

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com Report Template Revision Date: 2021-11-03

Report Template Version: V05

Test Report

Report No.: CQASZ20250400929E-02
Applicant: Shenzhen Buzz Tech CO.,LTD

Address of Applicant: 10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen,

Guangdong, China

Equipment Under Test (EUT):

Product: Smart glasses

Model No.: M01, M02

Test Model No.: M01
Brand Name: N/A

FCC ID: 2AGFW-M01

Standards: 47 CFR Part 15, Subpart C

KDB558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10:2013

Date of Receipt: 2025-04-25

Date of Test: 2025-04-25 to 2025-05-21

Date of Issue: 2025-05-22
Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above.

lewis 2hou
Tested By:

(Lewis Zhou)

Reviewed By:

(Timo Lei)

Approved By:

(Jack AI)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.: CQASZ20250400929E-02

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20250400929E-02	Rev.01	Initial report	2025-05-22

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

	Page
1 VERSION	
2 TEST SUMMARY	
3 CONTENTS	
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.2 GENERAL DESCRIPTION OF EUT	4
4.3 ADDITIONAL INSTRUCTIONS	
4.4 TEST ENVIRONMENT	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 TEST CONFIGURATION	
4.7 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.8 TEST LOCATION	
4.9 TEST FACILITY	
4.10 DEVIATION FROM STANDARDS	
4.11 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.12 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	12
5.1 Antenna Requirement	12
5.2 CONDUCTED EMISSIONS	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6DB OCCUPY BANDWIDTH	
5.5 POWER SPECTRAL DENSITY	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	50
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP	51
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	52

4 General Information

4.1 Client Information

Applicant:	Shenzhen Buzz Tech CO.,LTD
Address of Applicant:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Buzz Tech CO.,LTD
Address of Manufacturer:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong, China
Factory:	Shenzhen Buzz Tech CO.,LTD
Address of Factory:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong, China

4.2 General Description of EUT

Product Name:	Smart glasses
Model No.:	M01, M02
Test Model No.:	M01
Trade Mark:	N/A
Software Version:	V1.0
Hardware Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.0
Modulation Type:	GFSK
Transfer Rate:	1Mbps, 2Mbps
Number of Channel:	40
Product Type:	☐ Mobile ☐ Portable
Test Software of EUT:	FCC_assist1.0.4
Antenna Type:	Internal antenna
Antenna Gain:	0dBi
EUT Power Supply:	Li-ion battery: DC 3.8V 220mAh/0.84Wh, Charge by DC 5V
Simultaneous Transmission	⊠ Simultaneous TX is supported and evaluated in this report.
	☐ Simultaneous TX is not supported.

Note:

Model No.: M01, M02

Only the model M01 was tested, their electrical circuit design, layout, components used and internal wiring are identical, only the color of the product is different, so the model name is also different.

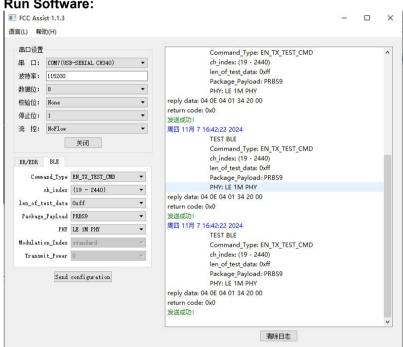
Report No.: CQASZ20250400929E-02

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz



Report No.: CQASZ20250400929E-02

4.3 Additional Instructions

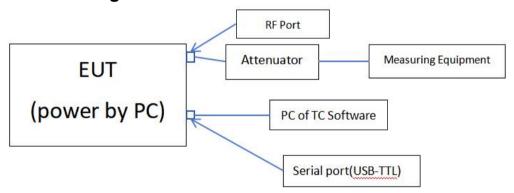
EUT Test Software Settings:					
Mode:	⊠ Special software is used.				
	☐ Through engineering command into	the engineering mode.			
	engineering command: *#*#3646633#	*#*			
EUT Power level:	Class10				
Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.					
Mode	Mode Channel Frequency(MHz)				
CH0 2402					
GFSK	GFSK CH19 2440				
	CH39	2480			

Run Software:

Report No.: CQASZ20250400929E-02

4.4 Test Environment

Operating Environment:	Operating Environment:		
Temperature:	24.5°C		
Humidity:	59% RH		
Atmospheric Pressure:	1009mbar		
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.		


