

Test Report Serial Number: Test Report Date: Project Number:

45462002 1.0 24 February 2025

1679

EMC Test Report -C2PC

Applicant:

Group

President Electronics USA 1007 Collier Center Way Naples, FL, 34110 **USA**

FCC ID:

2AEOCP210

Product Model Number / HVIN

BILL III FCC

Product Name / PMN

BILL III FCC

In Accordance With:

FCC 47 CFR Part 95 Subpart D, Part 15 Subpart B

Licensed Non-Broadcast Station Transmitter (TNB)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry Canada

FCC Registration: CA3874

Test Lab Certificate: 2470.01 IC Registration 3874A

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

Table of Contents

1.0 REVISION HISTORY	
2.0 CLIENT AND DUT INFORMATION	5
3.0 SCOPE	6
4.0 TEST RESULT SUMMARY	7
5.0 NORMATIVE REFERENCES	9
6.0 FACILITIES AND ACCREDITATIONS	10
7.0 CONDUCTED POWER	11
8.0 CONDUCTED OUT OF BAND SPURIOUS EMISSIONS	20
9.0 RADIATED SPURIOUS TX EMISSIONS	32
10.0 RADIATED SPURIOUS RX EMISSIONS	43
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT	49
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	53
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	54
END OF REPORT	54
Table of Figures	
Figure A.1 – Test Setup Conducted Measurements	10
Figure A.2 – Test Setup Conducted Measurements	
Figure A.3 – Test Setup Radiated Emissions Measurements Below 30MHz	
Figure A.4 – Test Setup Radiated Emissions Measurements 30-1000MHz	52
Figure A.5 – Test Setup Radiated Emissions Measurements 30-1000MHz	52

Table of Plots

Plot 7.1 – Conducted Output Power, Channel 1, AM, 4W	13 14 15 16
Plot 8.2 – Conducted Out of Band Emissions, 150kHz – 20MHz, Channel 20, AM	
Plot 8.8 – Conducted Out of Band Emissions, 20 – 1000MHz, Channel 20, FM	29 33 34 35
Plot 9.4 – Radiated Spurious Emissions OATS, 30 - 1000MHz, with Accessories, Vertical Plot 9.5 – Radiated Spurious Emissions OATS, 9kHz - 30MHz, with Accessories, Front Plot 9.6 – Radiated Spurious Emissions OATS, 9kHz - 30MHz, with Accessories, Side Plot 9.7 – Radiated Spurious Emissions OATS, 30 - 1000MHz, with Accessories, Horizontal Plot 9.8 – Radiated Spurious Emissions OATS, 30 - 1000MHz, with Accessories, Vertical Plot 10.1 – Radiated Rx Emissions OATS, 9kHz - 30MHz, Front Plot 10.2 – Radiated Rx Emissions OATS, 9kHz - 30MHz, Side	38 40 41
Plot 10.3– Radiated Spurious Emissions OATS, 30 - 1000MHz, Horizontal	46
Table 7.1 – Summary of Conducted Power Measurements (RMS), 4W Table 7.2 – Compliance to §2.1033(c)(8) – 13.8VDC, AM, FM Table 8.1 – Summary of Conducted Out of Band Emissions Table 9.1 – Summary of Radiated Tx Emissions, without Accessories. Table 9.2 – Summary of Radiated Tx Emissions, with Accessories. Table 10.1 – Summary of Radiated Rx Emissions Table A.1 – Setup - Conducted Measurements Equipment Table A.2 – Setup - Audio Modulation Equipment	19 31 37 42 48 49

1.0 REVISION HISTORY

	Revision History					
San	nples Tested By:	Art Voss, P.Eng.	Date(s) of Evaluation:		15 Jan - 17 Feb, 2025	
Rep	ort Prepared By:	Art Voss, P.Eng.	Report Reviewed By:		Art Voss	
Report Description of Revision		Revised	Revised	Revision Date		
		Section	Ву	Revision Date		
1.0	1.0 Initial Release		n/a	Art Voss	24 February 2025	

2.0 CLIENT AND DUT INFORMATION

Client Information			
Applicant Name (FCC)	President Electronics USA		
	1007 Collier Center Way		
Applicant Address (FCC)	Naples, FL, 34110		
	USA		
	DUT Information		
Device Identifier(s):	FCC ID: 2AEOCPC210		
Device Type:	Mobile 4W AM / FM CBRS Transceiver		
Device Model(s) / HVIN:	BILL III FCC		
Device Marketing Name / PMN:	BILL III FCC		
Firmware Version ID Number / FVIN:	-		
Host Marketing Name / HMN:	-		
Test Sample Serial No.:	TA Sample No. 1		
Equipment Class (FCC):	Licensed Non-Broadcast Station Transmitter (TNB)		
Transmit Frequency Range:	26.965MHz - 27.405MHz		
Test Channels:	40 Channels		
Manuf. Max. Rated Output Power:	4W (36dBm) DSB		
Manuf. Max. Rated BW/Data Rate:	8kHz DSB		
Antenna Make and Model:	n/a		
Antenna Type and Gain:	0dBi (Typical), 3dBi (Max)		
Modulation:	AM / FM		
Mode:	Simplex		
DUT Power Source:	12VDC		
DUT Dimensions [WxLxH]	115mm x 150mm x45mm		
Deviation(s) from standard/procedure:	None		
Modification of DUT:	None		

3.0 SCOPE

Preface:

This Certification Report was prepared on behalf of:

President Electronics USA

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

Device Description:

The BILL III FCC is Mobile 4W AM / FM CBRS Transceiver.

Application:

This is an application for a Class II Permissive Change. The RF Transceiver of the BILL III FCC, FCC ID: **2AEOCPC210**, is identical in all respects to the BILL II FCC, FCC ID: **2AEOCPC210**, with the exception there have been modifications to the audio section to increase the audio performance. All other aspects of the BILL III FCC are identical to the BILL II FCC, including form factor.

Regulatory Requirement:

As per FCC 47 CFR 2 Subpart I, Equipment Authorization is require for this *Equipment* by means of a Class II Permissive Change in accordance with FCC 47 CFR §95 Subpart D, (CBRS), and ANSI C63.26.

