

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-2057/16-01-02

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

ATMEL Automotive GmbH

Theresienstrasse 2

74072 Heilbronn / GERMANY Phone: +49 (0) 7131 67-0 Fax: +49 71 31 67 27 77 Contact: Jürgen Strohal

e-mail: juergen.strohal@atmel.com

Phone: +49 71 31 67 29 48

Manufacturer

ATMEL Automotive GmbH

Theresienstrasse 2

74072 Heilbronn / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: RF Transceiver Evaluation kit

Model name: ATA8520-EB1-F

FCC ID: 2AHW9-ATA8520EB1F IC: 7352A-ATA8520EB1F

902.0-928.0 MHz

Frequency: Lowest channel: 902.114 MHz; Middle channel:

903.400 MHz; Highest channel: 904.686 MHz

Technology tested: FHSS

Lab Manager

Radio Communications & EMC

Antenna: external antenna

Power supply: Controller Board: 4.5 V DC by external power supply

Radio Board: 3.0 V DC by battery

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Stefan Bös	David Lang	

Lab Manager

Radio Communications & EMC

Table of contents

1	Table of contents2						
2	Gener	ral information	3				
	2.1 2.2	Notes and disclaimerApplication details					
3	Test s	standard/s and references	3				
4	Test e	environment	Ę				
5		tem					
	5.1 5.2	General descriptionAdditional information	5				
6	Test la	aboratories sub-contracted	7				
7	Descr	iption of the test setup	7				
	7.1 7.2 7.3	Shielded semi anechoic chamber	9				
8	Seque	ence of testing	11				
	8.1 8.2 8.3	Sequence of testing radiated spurious 9 kHz to 30 MHz	12				
9	Sumn	nary of measurement results	14				
10	RF	measurements	15				
11	Mea	surement results	15				
	11.1 11.2 11.3 11.1 11.2 11.3	Antenna gain	16 20 26 31				
12	Obs	servations	36				
Anr	nex A	Document history	37				
Anr	nex B	Further information	37				
Anr	nex C	Accreditation Certificate	38				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2016-07-11
Date of receipt of test item: 2016-07-28
Start of test: 2016-07-29
End of test: 2016-07-29

Person(s) present during the test: -/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	•••	T _{nom} T _{max} T _{min}	+20 °C during room temperature tests +55 °C during high temperature tests -20 °C during low temperature tests			
Relative humidity content	:		55 %			
Barometric pressure			not relevant for this kind of testing			
Power supply	:	V _{nom} V _{max} V _{min}	Controller Board: 4.5 V DC by external power supply Radio Board: 3.0 V DC by battery -/- V (not relevant for testing) -/- V (not relevant for testing)			

5 Test item

5.1 General description

Kind of test item	RF Transceiver Evaluation kit
Type identification :	ATA8520-EB1-F
HMN :	-/-
PMN :	ATA8520-EK3-F
HVIN :	ATA8520-EB1-F
FVIN :	
S/N serial number	Not available!
HW hardware status	ATA8520-EB1-F
SW software status	-/-
Frequency band :	902.0-928.0 MHz Tested frequencies: Lowest: 902.114 MHz Middle: 903.400 MHz Highest: 904.686 MHz
Type of radio transmission : Use of frequency spectrum :	
Type of modulation	DBPSK
Number of channels :	54 (9 Macro channels x 6 Micro channels)
Antenna :	EUT will be sold with a dedicated external antenna with a peak gain of 1.2 dBi (see antenna specification as referenced in section 10.2).
Power supply :	Controller Board: 5.0 V DC by external power supply Radio Board: 3.0 V DC by battery
Temperature range	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-2057/16-01-01_AnnexA 1-2057/16-01-01_AnnexB

1-2057/16-01-01_AnnexD

Reference documents: Antennna specification: ANT-916-CW-HWR Data Sheet by Linx

(Revised 7/13/15).