4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	MI	1	1	CQA
2) Cable				
Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
1	,		1	,

4.6 Test configuration

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8℃
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Report No.: CQASZ20250400929E-02

4.8 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.9 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.10 Deviation from Standards

None.

4.11 Other Information Requested by the Customer

None.

4.12Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2024/9/2	2025/9/1
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/9/7	2026/9/6
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

Test software:

	Manufacturer	Software brand	Software version
Radiated Emissions test software	Tonscend	JS1120-3	Version:8
Conducted Emissions test software	Audix	e3	Version:9
RF Conducted test software	Audix	e3	V3.5.39

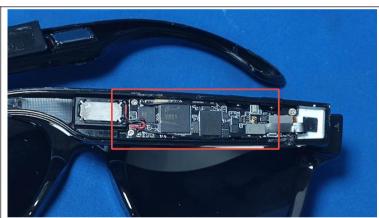
Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

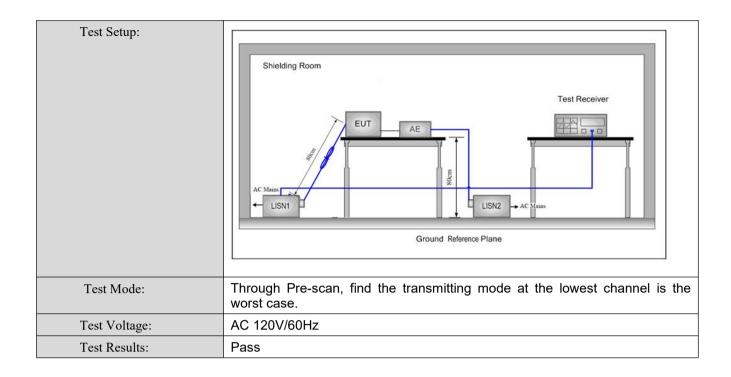
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Internal antenna.

The connection/connection type between the antenna to the EUT's antenna port is:permanently attachment

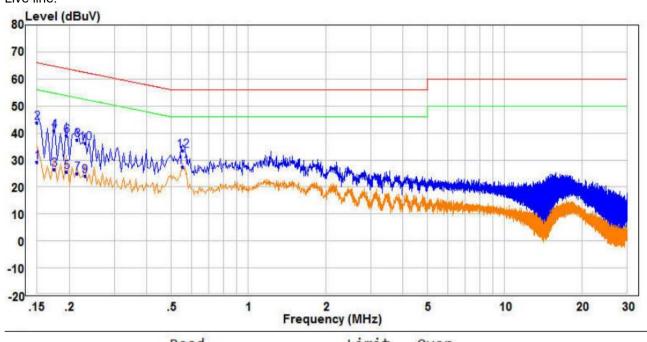
This is either permanently attachment or a unique coupling that satisfies the requirement.



