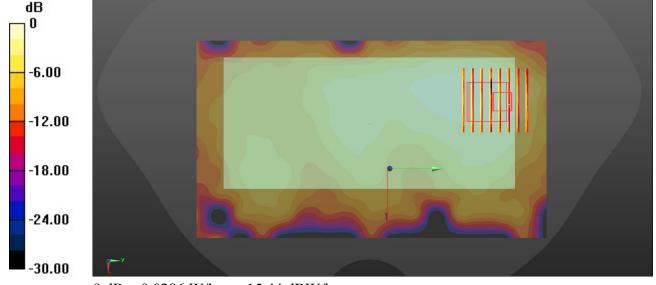
47 Bluetooth 1Mbps Back 10mm Ch39

Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz; Duty Cycle: 1:1.297

Medium: HSL_2450 Medium parameters used: f = 2441 MHz; $\sigma = 1.8$ S/m; $\varepsilon_r = 38.647$; $\rho = 1000$ kg/m³

Date: 2021.12.3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.86, 7.86, 7.86); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1650; Calibrated: 2021.6.9
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (91x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0281 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.748 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.0370 W/kg

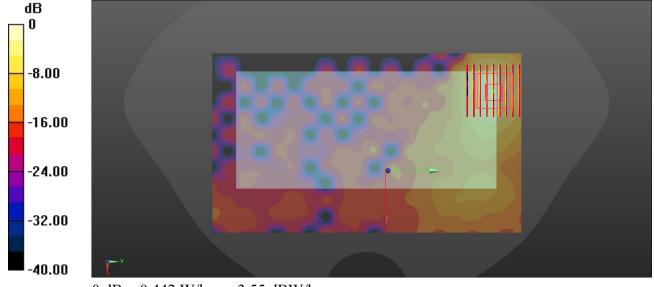
SAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.009 W/kgMaximum value of SAR (measured) = 0.0286 W/kg

0 dB = 0.0286 W/kg = -15.44 dBW/kg

48_WLAN5GHz_802.11ac-VHT80 MCS0_Back_10mm_Ch58

Communication System: UID 0, WLAN5GHz (0); Frequency: 5290 MHz; Duty Cycle: 1:1.108 Medium: HSL_5000 Medium parameters used: f = 5290 MHz; $\sigma = 4.593$ S/m; $\epsilon_r = 36.069$; $\rho = 1000$ kg/m³

Date: 2021.12.7


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(5.04, 5.04, 5.04); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1650; Calibrated: 2021.6.9
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (111x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.454 W/kg

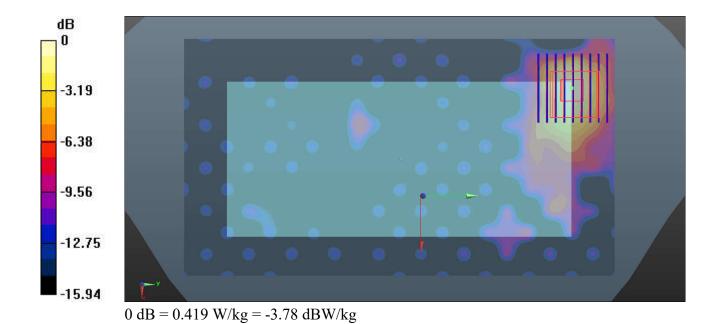
Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.283 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.711 W/kg SAR(1 g) = 0.202 W/kg; SAR(10 g) = 0.072 W/kg Maximum value of SAR (measured) = 0.461 W/kg

0 dB = 0.442 W/kg = -3.55 dBW/kg

49_WLAN5GHz 802.11ac-VHT80 MCS0 Back 10mm Ch106

Communication System: UID 0, WLAN5GHz (0); Frequency: 5530 MHz; Duty Cycle: 1:1.108 Medium: HSL_5000 Medium parameters used: f = 5530 MHz; $\sigma = 4.832$ S/m; $\epsilon_r = 35.636$; $\rho = 1000$ kg/m³