Special test descriptions: None

Configuration descriptions: None

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

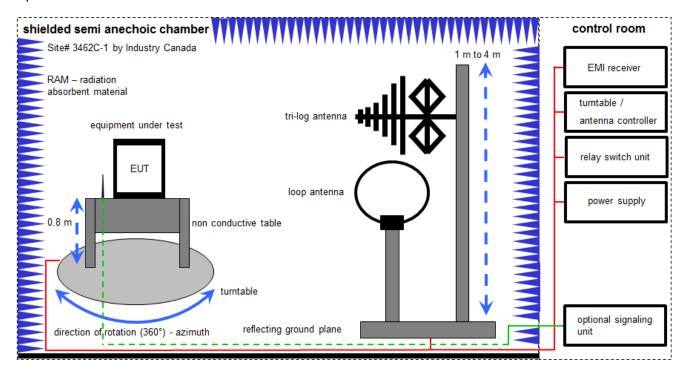
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

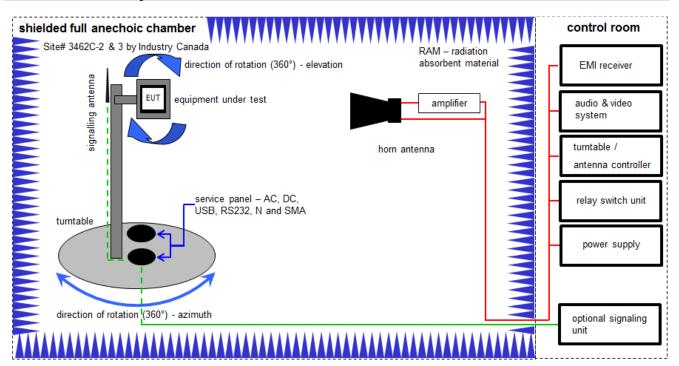
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter; loop antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
2	A+B	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
3	A+B	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
4	A+B	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
5	A+B	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	A+B	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	A+B	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

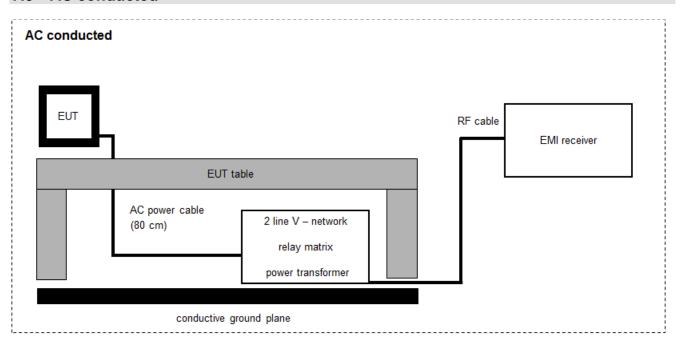
7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \text{ }\text{$\mu}V/m)$

Equipment table:

No.	Lab /	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
3	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	Α	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	Α	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
6	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
7	Α	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-

7.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	893045/004	300000584	k	02.02.2016	02.02.2017
2	Α	Power Supply	NGSM 32/10	R&S	3939	400000192	vIKI!	22.01.2015	22.01.2017
3	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	04.02.2016	04.02.2017

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 8	Passed	2016-08-02	Delta test plan for pre-certified radio (PC II)

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	Pass	Fail	NA	NP	Results (max.)
§15.247(b)(4)	Antenna Gain	Nominal	Nominal	TX					declared
§15.247(a)(1) (i) RSS-210 A8.1 (b)	Carrier Frequency Separation	Nominal	Nominal	TX				\boxtimes	*1
§15.247(a)(1)(i) RSS-210 A8.1 (c)	Number of Hopping channels	Nominal	Nominal	TX					*1
§15.247(a)(1)(i) RSS-210 A8.1 (c)	Average Time of Occupancy (Dwell Time)	Nominal	Nominal	TX				\boxtimes	*1
§15.247(a)(1)(i) RSS-210 A8.1 (c)	20dB Bandwidth	Nominal	Nominal	TX					*1
§15.247(b)(2) RSS-210 A8.4 (1)	Maximum Output Power Radiated	Nominal	Nominal	TX	\boxtimes				complies
§15.247(b)(4) RSS-210 A8.4 (1)	Maximum Output Power Conducted	Nominal	Nominal	TX				\boxtimes	*1
§15.247(d) §15.205(a)	Band-edge Compliance	Nominal	Nominal	TX				\boxtimes	*1
§15.247(d)	TX Spurious Emission Conducted	Nominal	Nominal	TX				\boxtimes	*1
§15.209(a)	TX Spurious Emission Radiated < 30 MHz	Nominal	Nominal	TX	\boxtimes				complies
§15.247(d) §15.209 A8.5	TX Spurious Emission Radiated > 30 MHz	Nominal	Nominal	TX	\boxtimes				complies
§15.109 §15.207	RX Spurious Emissions Radiated	Nominal	Nominal	Idle	\boxtimes				complies

