

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190806203

FCC REPORT

Applicant: MOBINTEL PTY LTD

Address of Applicant: PO BOX 2323, MOORABBIN, MELBOURNE, Australia

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: KPAU04

Trade mark: KISA

FCC ID: 2AHS8-KPAU04

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 21 Aug., 2019

Date of Test: 22 Aug., to 11 Sep., 2019

Date of report issued: 12 Sep., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	12 Sep., 2019	Original

Test Engineer
Winner Mang Tested by: Date: 12 Sep., 2019

Reviewed by: 12 Sep., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
		CLIENT INFORMATION	
	5.1 5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	16
	6.6	BAND EDGE	18
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	2 Radiated Emission Method	27
7	TES	T SETUP PHOTO	32
0	CHT	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

General Information 5

5.1 Client Information

Applicant:	MOBINTEL PTY LTD
Address:	PO BOX 2323, MOORABBIN, MELBOURNE, Australia
Manufacturer:	MOBINTEL PTY LTD
Address:	PO BOX 2323, MOORABBIN, MELBOURNE, Australia
Factory:	SHENZHEN NEWAY S&T CO., LTD
Address:	Floor 2, building A3, third industrial park, fenghuang third industrial park, fuyong street, baoan district, shenzhen

5.2 General Description of E.U.T.

<u> </u>	
Product Name:	Smart Phone
Model No.:	KPAU04
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1600mAh
AC adapter:	Adapter 1: Model: SK12G-0500100U Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1A Adapter 2: Model: SK12G-0500100S Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remarks:	Adapter model: SK12G-0500100U, SK12G-0500100S internal circuit design, layout, using the same components and internal wiring, only the model name is different from the pin.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE190806203

29

2460MHz

39

2480MHz

Note:

9

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

2440MHz

5.3 Test environment and test mode

19

2420MHz

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			
TI 1 100 (1 1 40H) (4 5 (1 40H) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	\	Version: 6.110919b		
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LICN	Dobdo & Cobwerz	FCU2 75	0.420624/040	07-21-2018	07-20-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

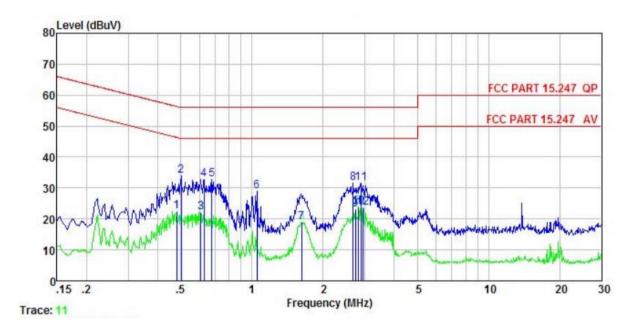
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 2.0 dBi.

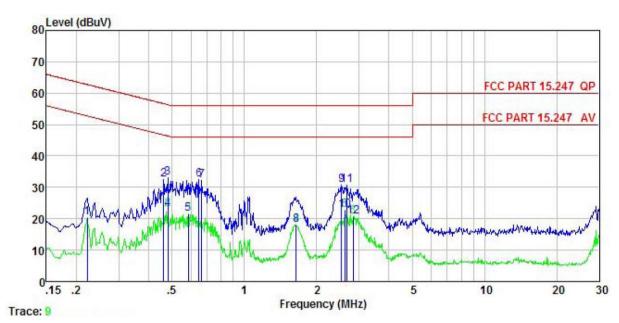

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:		Limit (dBuV)	
2	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar	•		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for det	tails		
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	Smart Phone	Product model:	KPAU04
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