Report No.: CQASZ20250400929E-02

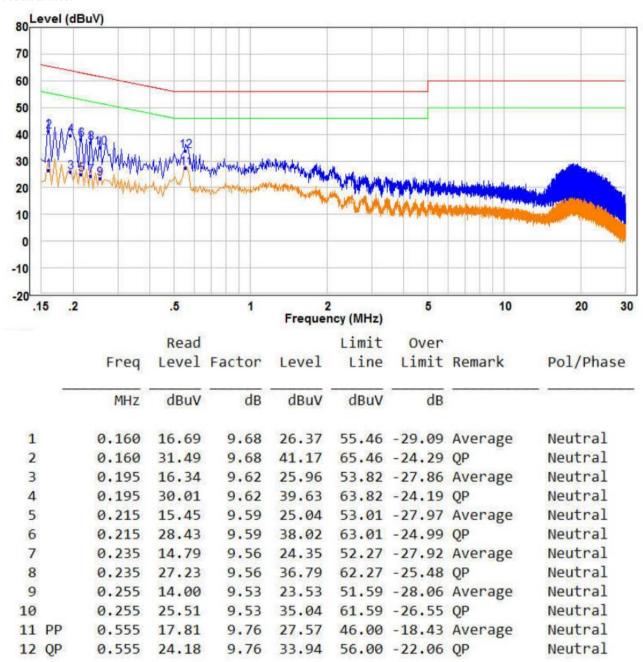
5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Limit:	E (MIL)	Limit (d	lBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm o	f the frequency.			
Test Procedure:	The mains terminal disturl room.	bance voltage test was	s conducted in a shie	elded	
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground				
	reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,				
	4) The test was performed wi of the EUT shall be 0.4 m vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated experiment and all of the in ANSI C63.10: 2013 on contract the EUT and all of the in the contract of the second	from the vertical ground plane was bonded to the 1 was placed 0.8 m from 1 to a ground reference and reference plane. The fof the LISN 1 and the equipment was at least 0 to memission, the relative terface cables must be	d reference plane. The horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of the positions of	ne he of 2.	



Measurement Data

Live line:


		Read			Limit	Over		
	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
-	MHz	dBuV	dB	dBuV	dBuV	dB	-	
1	0.150	19.47	9.70	29.17	56.00	-26.83	Average	Line
2 QP	0.150	34.02	9.70	43.72	66.00	-22.28	QP	Line
3	0.175	16.88	9.65	26.53	54.72	-28.19	Average	Line
3 4 5	0.175	31.21	9.65	40.86	64.72	-23.86	QP	Line
5	0.195	15.99	9.62	25.61	53.82	-28.21	Average	Line
6	0.195	29.48	9.62	39.10	63.82	-24.72	QP	Line
7	0.215	15.26	9.59	24.85	53.01	-28.16	Average	Line
8	0.215	27.96	9.59	37.55	63.01	-25.46	QP	Line
9	0.230	14.40	9.57	23.97	52.45	-28.48	Average	Line
10	0.230	26.80	9.57	36.37	62.45	-26.08	QP	Line
11 PP	0.555	17.81	9.76	27.57	46.00	-18.43	Average	Line
12	0.555	23.82	9.76	33.58	56.00	-22.42	QP	Line

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

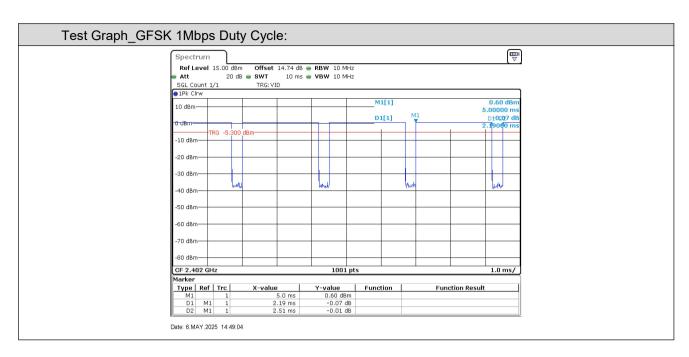
Neutral line:

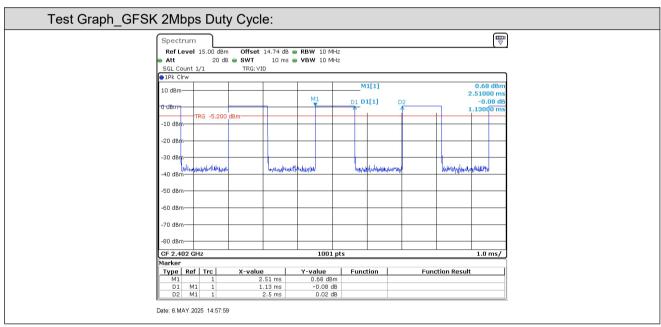
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: CQASZ20250400929E-02