<u>Note:</u> NA = Not Applicable; NP = Not Performed; *1 PC II test plan

10 RF measurements

11 Measurement results

11.1 Antenna gain

Declared antenna gain is 1.2 dBi.

11.2 Maximum Output Power Radiated

Measurement:

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	1 MHz				
Video bandwidth:	3 MHz				
Span:	5 MHz				
Trace-Mode:	Max Hold				
Test setup	See sub clause 7.1 B				
Measurement uncertainty	See sub clause 9				

Limits:

FCC	IC
EII	RP

For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:

Test Conditions		EIRP [dBm]				
		902.114 MHz	904.686 MHz			
T _{nom}	V_{nom}	23.0	22.5	22.1		
Measuremer	nt uncertainty	± 3dB				

11.3 Spurious Emissions Radiated < 30 MHz

Description:

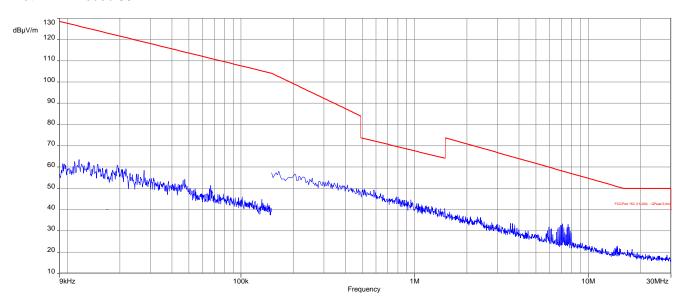
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to channel 12. This measurement is representative for all channels and modes. If any peaks are found channel 00 and channel 24 will be measured too. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

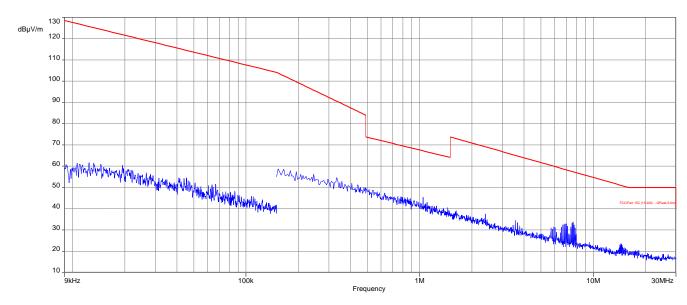
Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz						
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz						
Span:	9 kHz to 30 MHz						
Trace-Mode:	Max Hold						
Test setup	See sub clause 7.1 A						
Measurement uncertainty	See sub clause 9						

Limits:

FCC			IC		
TX spurious emissions radiated < 30 MHz					
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance		
0.009 – 0.490	2400/F	F(kHz)	300		
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30
1.705 – 30.0	3	0	30		

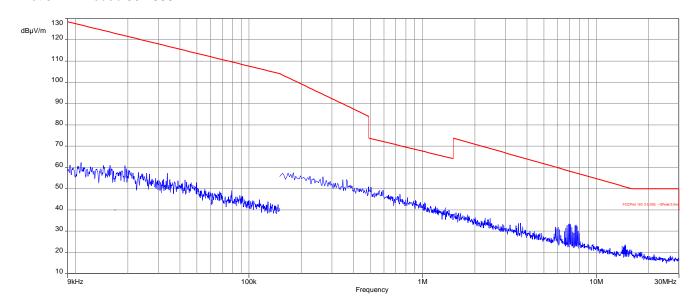

Results:

TX spurious emissions radiated below 30 MHz [dBµV/m]								
F [MHz] Detector Level [dBµV/m]								
All detected emissions are more than 20 dB below the limit.								