Scope of Work:

The scope of this investigation is limited only to the evaluation of the BILL III FCC for radiated spurious emissions, antenna port conducted power and antenna port spurious emissions.

RF Exposure:

The BILL III FCC is a mobile transceiver. Since the output power of the BILL III FCC is the same as the BILL II FCC, and an RF Exposure evaluation of the BILL II FCC was performed, an RF Exposure evaluation of the BILL III FCC is deemed unnecessary.

4.0 TEST RESULT SUMMARY

TEST SUMMARY						
Referenced Standard(s): FCC CFR Title 47 Parts 2, 95D, 15B						
Section	Description of Tost	Procedure Applicable Rule		Test	Result	
Section	Description of Test	Reference	Part(s) FCC	Date	Result	
	Conducted Power (Fundamental)	ANSI/TIA/EIA-382-A	§2.1046			
7.0	Conducted Fower (Fundamental)	ANSI/TIA-603-E		17 Feb 2024	Complie	
7.0	Compliance to §2.1033(c)(8)	ANSI C63.26:2015	§2.1033(c)(8)		Compile	
		ANSI C63.4:2014	§95.967			
		ANSI/TIA/EIA-382-A	§2.1051			
8.0	Conducted TX Spurious Emissions	ANSI C63.26:2015		17 Feb 2024	Complie	
		ANSI C63.4:2014	§95.979			
		ANSI/TIA/EIA-382-A	§2.1053			
9.0 Rad	Radiated TX Spurious Emissions	ANSI C63.26:2015		15 Jan 2025	Complie	
		ANSI C63.4:2014	§95.979			
10.0	Radiated Receiver Emissions	ANSI C63.26:2015	§15 Subpart B	15 Jan 2025	Complia	
10.0	INAUIAIEU NECEIVEI EIIIISSIUIIS	ANSI C63.4:2014	§15.109(d)	10 0411 2020	Complie	

Test Station Day Log					
	Ambient	Relative	Barometric	Test	Tests
Date	Temp	Humidity	Pressure	Station	Performed
	(°C)	(%)	(kPa)		Section(s)
17 Feb 2025	21.6	17	102.8	EMC	7, 8
15 Jan 2025	-3.0	63	102.3	OATS	9, 10

EMC - EMC Test Bench

SAC - Semi-Anechoic Chamber

OATS - Open Area Test Site

TC - Temperature Chamber

LISN - LISN Test Area

ESD - ESD Test Bench

IMM - Immunity Test Area

RI - Radiated Immunity Chamber

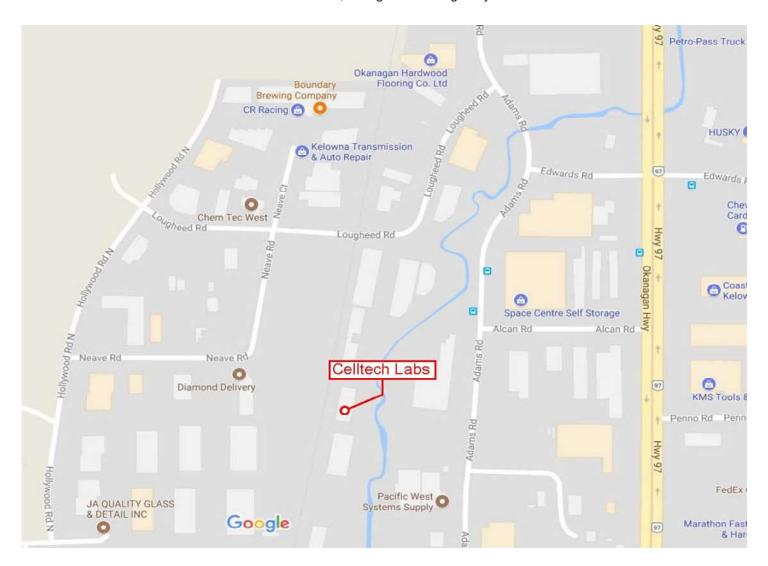
I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Chille Voss

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

24 February 2025

Date

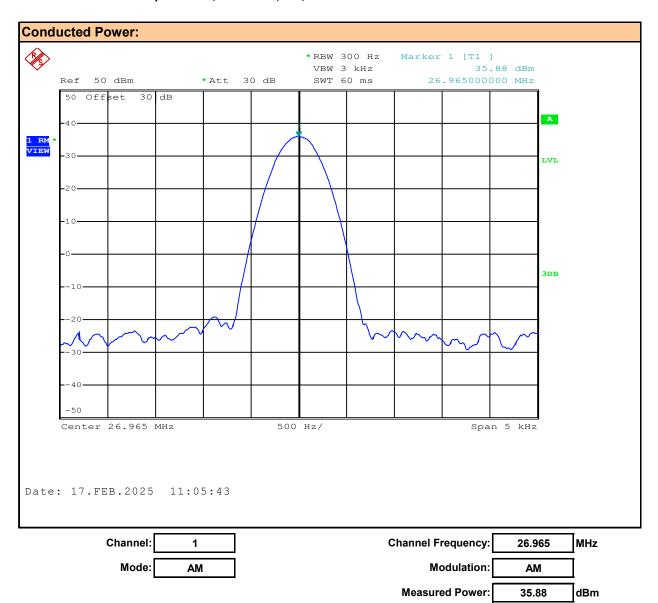

5.0 NORMATIVE REFERENCES

	Normative References
ISO/IEC 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI C63.4-2014	American National Standard of Procedures for Methods of Measurement of Radio-Noise
	Emissions from Low-Voltage Electric and Electronic Equipment in the Range of 9kHz to 40GHz
ANSI C63.26-2015	American National Standard of Procedures for Compliance Testing of Transmitters Used in
	Licensed Radio Services
ANSI/TIA-382-A	Minimum Standards - Citizens Band Radio Service Amplitude Modulated (AM) Transceivers
	Operating in the 27 MHz Band
	(Revision of EIA-382)
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
	(Revision of TIA-603-D)
CFR	Code of Federal Regulations
Title 47	: Telecommunication
Part 2	: Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR	Code of Federal Regulations
Title 47	: Telecommunication
Part 2	: Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
Subpart (2.1091)	: Radiofrequency radiation exposure evaluation: mobile devices.
CFR	Code of Federal Regulations
Title 47	: Telecommunication
Part 15	: Radio Frequency Devices
Subpart E	: Unintentional Radiators
CFR	Code of Federal Regulations
Title 47	: Telecommunication
Part 95	: Personal Radio Service
Subpart D	: Citizens Band Radio Service (CBRS)