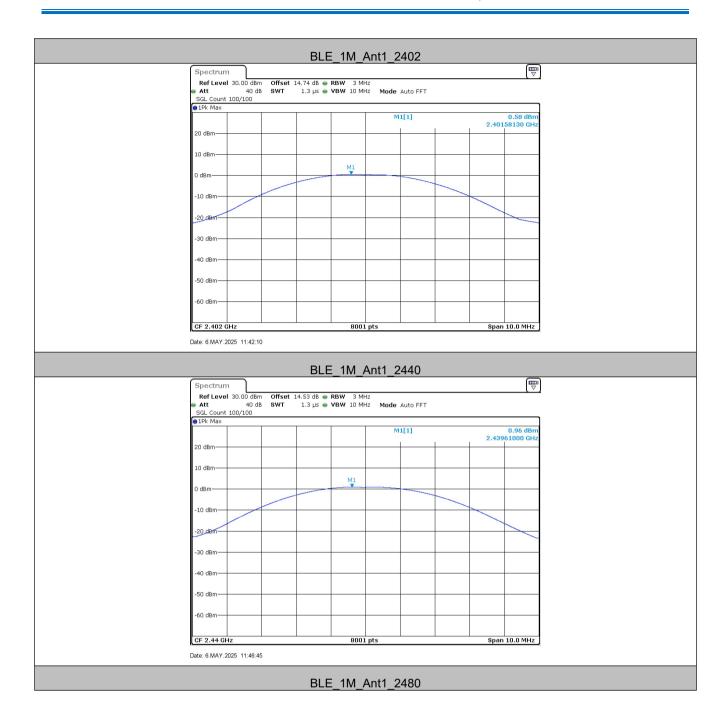
5.3 Conducted Peak Output Power


Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 2013
Test Setup:	
	EUT Attenuator Analyzer
	Remark: Offset=Cable loss+ attenuation factor.
Limit:	30dBm
Test Mode:	Transmitting with GFSK modulation.
Test Results:	Pass

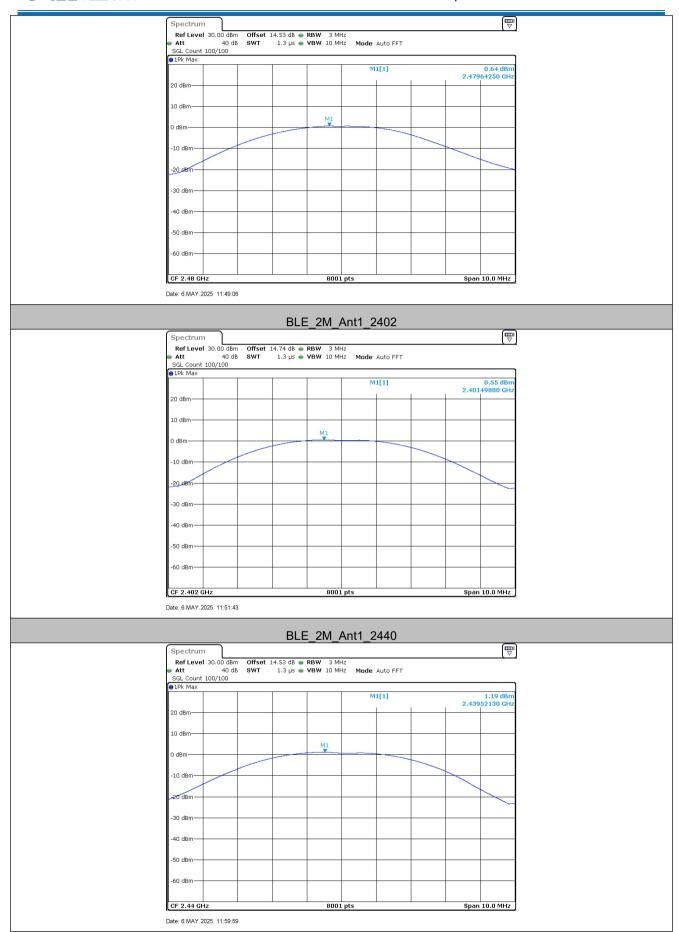

Operated Mode for Worst Duty Cycle:						
Test Mode	On time [Ton] (ms)	Period [Ttotal] ms)	Duty Cycle(%)	Average correction factor(dB)		
GFSK 1Mbps	2.19	2.51	87.25	0.59		
GFSK 2Mbps	1.13	2.50	45.20	3.45		