Plots:

Plot 1: TX-Mode / 902.114 MHz



Plot 2: TX-Mode / 903.400 MHz

Plot 3: TX-Mode / 904.686 MHz

11.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at lowest, middle and high channel.

Measurement:

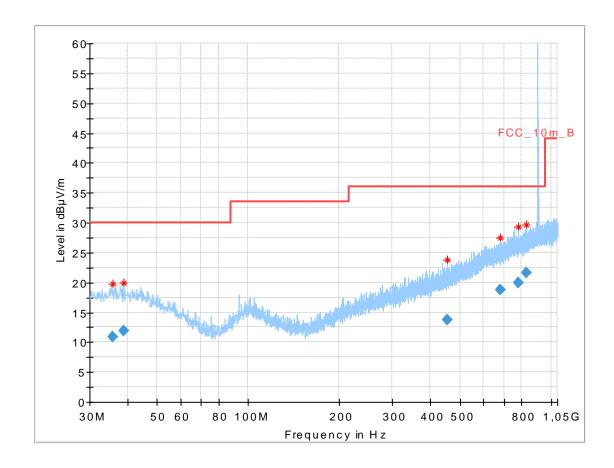
Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Video bandwidth:	3 x RBW Remeasurement: 10 Hz						
Resolution bandwidth:	120 kHz						
Trace-Mode:	Max Hold						
Test setup	See sub clause 7.1 B						
Measurement uncertainty	See sub clause 9						

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

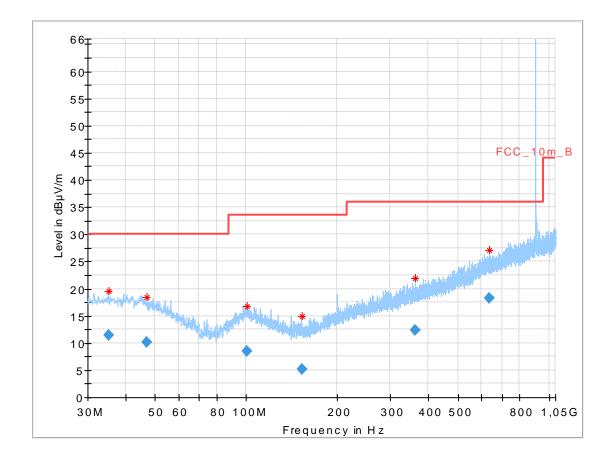
FCC			IC					
TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
	§15.209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance					
30 - 88	30	0.0	10					
88 – 216 33.5 10								
216 – 960	36	5.0	10					
Above 960	54	.0	3					

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

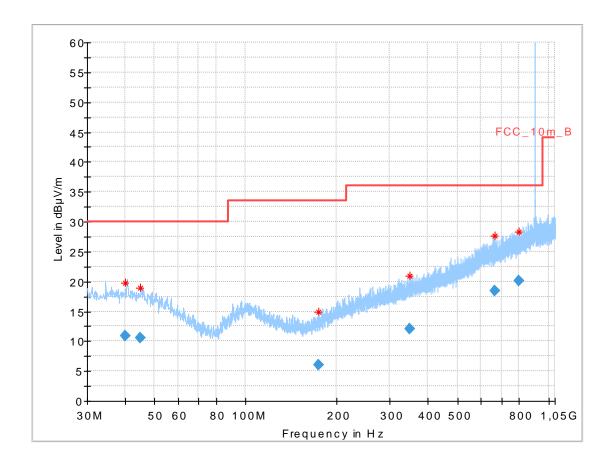

Results:

TX and RX spurious emissions radiated 30 MHz to 1 GHz [dBμV/m]						
F [MHz] Detector Level [dBµV/m]						
See result tables below plots.						