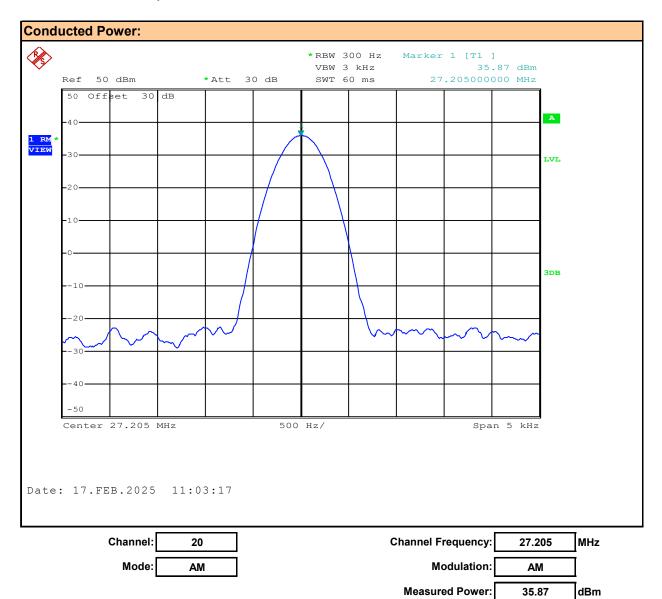
6.0 FACILITIES AND ACCREDITATIONS

Facility and Accreditation:

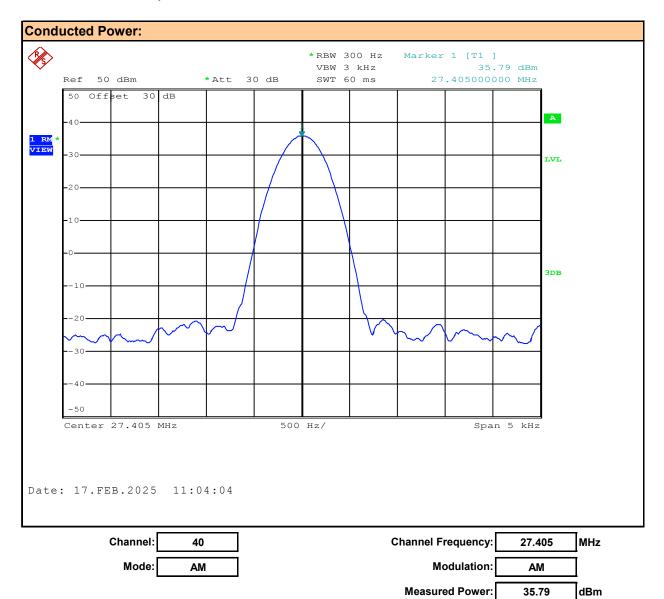
The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Industry Canada under Test Site File Number IC 3874A. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.


7.0 CONDUCTED POWER

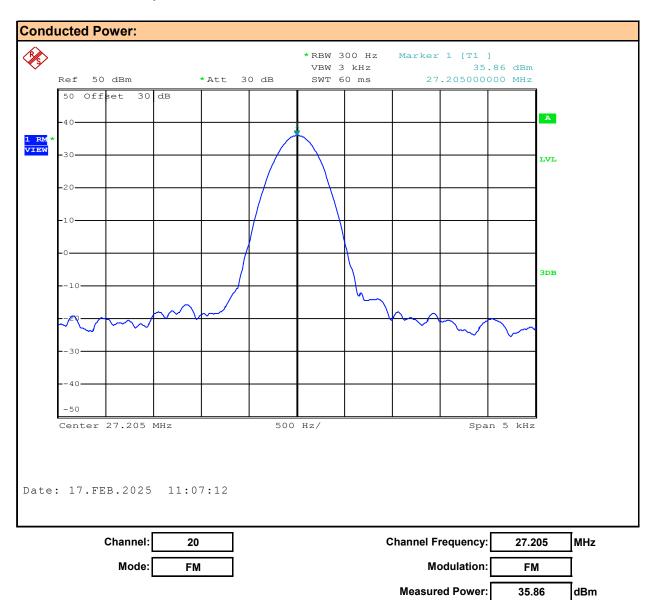
Test Procedure	
Normative	FCC 47 CFR §2.1046, §2.1033(c)(8), §95.967, RSS-236
Reference	EIA/TIA-382-A, TIA-603-E
Limits	
47 CFR §95.967	(a) When transmitting amplitude modulated (AM) voice signals or frequency modulated (FM) voice signals, the mean carrier power must not exceed 4 Watts.
RSS-236 4.6	The transmitter output power shall not exceed 4.0 watts for a DSB or FM signals.
General Procedure	
EIA/TIA-382-A	19. TRANSMITTER CARRIER POWER OUTPUT
	Transmitter Carrier Power Output for this service is the power (rms) available at the output terminals of the transmitter when the output terminals are connected to a standard output load. This measurement shall be performed without modulation, at standard test. conditions.
TIA-603-E	2.2.1 Conducted Carrier Output Power Rating
	The conducted carrier power output rating for a transmitter is the power available at the output terminals of the transmitter when the output terminals are connected to the standard transmitter load.
Test Setup	Appendix A - Figure A.1


Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as above using the Automatic 6dB Cursor Bandwidth measurement. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle.