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);

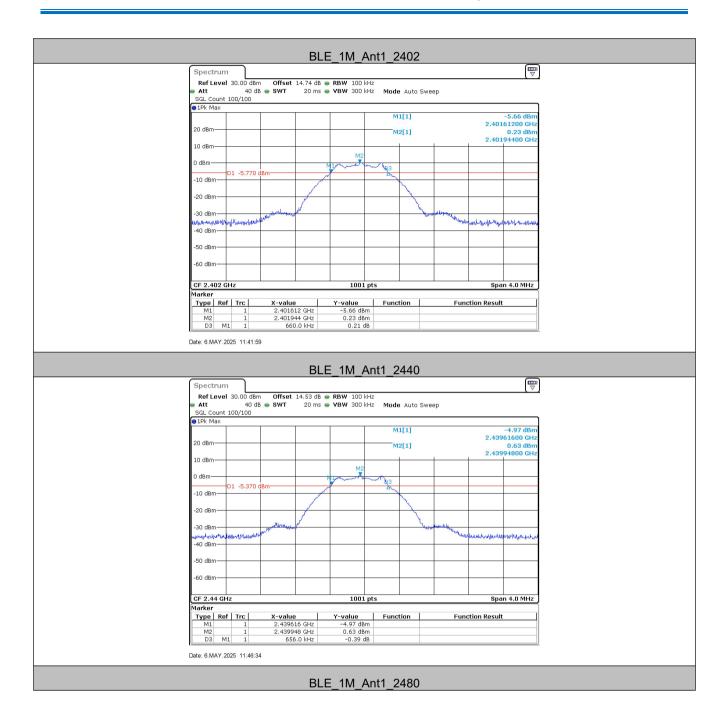


Report No.: CQASZ20250400929E-02

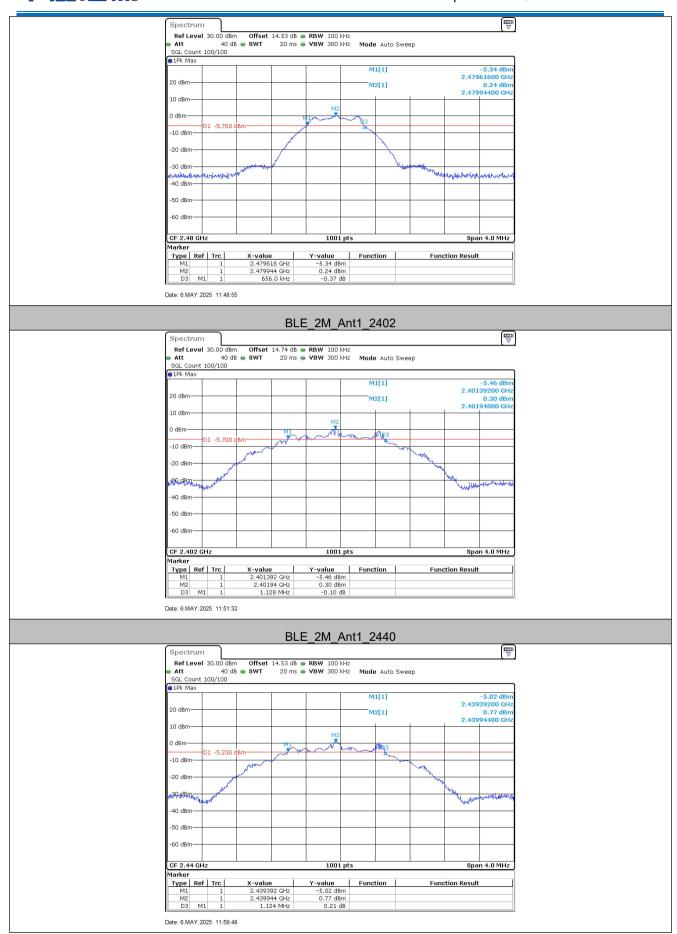

Measurement Data

	GFSK mode (1Mbps)					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	0.58	30.00	Pass			
Middle	0.96	30.00	Pass			
Highest	0.64	30.00	Pass			
	GFSK mode (2Mbps)					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	0.55	30.00	Pass			
Middle	1.19	30.00	Pass			
Highest	0.62	30.00	Pass			

Report No.: CQASZ20250400929E-02