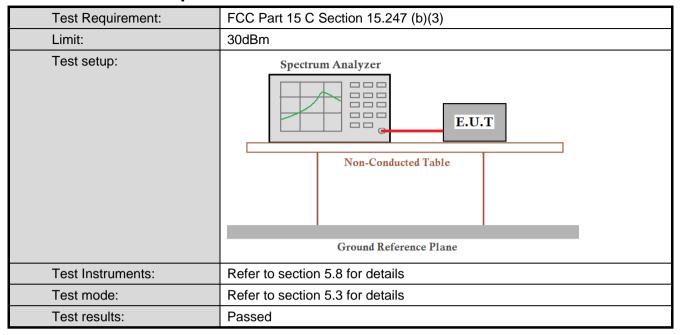
Remark


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu∀	dBu∜	<u>dB</u>	
1	0.481	12.20	-0.39	10.75	22.56	46.32	-23.76	Average
2	0.502	23.58	-0.39	10.76	33.95	56.00	-22.05	QP
3	0.608	11.70	-0.38	10.77	22.09	46.00	-23.91	Average
4	0.627	22.37	-0.38	10.77	32.76	56.00	-23.24	QP
5	0.675	22.42	-0.38	10.77	32.81	56.00	-23.19	QP
6	1.049	18.34	-0.38	10.88	28.84	56.00	-27.16	QP
7	1.619	8.45	-0.40	10.93	18.98	46.00	-27.02	Average
8	2.678	20.96	-0.43	10.93	31.46		-24.54	
1 2 3 4 5 6 7 8 9	2.736	12.63	-0.43	10.93	23.13			Average
10	2.824	13.30	-0.44	10.93	23.79			Average
11	2.900	21.02		10.92	31.50		-24.50	
12	2.946	13.18	-0.44	10.92	23.66			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

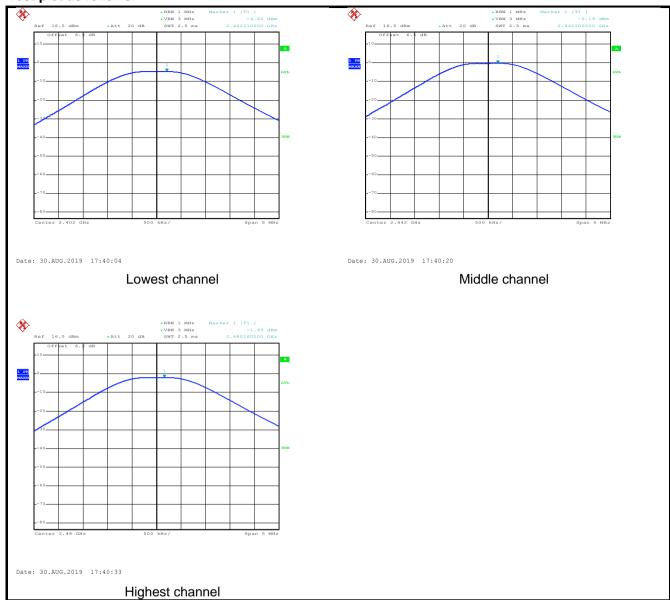
Product name:	Smart Phone	Product model:	KPAU04
Test by:	Yaro	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	₫B	₫Ē	dBu₹	dBu∇	<u>d</u> B	
1	0.222	10.38	-0.67	10.76	20.47			Average
2	0.461	22.47	-0.65	10.74	32.56	56.67	-24.11	QP
3	0.481	22.90	-0.65	10.75	33.00	56.32	-23.32	QP
2 3 4 5 6	0.481	12.91	-0.65	10.75	23.01	46.32	-23.31	Average
5	0.585	11.55	-0.65	10.76	21.66	46.00	-24.34	Average
6	0.647	22.29	-0.64	10.77	32.42	56.00	-23.58	QP
	0.665	22.04	-0.64	10.77	32.17	56.00	-23.83	QP
7 8 9	1.645	7.79	-0.66	10.93	18.06	46.00	-27.94	Average
9	2.540	20.56	-0.67	10.94	30.83	56.00	-25.17	QP
10	2.636	12.44	-0.67	10.93	22.70	46.00	-23.30	Average
11	2.664	20.31	-0.67	10.93	30.57		-25.43	
12	2.839	10.36	-0.67	10.93	20.62			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