Plot 7.1 - Conducted Output Power, Channel 1, AM, 4W

Plot 7.2 - Conducted Output Power, Channel 20, AM, 4W


Plot 7.3 - Conducted Output Power, Channel 40, AM, 4W

Plot 7.4 - Conducted Output Power, Channel 1, FM, 4W

Plot 7.5 - Conducted Output Power, Channel 20, FM, 4W

Plot 7.6 - Conducted Output Power, Channel 40, FM, 4W

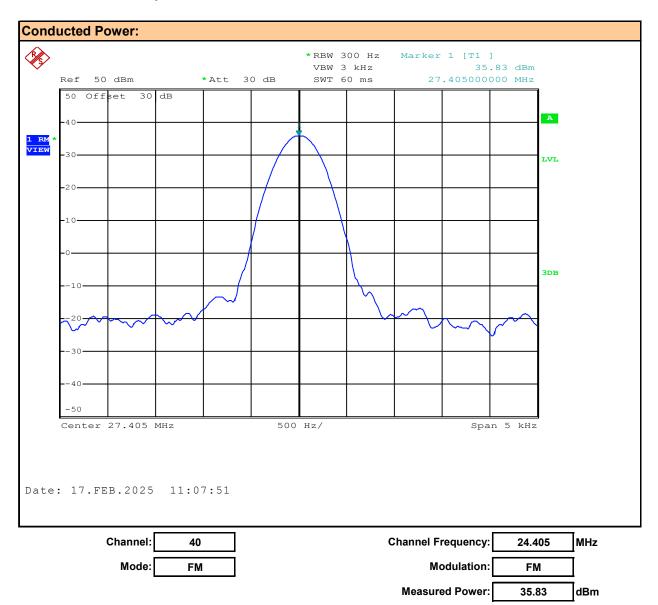
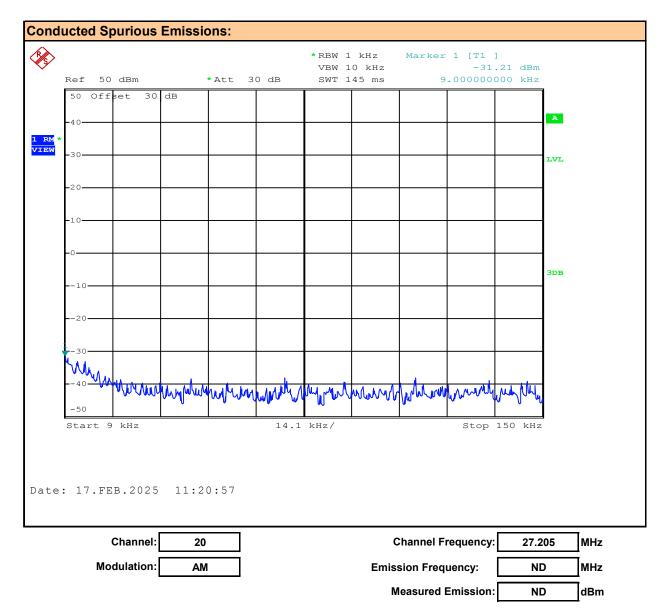


Table 7.1 – Summary of Conducted Power Measurements (RMS), 4W

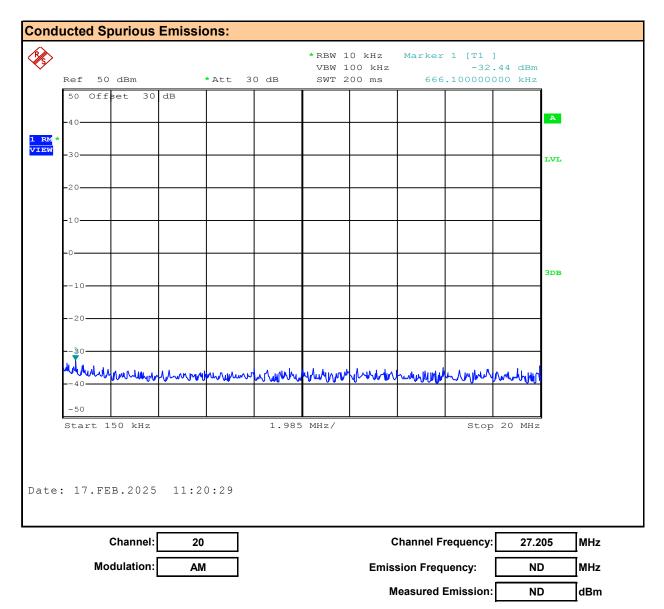
Conduct	Conducted Power Measurement Results (4W):						
Channel Number	Channel Frequency	Mode	Modulation	Measured Power [P _{Meas}]	Limit [P _{Lim}]	Margin	
	(MHz)			(dBm)	(dBm)	(dB)	
1	26.97			35.88		0.12	
20	27.21	AM	AM	35.87		0.13	
40	27.41			35.79	36	0.21	
1	26.97			35.87		0.13	
20	27.21	FM	FM	35.86		0.14	
40	24.41			35.83		0.17	
Result: Compli					Complies		

Conducted Margin = P_{Limit} - P_{Meas}

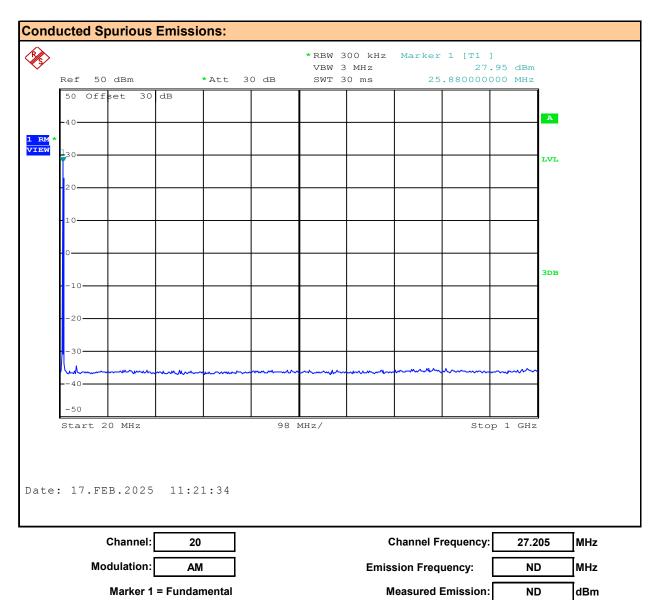
Table 7.2 - Compliance to §2.1033(c)(8) - 13.8VDC, AM, FM