5.4 6dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	EUT Attenuator Spectrum Analyzer Remark: Offset=Cable loss+ attenuation factor.
Limit:	≥ 500 kHz
Instruments Used:	Refer to section 4.11 for details.
Test Results:	Pass

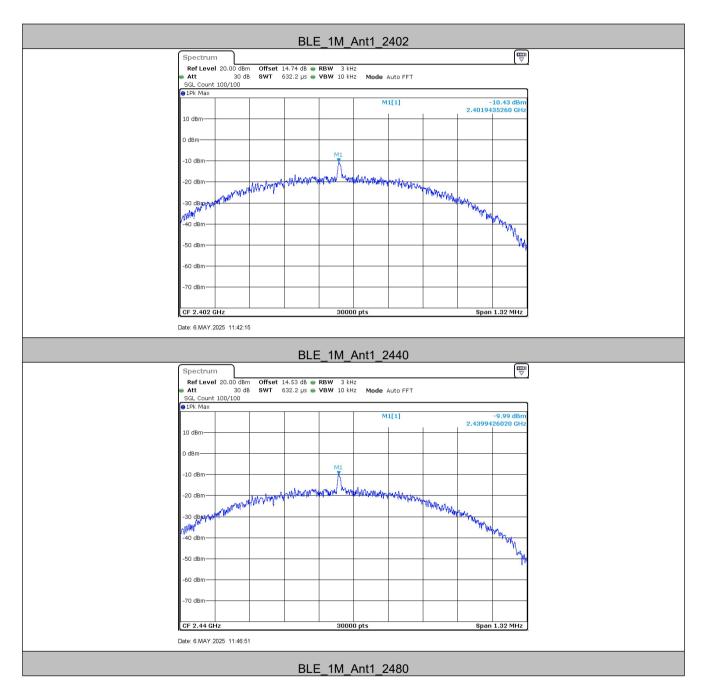

Measurement Data

	GFSK mode (1Mbps)					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	0.66	≥500	Pass			
Middle	0.66	≥500	Pass			
Highest	0.66	≥500	Pass			
	GFSK mode (2Mbps)					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	1.13	≥500	Pass			
Middle	1.12	≥500	Pass			
Highest	1.12	≥500	Pass			