Date: 2021.12.9


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(4.69, 4.69, 4.69); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1650; Calibrated: 2021.6.9
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (111x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.399 W/kg

Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 9.913 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.193 W/kg; SAR(10 g) = 0.080 W/kg Maximum value of SAR (measured) = 0.419 W/kg

50 WLAN5GHz 802.11ac-VHT80 MCS0 Back 10mm Ch155

Communication System: UID 0, WLAN5GHz (0); Frequency: 5775 MHz; Duty Cycle: 1:1.108 Medium: HSL_5000 Medium parameters used: f = 5775 MHz; $\sigma = 5.118$ S/m; $\epsilon_r = 35.353$; $\rho = 1000$ kg/m³

Date: 2021.12.11

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(4.71, 4.71, 4.71); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1650; Calibrated: 2021.6.9
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (111x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.541 W/kg

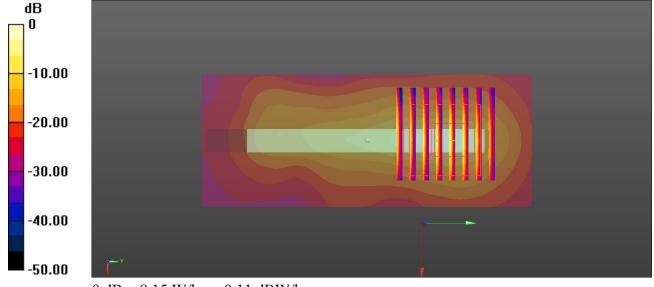
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.271 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.956 W/kg **SAR(1 g) = 0.239 W/kg; SAR(10 g) = 0.085 W/kg** Maximum value of SAR (measured) = 0.564 W/kg

0 dB = 0.564 W/kg = -2.49 dBW/kg

51_WLAN5GHz_802.11ac-VHT80 MCS0_Top Side_0mm_Ch58

Communication System: UID 0, WLAN5GHz (0); Frequency: 5290 MHz; Duty Cycle: 1:1.108 Medium: HSL_5000 Medium parameters used: f = 5290 MHz; $\sigma = 4.593$ S/m; $\epsilon_r = 36.069$; $\rho = 1000$ kg/m³

Date: 2021.12.7


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(5.04, 5.04, 5.04); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1650; Calibrated: 2021.6.9
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 6.73 W/kg

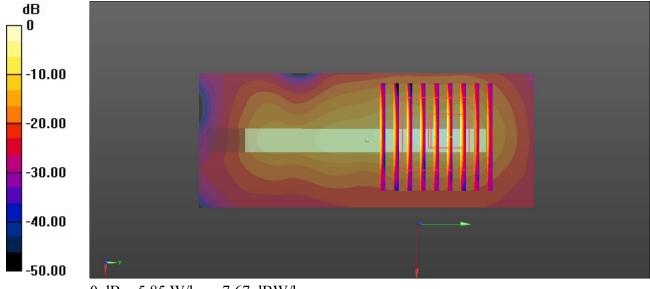
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 41.07 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 2.29 W/kg; SAR(10 g) = 0.517 W/kg Maximum value of SAR (measured) = 8.15 W/kg

0 dB = 8.15 W/kg = 9.11 dBW/kg

52_WLAN5GHz_802.11ac-VHT80 MCS0_Top Side_0mm_Ch106

Communication System: UID 0, WLAN5GHz (0); Frequency: 5530 MHz; Duty Cycle: 1:1.108 Medium: HSL_5000 Medium parameters used: f = 5530 MHz; $\sigma = 4.832$ S/m; $\epsilon_r = 35.636$; $\rho = 1000$ kg/m³

Date: 2021.12.9


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(4.69, 4.69, 4.69); Calibrated: 2021.4.29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1650; Calibrated: 2021.6.9
- Phantom: SAM Twin Phantom; Type: SAM Twin; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (41x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 3.83 W/kg