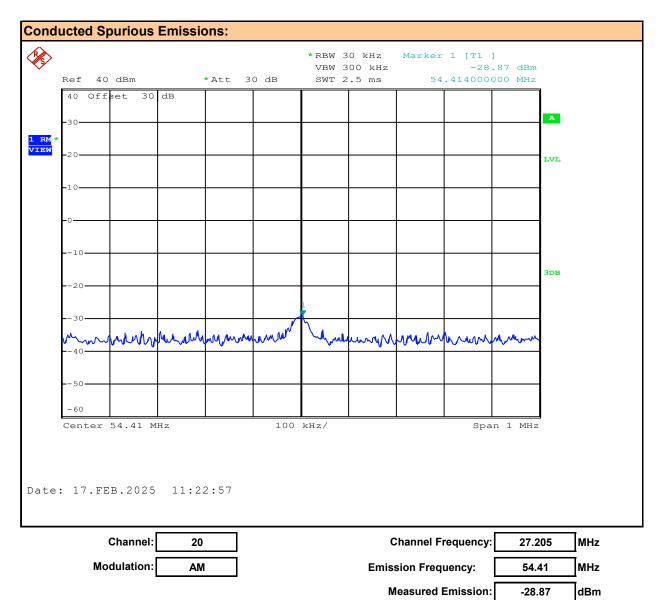

FCC CFR 47 §2.1033(c)(8): Power to Transmitter: AM (4W)			
Supply Voltage:	V = 13.80 VDC		
Measured Receiver Current:	IRx = 0.17 A		
Measured Total Current:	ITx = 1.11 A		
Transmitter Current (ITx - IRx):	IXmitter = 0.94 A		
Power to Transmitter:	PTx = 13.80 VDC X 0.94 A = 12.97 W		
Result:	Complies		

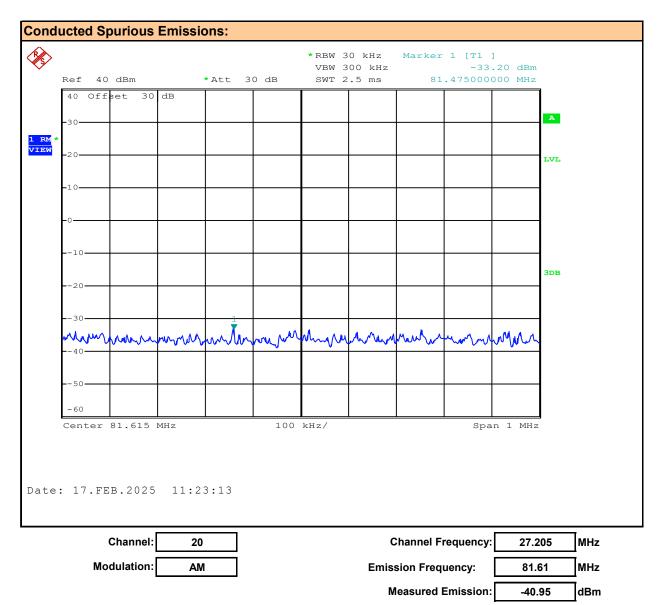
FCC CFR 47 §2.1033(c)(8): Power to Transmitter: FM (4W)			
Supply Voltage:	V = 13.80 VDC		
Measured Receiver Current:	IRx = 0.17 A		
Measured Total Current:	ITx = 1.14 A		
Transmitter Current (ITx - IRx):	IXmitter = 0.97 A		
Power to Transmitter:	PTx = 13.80 VDC X 0.97 A = 13.39 W		
Result:	Complies		