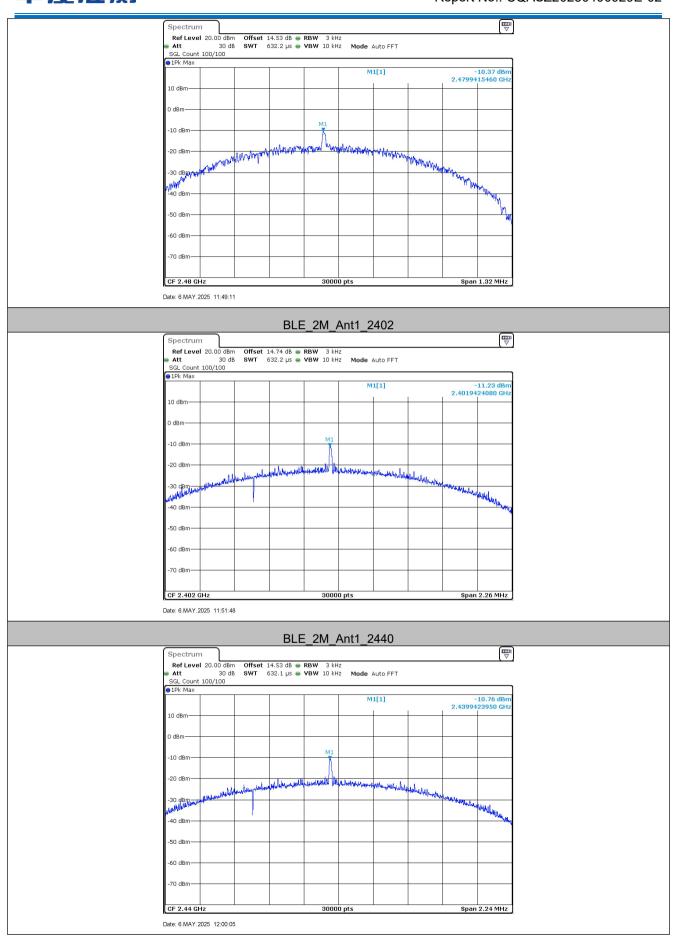
Report No.: CQASZ20250400929E-02

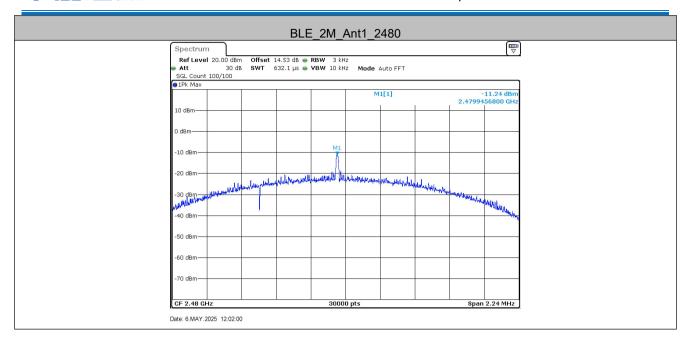
5.5 Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)			
Test Method:	ANSI C63.10 2013			
Test Setup:				
	EUT Spectrum Analyzer			
	Remark: Offset=Cable loss+ attenuation factor.			
Limit:	≤8.00dBm/3kHz			
Test Mode:	Transmitting with GFSK modulation.			
Test Results:	Pass			


Measurement Data

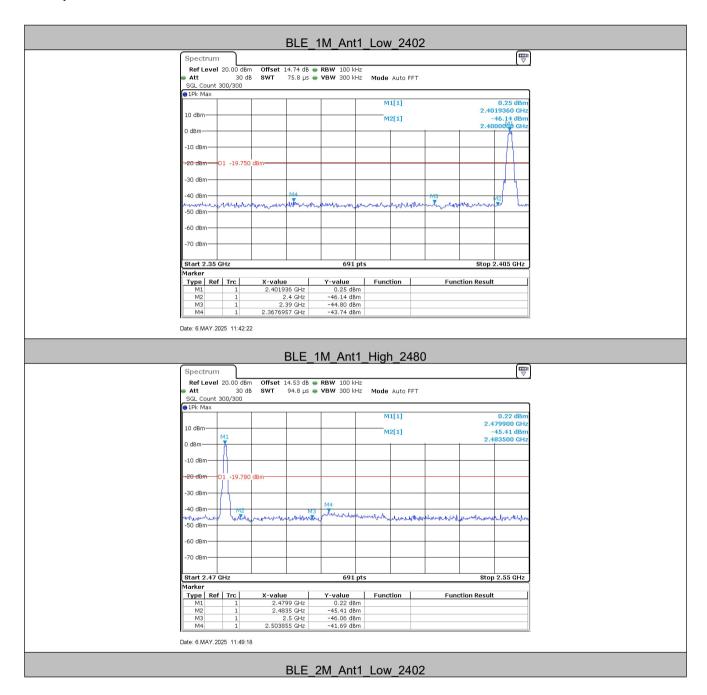
Micasarciniciti Data						
	GFSK mode (1Mbps)					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-10.43	≤8.00	Pass			
Middle	-9.99	≤8.00	Pass			
Highest	-10.37	≤8.00	Pass			
	GFSK mode (2Mbps)					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-11.23	≤8.00	Pass			
Middle	-10.76	≤8.00	Pass			
Highest	-11.24	≤8.00	Pass			



