	-17.86	peak
2	2387.896	36.04	2.70	38.74	54.00	-15.26	AVG
3	2390.000	54.73	2.71	57.44	74.00	-16.56	peak
4	2390.000	41.31	2.71	44.02	54.00	-9.98	AVG

802.11 n(HT20)-High (worst mode)

Horizontal

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
Ī	1	2483.500	48.27	3.04	51.31	74.00	-22.69	peak
Ī	2	2483.500	32.60	3.04	35.64	54.00	-18.36	AVG
Ī	3	2484.248	48.58	3.04	51.62	74.00	-22.38	peak
	4	2484.248	34.91	3.04	37.95	54.00	-16.05	AVG

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	60.16	3.04	63.20	74.00	-10.80	peak
2	2483.500	47.38	3.04	50.42	54.00	-3.58	AVG
3	2484.248	58.95	3.04	61.99	74.00	-12.01	peak
4	2484.248	45.59	3.04	48.63	54.00	-5.37	AVG

3.3. CONDUCTED SPURIOUS & BAND EDGE EMISSION

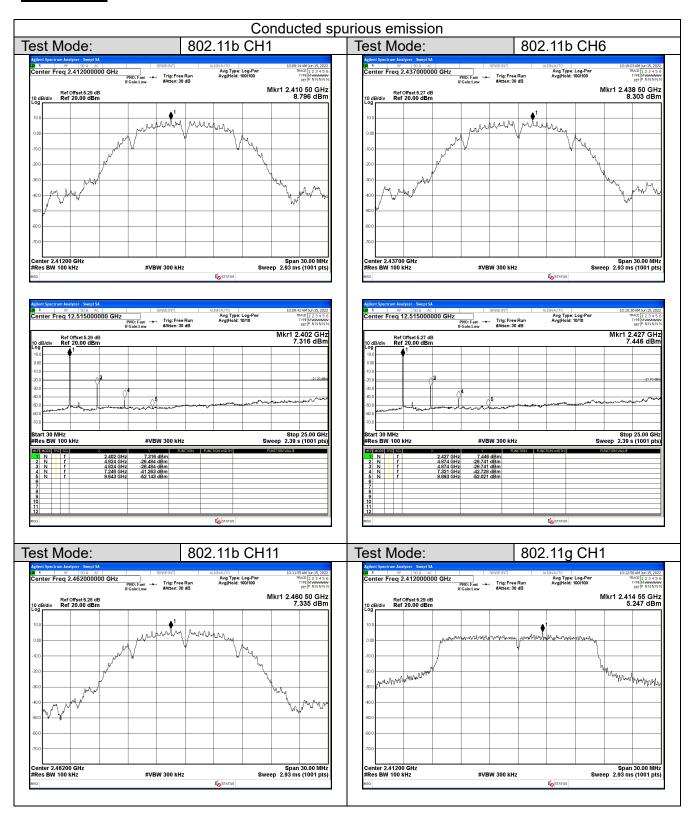
Limit

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Procedure

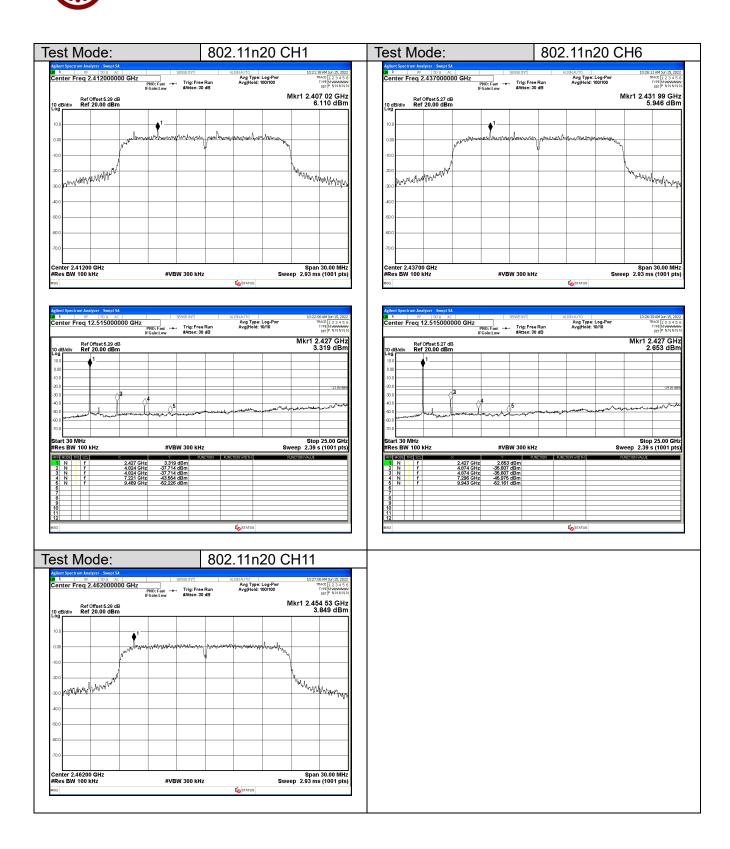
Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
For Bar	nd edge
Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	Lower Band Edge: 2327 – 2427 MHz
Start/Stop Frequency	Upper Band Edge: 2447 – 2547 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