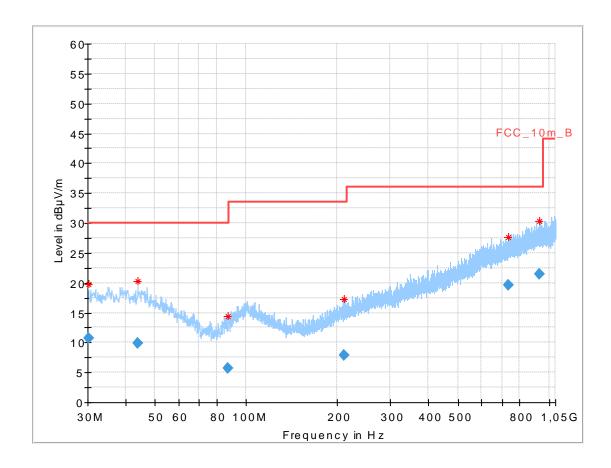
Plots:


Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.607450	10.86	30.00	19.14	1000.0	120.000	273.0	Н	142.0	13.8
38.723700	11.92	30.00	18.08	1000.0	120.000	103.0	٧	117.0	14.0
455.191650	13.81	36.00	22.19	1000.0	120.000	200.0	Η	122.0	17.7
678.603600	18.72	36.00	17.28	1000.0	120.000	200.0	Η	141.0	21.3
781.106400	19.91	36.00	16.09	1000.0	120.000	279.0	٧	-5.0	22.7
831.785550	21.68	36.00	14.32	1000.0	120.000	400.0	Η	187.0	23.2


Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.189850	11.39	30.00	18.61	1000.0	120.000	274.0	H	5.0	13.8
46.985100	10.13	30.00	19.87	1000.0	120.000	275.0	٧	275.0	13.4
100.568550	8.40	33.50	25.10	1000.0	120.000	351.0	٧	142.0	12.1
152.459850	5.14	33.50	28.36	1000.0	120.000	200.0	Η	-13.0	8.9
362.630550	12.26	36.00	23.74	1000.0	120.000	274.0	٧	140.0	16.2
633.021450	18.19	36.00	17.81	1000.0	120.000	274.0	٧	73.0	21.0


Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.110900	10.86	30.00	19.14	1000.0	120.000	103.0	٧	2.0	14.0
45.045300	10.61	30.00	19.39	1000.0	120.000	272.0	٧	253.0	13.8
174.132300	5.96	33.50	27.54	1000.0	120.000	277.0	Η	275.0	10.0
347.203650	12.00	36.00	24.00	1000.0	120.000	200.0	Η	320.0	15.9
664.723950	18.51	36.00	17.49	1000.0	120.000	400.0	Η	187.0	21.2
799.042050	20.04	36.00	15.96	1000.0	120.000	400.0	Η	252.0	22.7

Plot 4: 30 MHz – 1 GHz, horizontal & vertical polarisation (Rx-Idle)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.336825	10.77	30.00	19.23	1000.0	120.000	274.0	٧	76.0	13.4
43.731600	9.92	30.00	20.08	1000.0	120.000	274.0	٧	300.0	13.9
87.248700	5.68	30.00	24.32	1000.0	120.000	200.0	Н	277.0	9.8
210.581700	7.87	33.50	25.63	1000.0	120.000	400.0	٧	297.0	12.1
732.624300	19.56	36.00	16.44	1000.0	120.000	349.0	Н	97.0	22.3
927.505350	21.45	36.00	14.55	1000.0	120.000	186.0	٧	232.0	24.2

11.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max hold					
Measured modulation	DBPSK					
Test setup	See sub clause 7.2 A (1 GHz - 10 GHz)					
Measurement uncertainty	See sub clause 9					

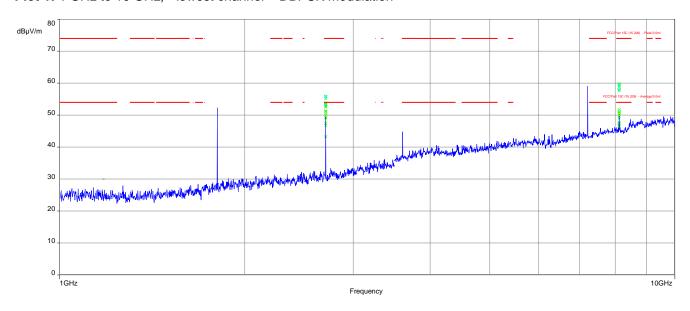
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