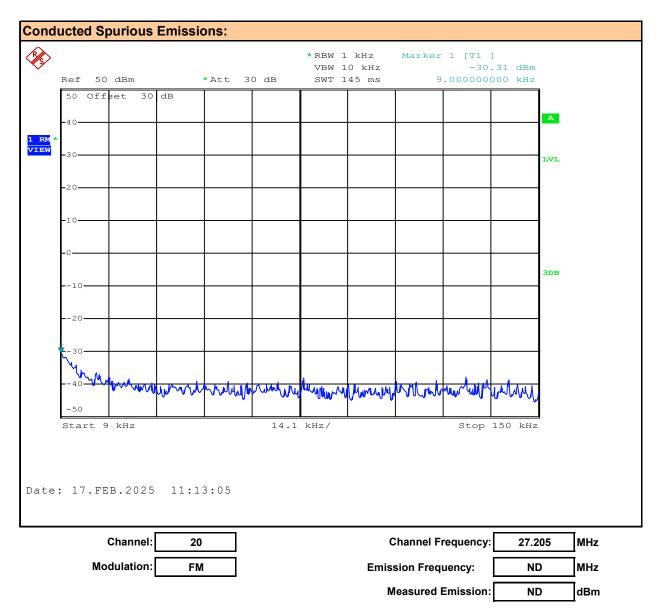

8.0 CONDUCTED OUT OF BAND SPURIOUS EMISSIONS

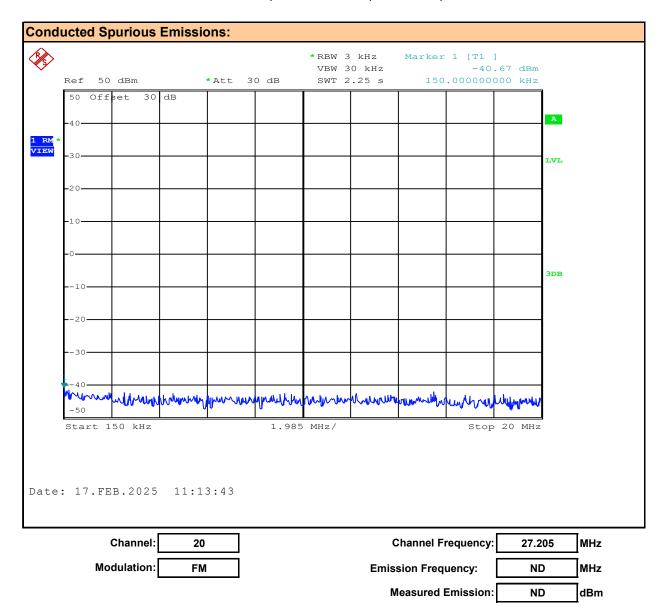
Test Conditions	
Normative Reference	FCC 47 CFR §95.979
Limits	
	Each CBRS transmitter type must be designed to comply with the applicable unwanted emissions limits in this section.
	(a) Attenuation requirements. The power of unwanted emissions must be attenuated below the transmitter output power in Watts (P) as specified in the applicable paragraphs listed in the following table:
	For A3E, F3E (1), (3), (5), (6)
47 CFR §95.979	(1) 25 dB (decibels) in the frequency band 4 kHz to 8 kHz removed from the channel center frequency;
	(3) 35 dB in the frequency band 8 kHz to 20 kHz removed from the channel center frequency;
	(5) 53 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 250% of the authorized bandwidth.
	(6) 60 dB in any frequency band centered on a harmonic (i.e., an integer multiple of two or more times) of the carrier frequency.
Measurement Proce	dure
TIA 382 21.2	Transmitter Conducted Spurious and Harmonic Emissions
	The transmitter RF output shall be connected to the standard nonradiating output load. The output shall be sampled and displayed using spectrum analysis techniques. 2500 Hz modulation shall be applied at a level 16 dB above that required to produce 50% modulation at the frequency of maximum response. The sampled output shall be analyzed from the lowest frequency generated in the equipment to the 10th harmonic of the fundamental signal and the levels of all spurious outputs attenuated not more than 20 dB below the maximum required attenuation shall be recorded.
Test Setup	Appendix A A.1