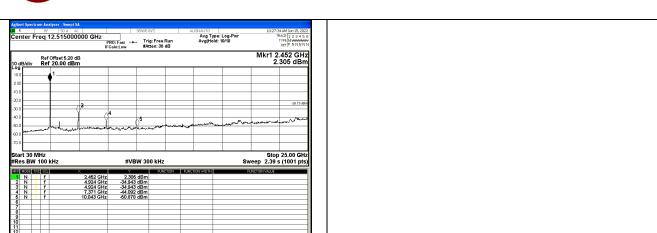
Test Configuration

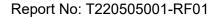

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

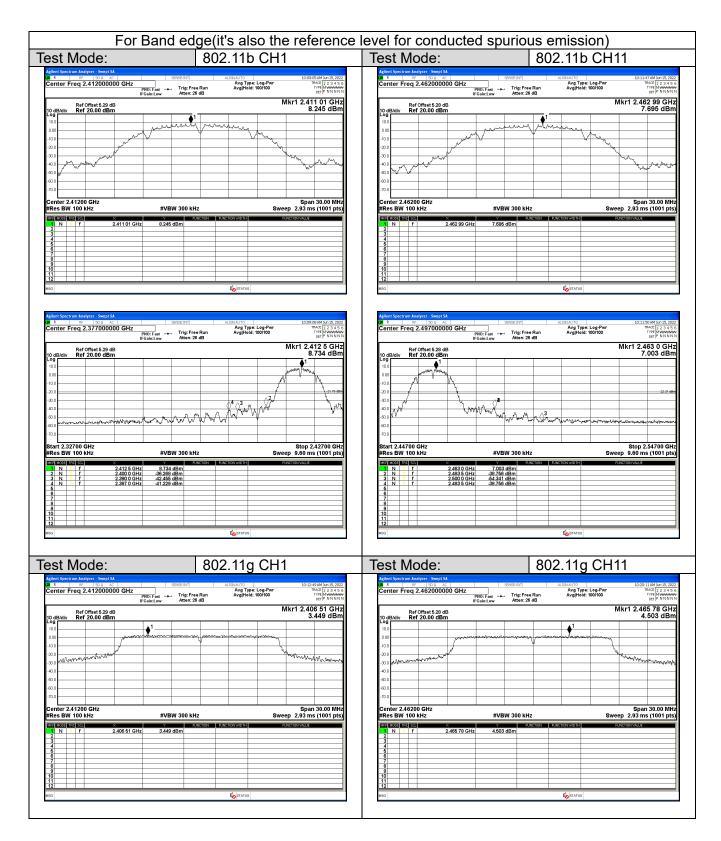
EUT OPERATION CONDITIONS

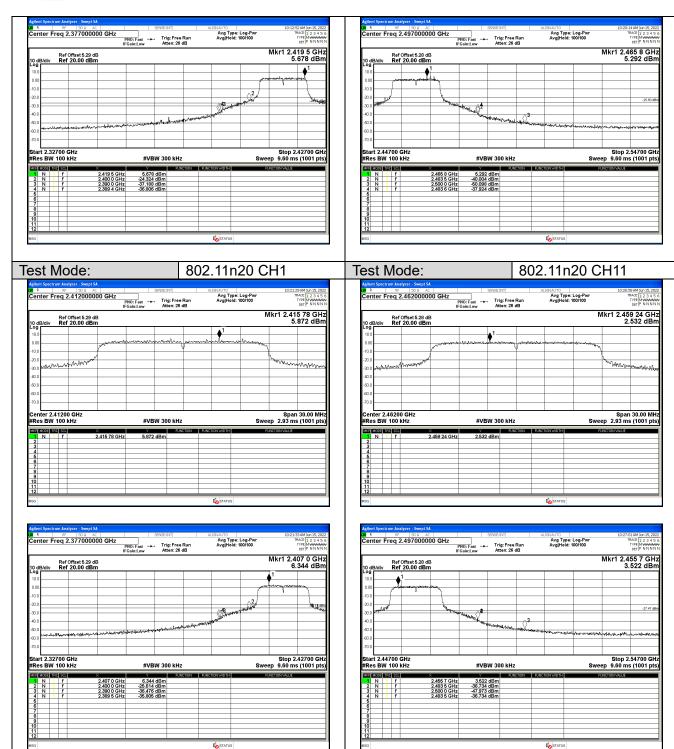
The EUT tested system was configured as the statements of 2.5 Unless otherwise a special operating condition is specified in the follows during the testing.




Test Results







3.4. POWER SPECTRAL DENSITY TEST

Limits

FCC Part 15.247,Subpart C									