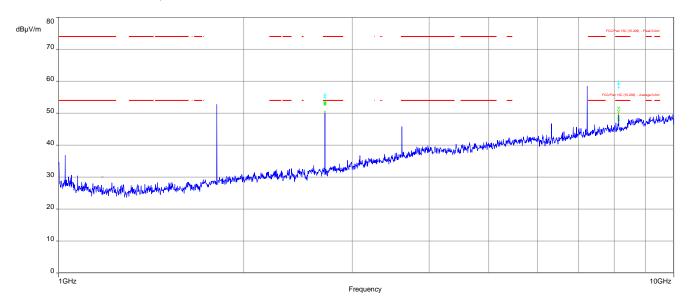
FCC			IC					
TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
§15.209								
Frequency (MHz) Field streng		th (dBµV/m)	Measurement distance					
Above 960	54	1.0	3					

Results: Transmitter mode

TX spurious emissions radiated [dBμV/m]									
902.1375 MHz			903.3875 MHz			904.6625 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m] F		F [MHz]	Detector	Level [dBµV/m]	
2710.2	Peak	55.9	2710.25	Peak	55.9	2714.1	Peak	55.9	
27 10.2	AVG	53.8		AVG	53.5		AVG	53.8	
8119.1	Peak	59.8	9120.6	Peak	59.9	8142.3	Peak	59.0	
0119.1	AVG	51.7	8130.6	AVG	51.6	0142.3	AVG	49.1	
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	

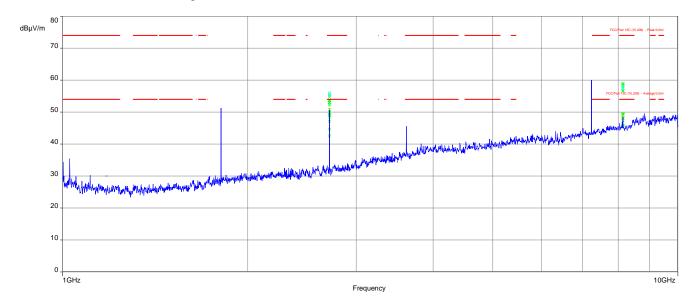

Results: Receiver mode

RX spurious emissions radiated [dBµV/m]							
F [MHz]	Detector	Level [dBµV/m]					
All detect	ed emissions are more than 20 dB below	the limit.					
	Peak	-/-					
-/-	AVG	-/-					

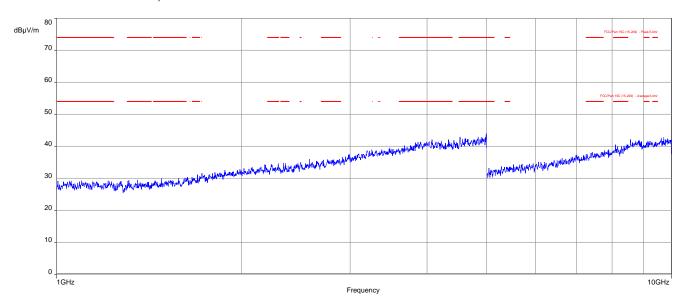


Plots: Transmitter mode

Plot 1: 1 GHz to 10 GHz, - lowest channel – DBPSK modulation



Plot 2: 1 GHz to 10 GHz, - middle channel - DBPSK modulation


Plot 3: 1 GHz to 10 GHz, - highest channel – DBPSK modulation

Plots: Receiver mode

Plot 1: 1 GHz to 10 GHz, RX / idle-mode

11.3 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

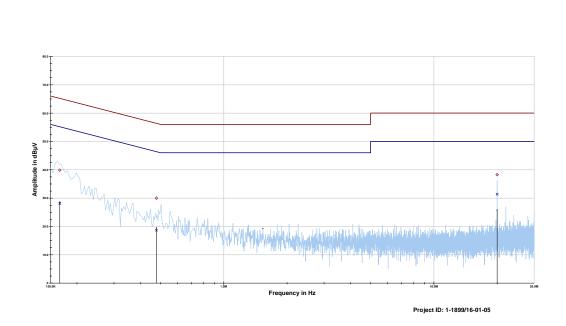
Measurement parameters								
Detector	Peak - Quasi peak / average							
Sweep time	Auto							
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span	9 kHz to 30 MHz							
Trace mode	Max hold							
Test setup	See sub clause 7.3. A							
Measurement uncertainty	See sub clause 9							