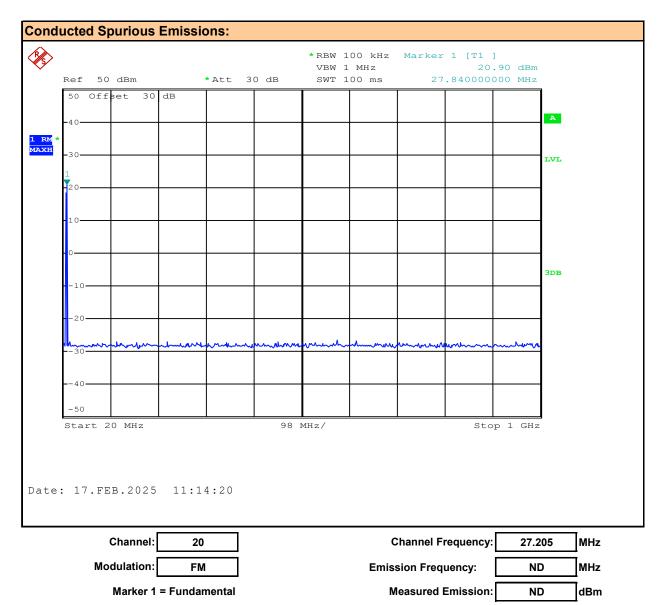

Plot 8.1 - Conducted Out of Band Emissions, 9kHz to 150kHz, Channel 20, AM

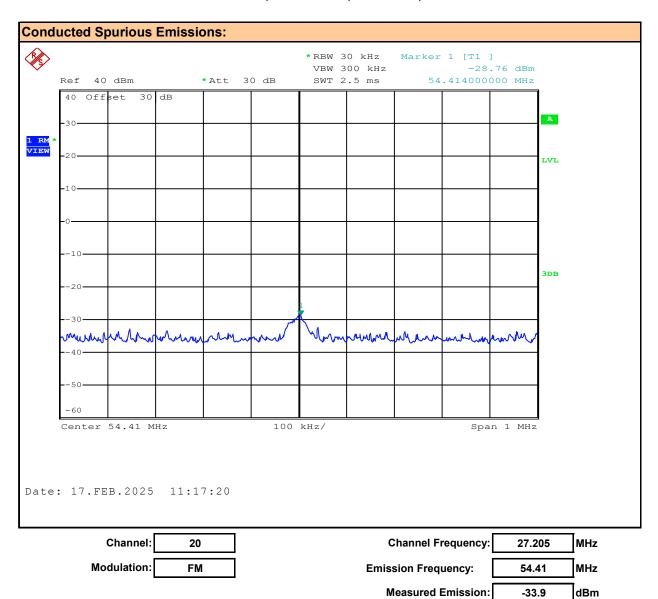

Plot 8.2 - Conducted Out of Band Emissions, 150kHz - 20MHz, Channel 20, AM


Plot 8.3 - Conducted Out of Band Emissions, 20 - 1000MHz, Channel 20, AM


Plot 8.4 – Conducted Out of Band Emissions, 2nd Harmonic, Channel 20, AM


Plot 8.5 - Conducted Out of Band Emissions, 3rd Harmonic, Channel 20, AM


Plot 8.6 - Conducted Out of Band Emissions, 9kHz to 150kHz, Channel 20, FM


Plot 8.7 - Conducted Out of Band Emissions, 150kHz - 20MHz, Channel 20, FM

Plot 8.8 - Conducted Out of Band Emissions, 20 - 1000MHz, Channel 20, FM

Plot 8.9 – Conducted Out of Band Emissions, 2nd Harmonic, Channel 20, FM

Plot 8.10 – Conducted Out of Band Emissions, 3rd Harmonic, Channel 20, FM

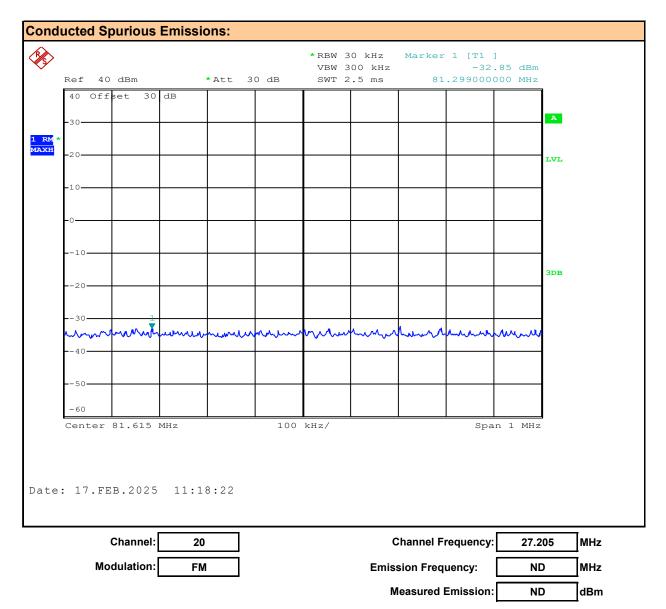


Table 8.1 – Summary of Conducted Out of Band Emissions

Conducted Spurious Emissions Measurement Results:								
Channel	Frequency	Modulation	Emission Power	Emission Frequency	Fundamental Measurment	Attenuation	Limit	Margin
Number			[P _{Em}]		[P _{Fund}]	[Atten]		
Number	(MHz)		(dBm)	(MHz)	(dBm)	(dB)	(dB)	(dB)
20	27.205	AM	-28.87	54.51	35.87	64.74	60	4.74
			-33.20	81.475	35.86	69.06		9.06
		FM	-28.76	54.41	35.86	64.62		4.62
							Complies	

Attenuation [Atten] = $[P_{Fund}]$ - $[P_{Em}]$ Margin = Attenuation - Limit ND = None Detected

9.0 RADIATED SPURIOUS TX EMISSIONS

the following table:

For A3E, F3E (1), (3), (5), (6)

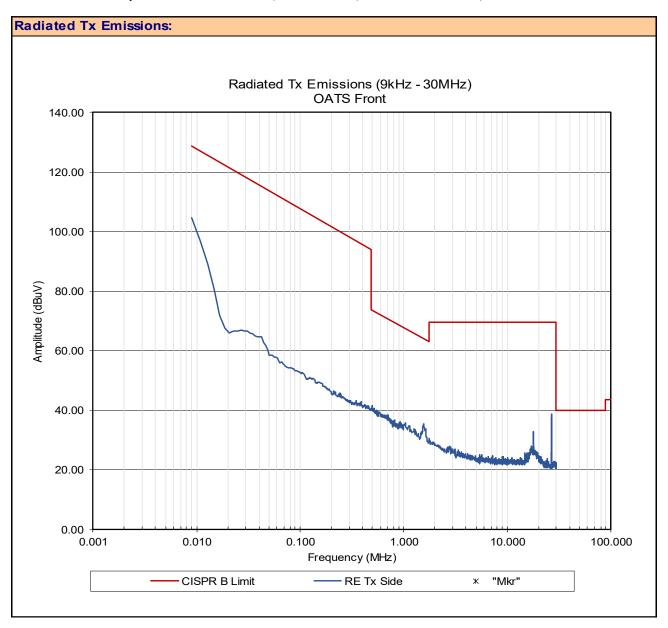
(1) 25 dB (decibels) in the frequency band 4 kHz to 8 kHz removed from the channel center frequency;

the transmitter output power in Watts (P) as specified in the applicable paragraphs listed in

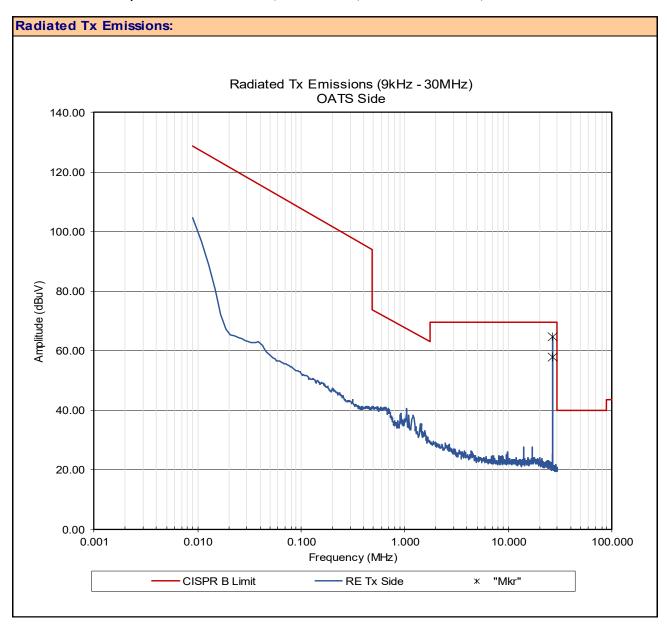
47 CFR §95.979 RSS-Gen RSS-236

- (3) 35 dB in the frequency band 8 kHz to 20 kHz removed from the channel center frequency;
- (5) 53 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 250% of the authorized bandwidth.
- (6) 60 dB in any frequency band centered on a harmonic (i.e., an integer multiple of two or more times) of the carrier frequency.
- (c) Measurement conditions and procedures. Subject to additional measurement standards and procedures established pursuant to part 2, subpart J, the following conditions and procedures must be used.
- (1) The unwanted emissions limits requirements in this section must be met both with and without the connection of permitted attachments, such as external speakers, microphones, power cords and/or antennas.

Measurement Procedure

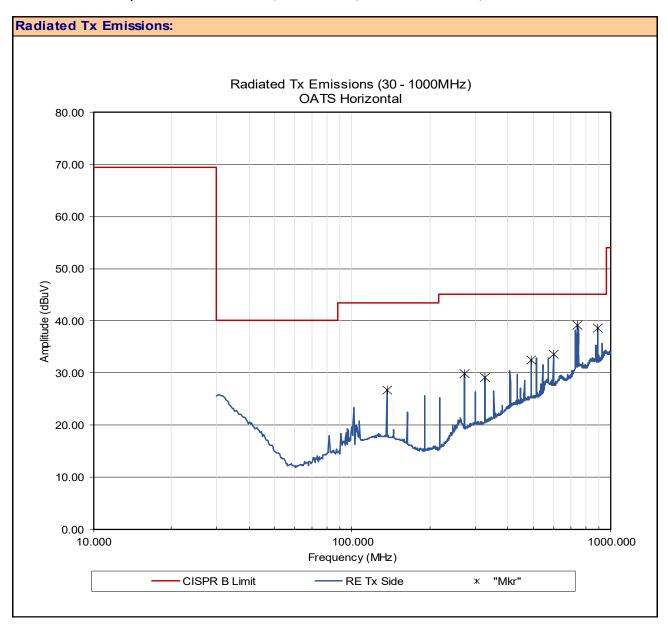

TIA 382 22.2 Transmitter Radiated Spurious and Harmonic Emissions

The transmitter shall be terminated in a nonradiating dummy load and shall be keyed but not modulated.