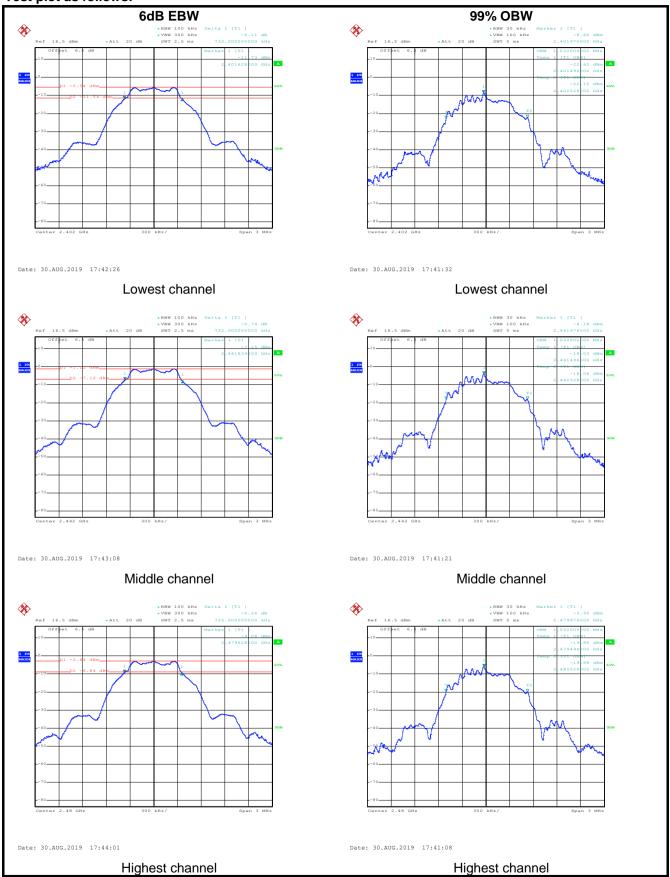


Measurement Data:

moacaromont Datar			
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-4.62		
Middle	-0.19	30.00	Pass
Highest	-1.93		

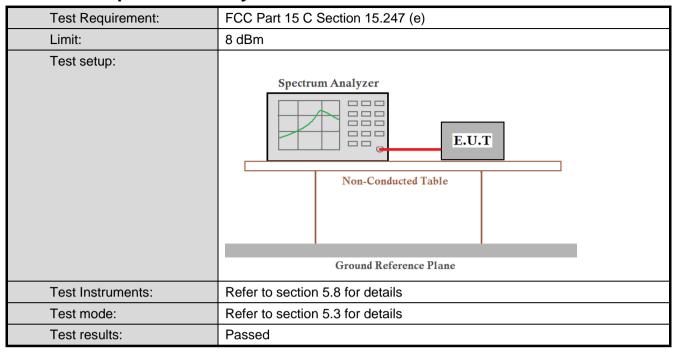
Test plot as follows:

6.4 Occupy Bandwidth


Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

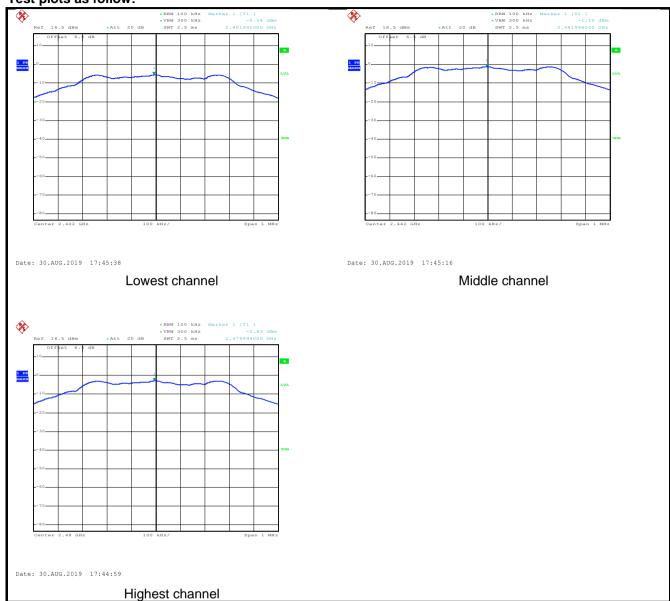
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.732			
Middle	0.732	>500	Pass	
Highest	0.726			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.032			
Middle	1.032	N/A	N/A	
Highest	1.032			



Test plot as follows:

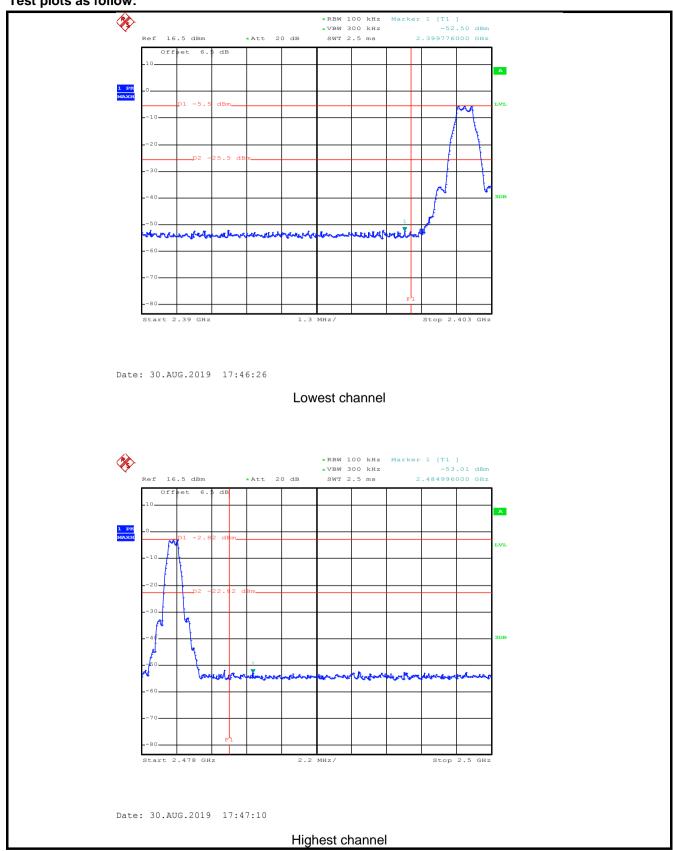
6.5 Power Spectral Density



Measurement Data:

mododi omont Bata.			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-5.54		
Middle	-1.10	8.00	Pass
Highest	-2.83		

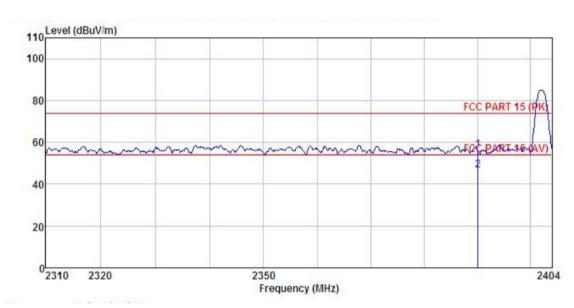
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

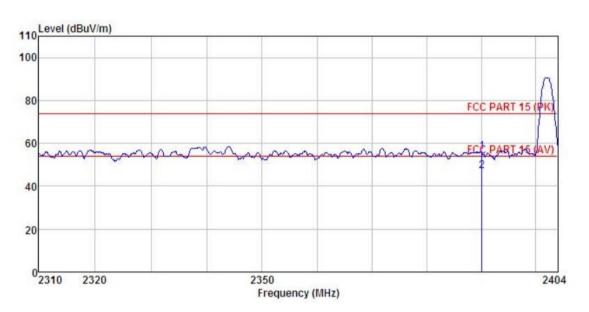
Test plots as follow:



6.6.2 Radiated Emission Method

0.0.2	Radialed Ellission i	victilou					
	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209					
	Test Frequency Range:	2.3GHz to 2.5	GHz				
	Test Distance:	3m					
	Receiver setup:	Frequency Detect		RBW	VBW	Remark	
		Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		RMS		1MHz	3MHz	Average Value	
	Limit:	Frequer	ncy L	imit (dBuV/m @3		Remark	
		Above 10	GHz —	54.00 74.00	F	Average Value Peak Value	
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					
	Test setup:	AE Wags	Test Receive	3m 3m and Reference Plane	Antenna Tower		
	Test Instruments:	Refer to section	on 5.8 for deta	ails			
	Test mode:	Refer to section	on 5.3 for deta	ails			
	Test results:	Passed					

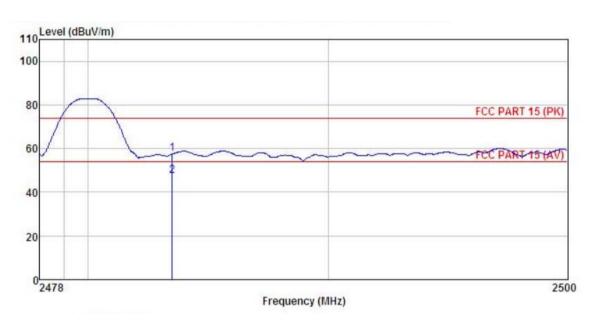
Product Name:	Smart Phone	Product Model:	KPAU04
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBu∀/m	<u>d</u> B	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