Limits:

FCC		IC				
TX an RX spurious emissions conducted < 30 MHz						
Frequency (MHz)	Quasi-peal	k (dBµV/m)	Average (dBμV/m)			
0.15 – 0.5	66 to	56*	56 to 46*			
0.5 – 5	56		46			
5 – 30.0	6	0	50			

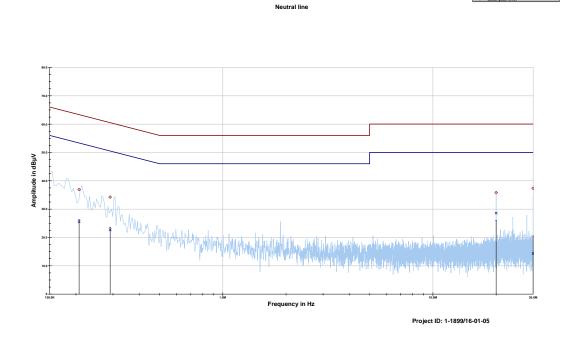
^{*}Decreases with the logarithm of the frequency

Results:


Spurious emissions conducted < 30 MHz [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
See tables below plots!							
Measurement uncertainty	± 3 dB						

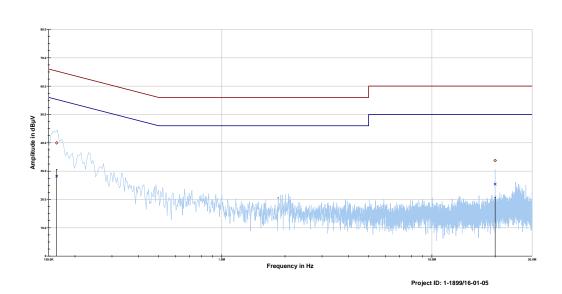
Note: Tests performed with a lab power supply.

Plots:


Plot 1: 150 kHz to 30 MHz, phase line – middle channel (Controller Board powered by lab power supply (4.5V))

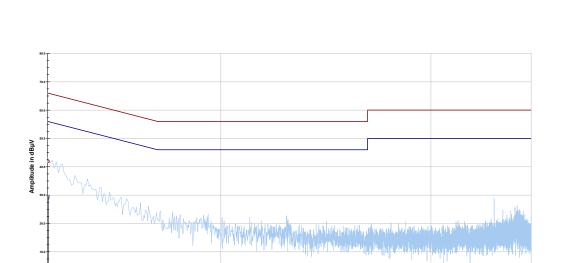
Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.165710	39.86	25.31	65.173	28.09	27.47	55.551
0.477789	29.98	26.39	56.377	18.66	27.97	46.635
19.999050	38.25	21.75	60.000	31.36	18.64	50.000

Plot 2: 150 kHz to 30 MHz, neutral line – middle channel (Controller Board powered by lab power supply (4.5V))



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.144902	41.07			29.60		
0.207069	36.87	26.45	63.322	25.55	28.82	54.369
0.290921	34.24	26.26	60.498	22.68	29.29	51.974
20.004650	35.80	24.20	60.000	28.59	21.41	50.000
29.999850	37.34	22.66	60.000	14.33	35.67	50.000

Plot 2: 150 kHz to 30 MHz, phase line – middle channel (Radio Board powered by lab power supply (3.0V))



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dВ	dΒμV
0.163774	39.96	25.31	65.270	28.21	27.40	55.606
20.000245	33.73	26.27	60.000	25.41	24.59	50.000

Plot 2: 150 kHz to 30 MHz, neutral line – middle channel (Radio Board powered by lab power supply (3.0V))

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dВ	dΒμV
0.151260	41.88	24.05	65.931	29.25	26.71	55.964

Frequency in Hz

Project ID: 1-1899/16-01-05

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-08-02

Annex B Further information

Glossary

SW

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number

PMN - Product marketing name HMN - Host marketing name

Software

HVIN - Hardware version identification number FVIN - Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate Back side of certificate

Note:

The current certificate including annex can be received from CETECOM ICT Services GmbH on request.