Section	Test Item Limit		FrequencyRange (MHz)	Result					
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS					

Test Procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \geq RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

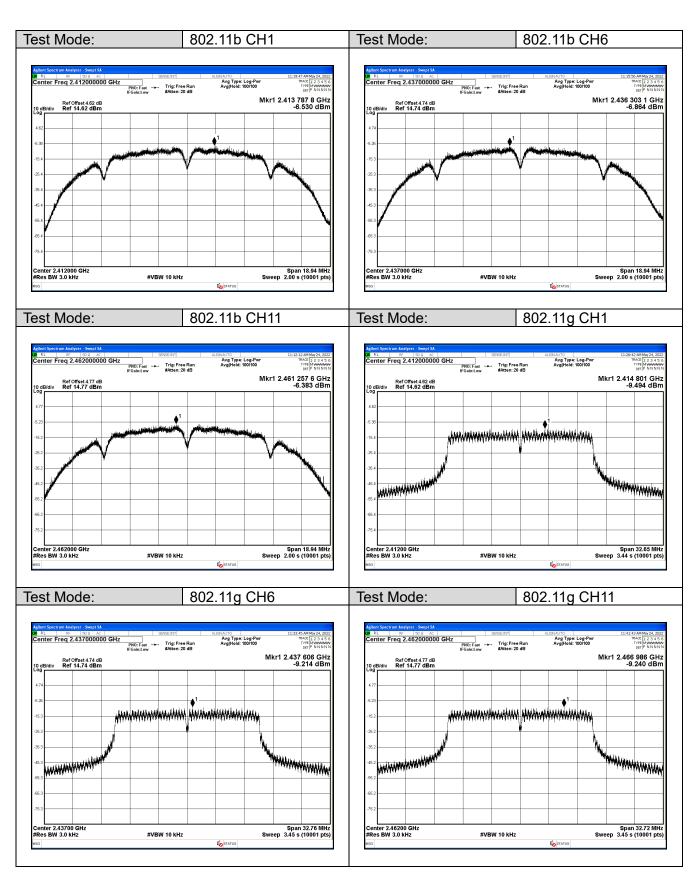
TEST SETUP

EUT	SPECTRUM
	ANALYZER

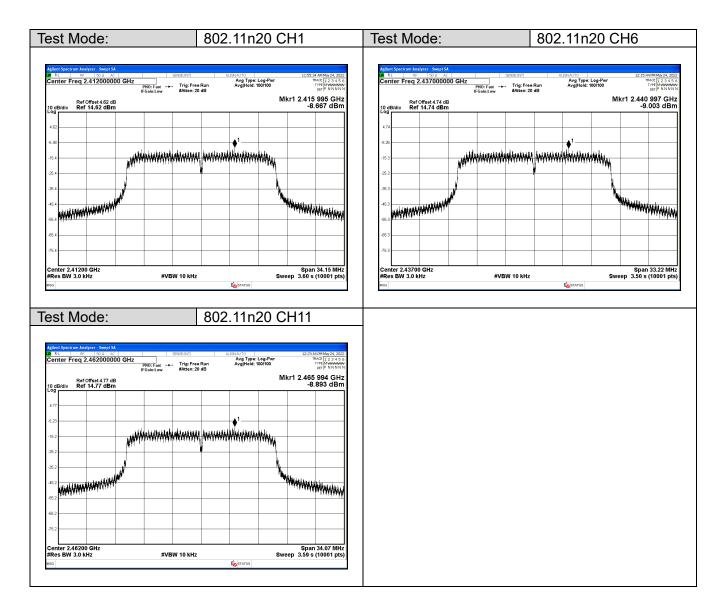
EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.5 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen Central Standard International Center Co., Ltd. Tel.: (86)0755-85283385