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 33.92 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 13.3 W/kg SAR(1 g) = 1.82 W/kg; SAR(10 g) = 0.431 W/kg Maximum value of SAR (measured) = 5.85 W/kg

0 dB = 5.85 W/kg = 7.67 dBW/kg

Appendix C. **DASY Calibration Certificate**

Report No. : FA1N1601-01

The DASY calibration certificates are shown as follows.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jan. 12, 2022

Form version. : 200414 FCC ID: 2AFZZ117SL Page C1 of C1

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Certificate No:

Z19-60081

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1087

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

March 27, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Power sensor NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1331	06-Feb-19(SPEAG,No.DAE4-1331_Feb19)	Feb-20
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C MY46110673		24-Jan-19 (CTTL, No.J19X00547)	Jan-20

Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

Issued: March 29, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60081

Page 1 of 8

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Certificate No: Z19-60081

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.0 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.36 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.65 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.9 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.58 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.75 W/kg ±18.7 % (k=2)

Certificate No: Z19-60081

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4Ω- 2.59jΩ	
Return Loss	- 29.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.6Ω- 3.86jΩ	
Return Loss	- 27.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	0.898 ns	
W15000		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z19-60081 Page 4 of 8

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1087

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; σ = 0.903 S/m; ϵ_r = 43.01; ρ = 1000 kg/m3

Phantom section: Right Section

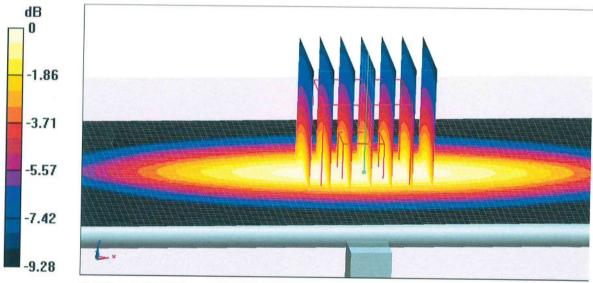
DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019

Date: 03.26.2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

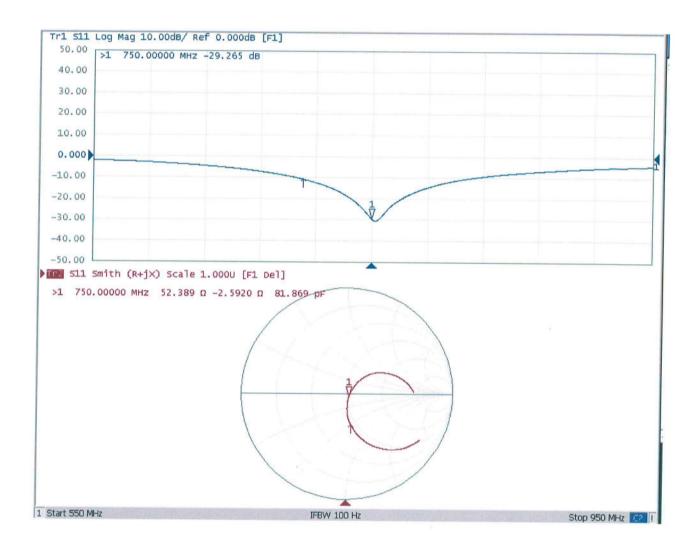
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 55.05 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.00 W/kg

SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.42 W/kg


Maximum value of SAR (measured) = 2.72 W/kg

0 dB = 2.72 W/kg = 4.35 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1087

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.935$ S/m; $\varepsilon_r = 56.85$; $\rho = 1000$ kg/m³

Phantom section: Center Section

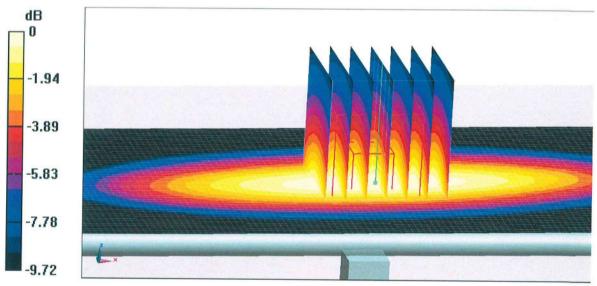
DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 1/31/2019