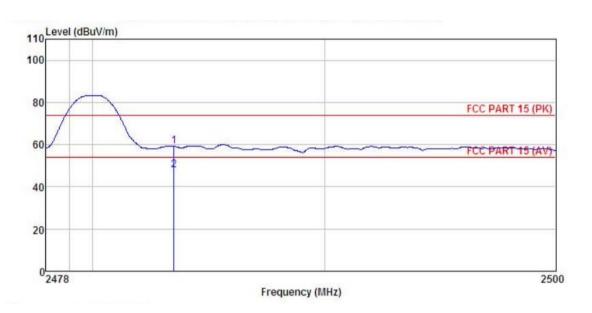
Product Name:	Smart Phone	Product Model:	KPAU04
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2390,000 2390,000					56.08 46.95			

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone	Product Model:	KPAU04
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483, 500 2483, 500								

Remark:

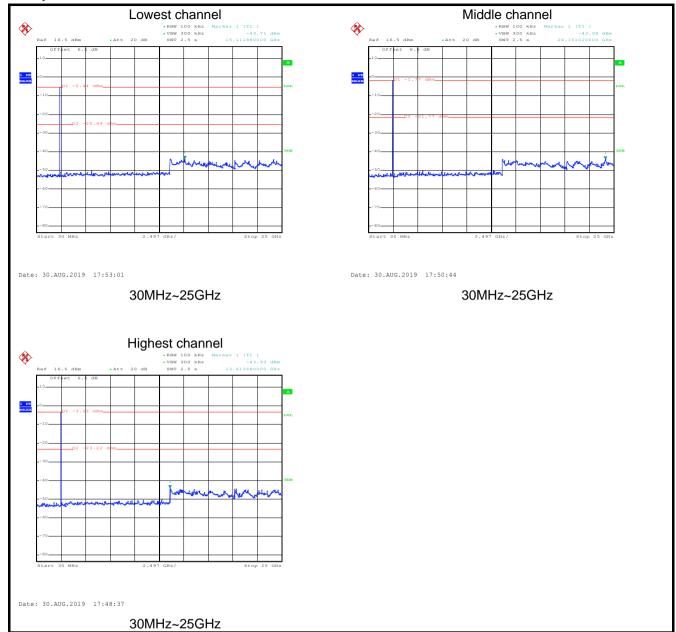
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone	Product Model:	KPAU04
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>d</u> B	dB	dBuV/m	dBu∀/m	<u>d</u> B	
1 2	2483.500 2483.500								

Remark:

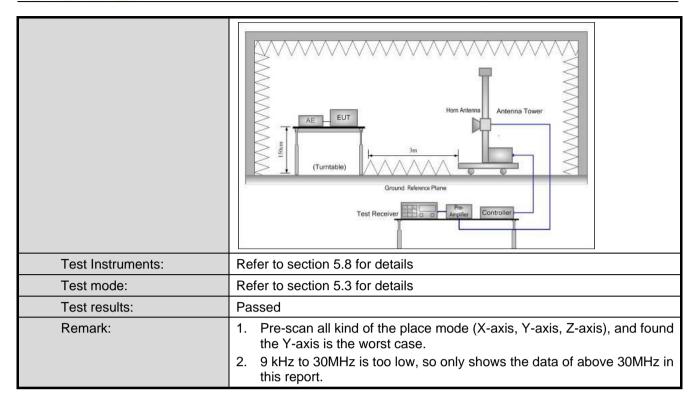
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

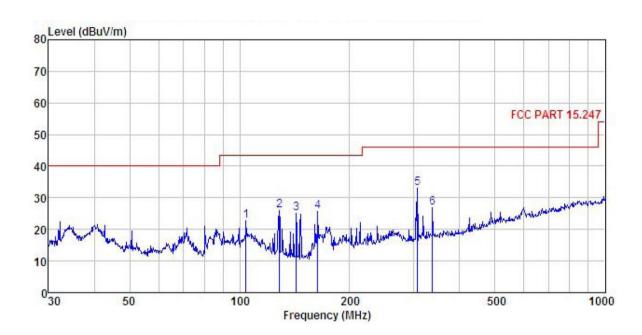
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20)5 and 15.209)		
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark
·	30MHz-1GHz	Quasi-peak	120KHz	3001	КНz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value
	Above 1GHZ	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency	/ L	imit (dBuV/m @	3m)		Remark
	30MHz-88M	Hz	40.0		C	Quasi-peak Value
	88MHz-216N	1Hz	43.5		C	Quasi-peak Value
	216MHz-960	ИHz	46.0		C	Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GF	17	54.0			Average Value
			74.0			Peak Value table 0.8m(below
	The table of highest rad 2. The EUT antenna, we tower. 3. The antend the ground Both horizon make the number of the test-results of the limit spoof the EUT have 10 dE	was rotated 3 liation. was set 3 m hich was mo ha height is a liation leasurement and the rota table maximum reasurement liation level of the rotal the rotal the rotal and with with sion level of the rotal be reasurement and would be reasurement would be reasurement.	neters away unted on the function on the function on the function of the maximutical polarization of the function of the funct	from the top of a ne met um valutions of to Pea dold Moteral m	rmine ne inter to rer to re ue of the a as arra eights degree uk Der de. de was ped ar ie emily one	a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and as 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	4m 4m 0.8m 1m			Antenna Search Antenn Test eiver —	1