Test Results

802.11b					
Frequency	Power Density (dBm/3kHz) (dBm)	Limit (dBm/3KHz)	Result		
CH1(2412MHz)	-6.530	8	Pass		
CH6(2437MHz)	-6.864	8	Pass		
CH11(2462MHz)	-6.383	8	Pass		


	802.11g					
Frequency	Power Density (dBm/3kHz) (dBm)	Limit (dBm/3KHz)	Result			
CH1(2412MHz)	-9.494	8	Pass			
CH6(2437MHz)	-9.214	8	Pass			
CH11(2462MHz)	-9.240	8	Pass			

802.11n20					
Frequency	Power Density (dBm/3kHz) (dBm)	Limit (dBm/3KHz)	Result		
CH1(2412MHz)	-8.667	8	Pass		
CH6(2437MHz)	-9.003	8	Pass		
CH11(2462MHz)	-8.893	8	Pass		

3.5. 6dB BANDWIDTH TEST

Limits

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	FrequencyRange (MHz)	Result
15.247 (a)(2)	Bandwidth	≥500KHz 6dB bandwidth	2400-2483.5	PASS

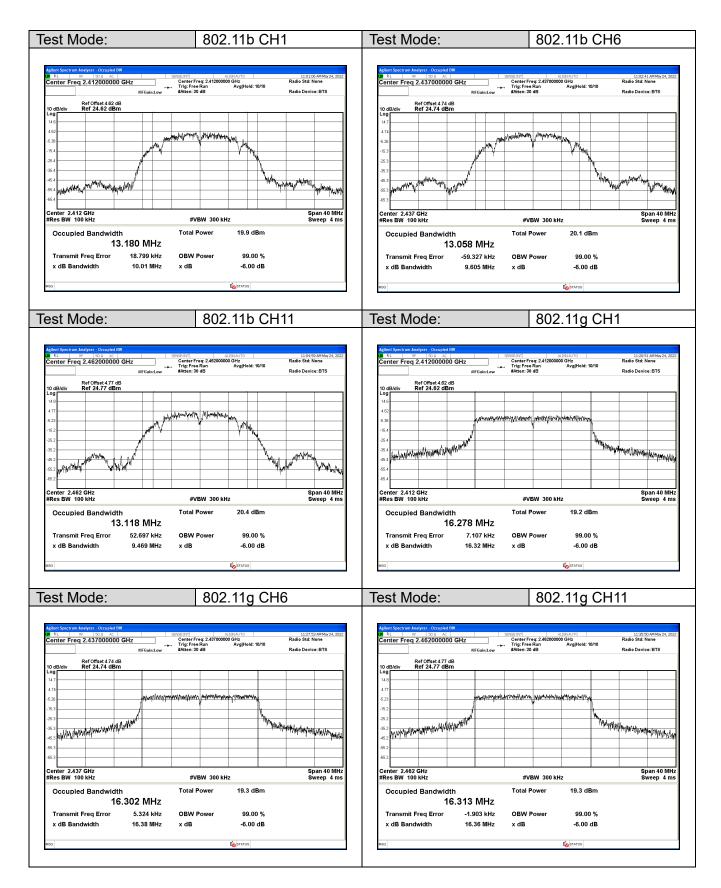
Test Procedure

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW- 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be- 6 dB.