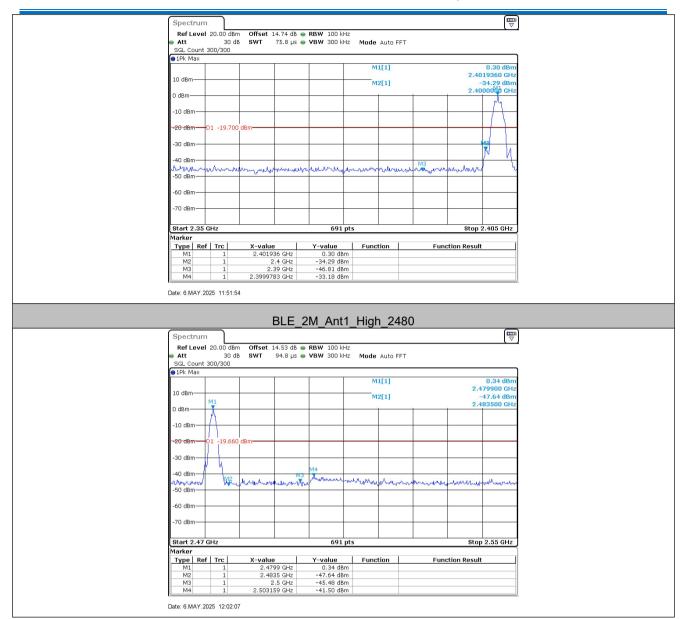

Test plot as follows:

Report No.: CQASZ20250400929E-02

5.6 Band-edge for RF Conducted Emissions

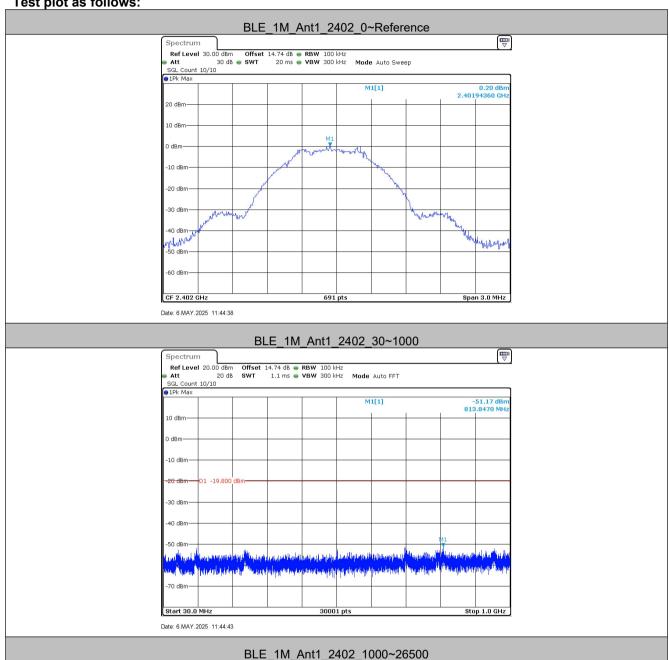

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10 2013			
Test Setup:	EUT Spectrum Analyzer Remark: Offset=Cable loss+ attenuation factor.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Mode:	Transmitting with GFSK modulation.			
Test Results:	Pass			

TestMode	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Low	2402	0.25	-43.74	≤-19.75	PASS
BLE_1M	High	2480	0.22	-41.69	≤-19.78	PASS
	Low	2402	0.30	-33.18	≤-19.7	PASS
BLE_2M	High	2480	0.34	-41.5	≤-19.66	PASS



Report No.: CQASZ20250400929E-02

Test plot as follows:


Report No.: CQASZ20250400929E-02

5.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	EUT Spectrum Analyzer Remark: Offset=Cable loss+ attenuation factor.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Transmitting with GFSK modulation.
Test Results:	Pass