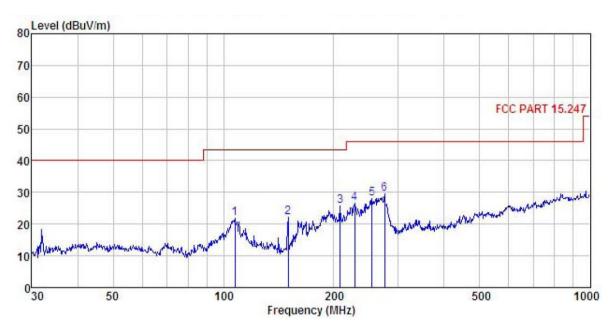


Measurement Data (worst case):

Below 1GHz:

Product Name:	ct Name: Smart Phone Product Model:		KPAU04
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
_	MHz	dBu∜		d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>ab</u>	
1	104.170	38.08	12.16	1.99	29.50	22.73	43.50	-20.77	QP
2	128.563	42.94	10.25	2.27	29.34	26.12	43.50	-17.38	QP
3	142.824	42.57	9.31	2.43	29.26	25.05	43.50	-18.45	QP
4	163.755	42.63	9.42	2.62	29.10	25.57	43.50	-17.93	QP
1 2 3 4 5	306.754	44.92	13.76	2.96	28.47	33.17	46.00	-12.83	QP
6	337.216	37.86	14.36			26.75			


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone	Product Model:	KPAU04
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
-	MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	107.510	37.49	11.86	2.02	29.47	21.90	43.50	-21.60	QP
1 2 3 4	150.011	39.90	8.90	2.52		22.10	43.50	-21.40	QP
3	207.850	40.64	10.96	2.86	28.78	25.68	43.50	-17.82	QP
4	227.691	40.51	11.83	2.84	28.66	26.52	46.00	-19.48	QP
5	253.837	40.90	12.76	2.82		27.95	46.00	-18.05	QP
5	275.157	41.97	13.18	2.87				-16.47	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Took showned I											
	Test channel: Lowest channel										
	Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	46.74	30.85	6.80	41.81	42.58	74.00	-31.42	Vertical			
4804.00	46.76	30.85	6.80	41.81	42.60	74.00	-31.40	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	35.73	30.85	6.80	41.81	31.57	54.00	-22.43	Vertical			
4804.00	35.92	30.85	6.80	41.81	31.76	54.00	-22.24	Horizontal			
	Test channel: Middle channel										
		1		tector: Peak	Value Value			T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	46.25	31.20	6.86	41.84	42.47	74.00	-31.53	Vertical			
4884.00	46.19	31.20	6.86	41.84	42.41	74.00	-31.59	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	35.92	31.20	6.86	41.84	32.14	54.00	-21.86	Vertical			
4884.00	36.16	31.20	6.86	41.84	32.38	54.00	-21.62	Horizontal			
			Test ch	annel: High	est channel						
			De	tector: Peak	v Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	46.71	31.63	6.91	41.87	43.38	74.00	-30.62	Vertical			
4960.00	46.28	31.63	6.91	41.87	42.95	74.00	-31.05	Horizontal			
			Dete	ector: Avera	ge Value						

Remark

Frequency

(MHz)

4960.00

4960.00

Read

Level

(dBuV)

36.51

36.71

Cable

Loss

(dB)

6.91

6.91

Preamp

Factor

(dB)

41.87

41.87

Level

(dBuV/m)

33.18

33.38

Antenna

Factor

(dB/m)

31.63

31.63

Project No.: CCISE1908062

Polarization

Vertical

Horizontal

Over

Limit

(dB)

-20.82

-20.62

Limit Line

(dBuV/m)

54.00

54.00

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.