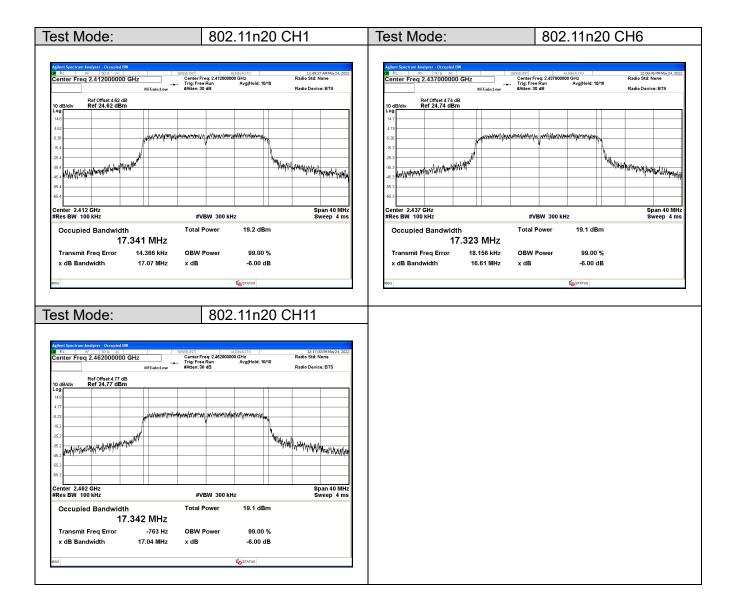
TEST SETUP

EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.5 Unless otherwise a special operating condition is specified in the follows during the testing.


Test Results

802.11b				
Frequency	6dB Bandwidth (MHz)	Channel Separation (KHz)	Result	
CH1(2412MHz)	10.0064	0.5	Pass	
CH6(2437MHz)	9.6054	0.5	Pass	
CH11(2462MHz)	9.4691	0.5	Pass	


802.11g				
Frequency	6dB Bandwidth (MHz)	Channel Separation (KHz)	Result	
CH1(2412MHz)	16.3236	0.5	Pass	
CH6(2437MHz)	16.3783	0.5	Pass	
CH11(2462MHz)	16.359	0.5	Pass	

802.11n20				
Frequency	6dB Bandwidth (MHz)	Channel Separation (KHz)	Result	
CH1(2412MHz)	17.074	0.5	Pass	
CH6(2437MHz)	16.6106	0.5	Pass	
CH11(2462MHz)	17.0374	0.5	Pass	

3.6. MAXIMUM CONDUCTED(AVGRAGE) OUTPUT POWER TEST

Limits

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

Test Procedure

Some regulatory agencies permit the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for determining compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than to the DTS bandwidth (see 11.2 for definitions and 6.9.2 for measurement guidance).

When using a spectrum analyzer or EMI receiver to perform these measurements, it shall be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span / RBW, to set a bin-to-bin spacing of \leq RBW / 2 so that narrowband signals are not lost between frequency bins. If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see 11.6).

The intent is to test at 100% duty cycle; however, a small reduction in duty cycle (to no lower than 98%) is permitted, if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test laboratory to permit such continuous operation. If continuous transmission (or at least 98% duty cycle) cannot be achieved because of hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level, with the transmit duration as long as possible, and the duty cycle as high as possible during which sweep

triggering/signal gating techniques may be used to perform the measurement over the transmission

Measurement using a power meter (PM):

Method AVGPM:

duration.

Method AVGPM is a measurement using an RF average power meter, as follows:

- a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied:
 - 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
 - 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
 - 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b) If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in 11.6.
- c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- d) Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle.

2. Method AVGPM-G:

Method AVGPM-G is a measurement using a gated RF average power meter.

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

TEST SETUP

EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.5 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Results

	802.11b					
T 101 1	Frequency	AVG Power	LIMIT	Б 1		
Test Channel	(MHz)	(dBm)	dBm	Result		
CH1	2412	16.10	30	Pass		
СН6	2437	15.78	30	Pass		
CH11	2462	14.74	30	Pass		

		802.11g		
	Frequency	AVG Power	LIMIT	
Test Channel	(MHz)	(dBm)	dBm	Result
CH1	2412	15.70	30	Pass
СН6	2437	15.40	30	Pass
CH11	2462	14.48	30	Pass

	802.11n20				
T (O)	Frequency	AVG Power	LIMIT	Б	
Test Channel	(MHz)	(dBm)	dBm	Result	
CH1	2412	15.56	30	Pass	
СН6	2437	15.28	30	Pass	
CH11	2462	14.35	30	Pass	

3.7. ANTENNA REQUIREMENT

STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

EUT ANTENNA

The EUT antenna is Dipole antenna. It comply with the standard requirement.

4. TEST PHOTOS

Please refer of Test Setup Photos_T220505001.

5. EUT PHOTOS

Please refer of External Photos_	_T220505001 and	Internal Photos	_T220505001.
*********	**THE END*****	*****	