Date: 03.26.2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

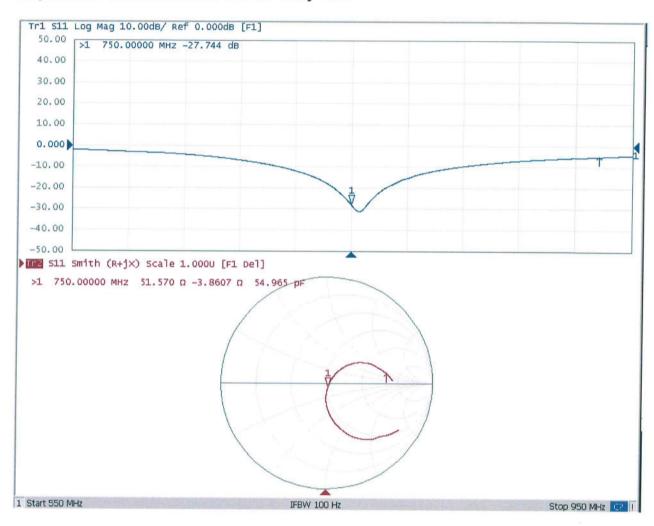
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 53.71 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.08 W/kg

SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.41 W/kg


Maximum value of SAR (measured) = 2.75 W/kg

0 dB = 2.75 W/kg = 4.39 dBW/kg

Certificate No: Z19-60081

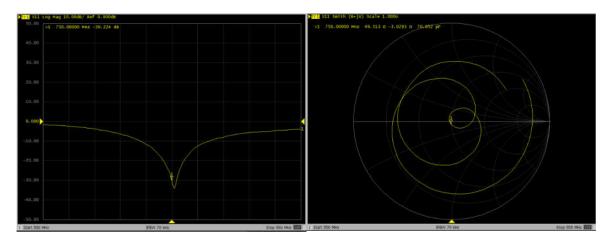
Impedance Measurement Plot for Body TSL

D750V3, Serial No. 1087 Extended Dipole Calibrations

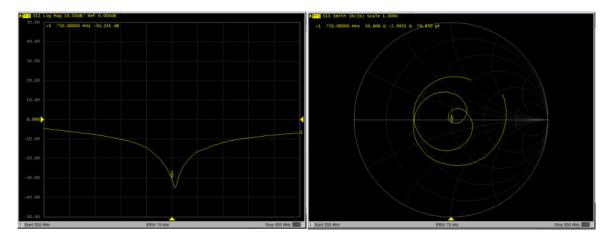
Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D750V3 – serial no. 1087						
		750MHz Head				
Date of	Return-Loss		Real		Imaginary	
Measurement	(dB)	Delta (%)	Impedance	Delta (ohm)	Impedance	Delta (ohm)
Weasurement	(ив)		(ohm)		(ohm)	
2019.3.27	-29.3		52.4		-2.6	
2020.3.26	-30.2	-0.03	49.5	2.88	-3.0	0.44
2021.3.25	-30.2	-0.03	50.8	1.58	-3.0	0.40

<Justification of the extended calibration>


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958



Dipole Verification Data> D750V3, serial no. 1087

750MHz - Head----2020.3.26

750MHz - Head----2021.3.25

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Sporton

Certificate No: D835V2-4d258_May20

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d258

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

May 07, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	F	
Calibrated by		Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	A STA
			O. Elm
Approved by:	Katja Pokovic	Technical Manager	Muc
			Ju - g

Issued: May 7, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d258_May20

Page 1 of 7

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d258_May20 Page 2 of 7

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.44 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d258_May20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 2.5 jΩ
Return Loss	- 31.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns
	1.507 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
Manadalaca by	SPEAG
	S. EAG

Certificate No: D835V2-4d258_May20