For each spurious frequency, raise and lower the receiver antenna to obtain a maximum reading on the FIM with the antenna at horizontal polarity. Then the turntable should be rotated to further increase this maximum reading. Repeat this procedure of raising and lowering the antenna and rotating the turntable until the highest possible signal has been obtained. The effect of the simulated accessory connections shall be noted, so that the measurement series producing the maximum radiation level can be recorded. Measurements were repeated with and without approved accessories.

Test Setup Appendix A Figure A.3

Plot 9.1 - Radiated Spurious Emissions OATS, 9kHz - 30MHz, without Accessories, Front



Plot 9.2 - Radiated Spurious Emissions OATS, 9kHz - 30MHz, without Accessories, Side

Marker = Fundamental

Plot 9.3 - Radiated Spurious Emissions OATS, 30 - 1000MHz, without Accessories, Horizontal

Plot 9.4 - Radiated Spurious Emissions OATS, 30 - 1000MHz, without Accessories, Vertical

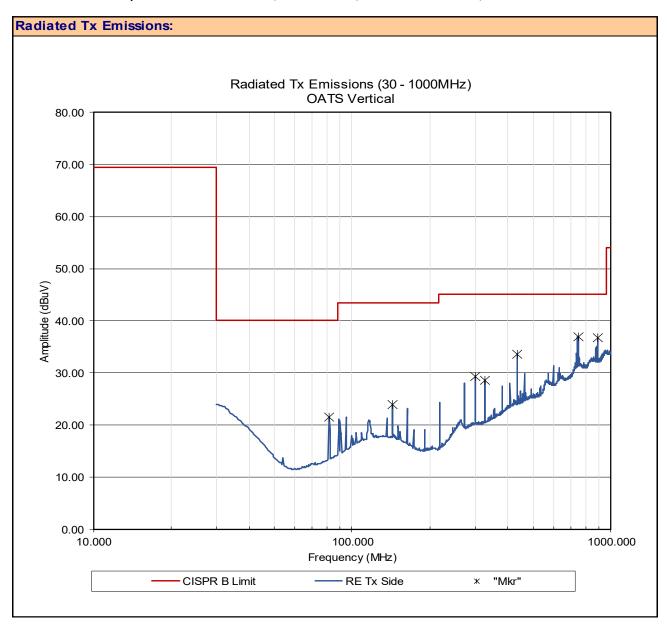


Table 9.1 - Summary of Radiated Tx Emissions, without Accessories

Summary of	of Radiated	Tx Emissions w/	o Acces	sories	5							
Measured Frequency	Antenna	Emission	Measu Emiss		Antenna ACF	Cable Loss	Ampli Gai		Correc Emiss		Limit	Margin
Range	Polarization	Frequency	[E _{Mea}	ıs]	[ACF]	[L _c]	[G _A]	[E _{Cor}	.]		
(MHz)		(MHz)	(dBu	V)	(dB)	(dB)	(dB)	(dBuV	/m)	(dBuV)	(dB)
.009 - 30	Front	ND	ND									-
.009 - 30	Side	ND	ND									-
30-1000	Horizontal	136.04	8.90	AV	16.60	1.12	0.00	(3)	26.6	(2)	43.5	16.9
30-1000	Horizontal	272.00	10.50	AV	17.80	1.56	0.00	(3)	29.9	(2)	45.0	15.1
30-1000	Horizontal	326.50	8.67	AV	18.75	1.71	0.00	(3)	29.1	(2)	45.0	15.9
30-1000	Horizontal	490.00	7.23	AV	23.00	2.16	0.00	(3)	32.4	(2)	45.0	12.6
30-1000	Horizontal	598.50	5.81	AV	25.30	2.40	0.00	(3)	33.5	(2)	45.0	11.5
30-1000	Horizontal	739.50	7.90	AV	28.60	2.7	0.00	(3)	39.2	(2)	45.0	5.8
30-1000	Horizontal	886.50	6.61	AV	29.10	2.90	0.00	(3)	38.6	(2)	45.0	6.4
30-1000	Vertical	81.48	8.06	AV	12.50	0.91	0.00	(3)	21.5	(2)	40.0	18.5
30-1000	Vertical	143.08	6.33	AV	16.49	1.14	0.00	(3)	24.0	(2)	43.5	19.5
30-1000	Vertical	299.00	9.14	AV	18.50	1.63	0.00	(3)	29.3	(2)	45.0	15.7
30-1000	Vertical	326.50	8.09	AV	18.75	1.71	0.00	(3)	28.5	(2)	45.0	16.5
30-1000	Vertical	435.50	9.63	AV	22.00	2.01	0.00	(3)	33.6	(2)	45.0	11.4
30-1000	Vertical	750.50	5.51	AV	28.70	2.69	0.00	(3)	36.9	(2)	45.0	8.1
30-1000	Vertical	889.50	4.55	AV	29.25	2.91	0.00	(3)	36.7	(2)	45.0	8.3
									Resu	ılts:	Com	nlies

ND: No Emissions Detected above ambient or within 20dB of the limit

$$E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$$

Where ACF^E is the Electric Antenna Correction Factor

^{*} Without Manufacturer's Accessories, ** With Manufacturer's Accessories

Summary of	Summary of Radiated Tx Emissions ISED RSS-Gen 6.5 (Below 30MHz) w/o Accessories								
Measured	Antenna	Emission	Measured	Antenna	Cable	Amplifier	Corrected		
Frequency	Antenna	Emission	Emission	ACF	Loss	Gain	Emission	Limit	Margin
Range	Polarization	Frequency	[E _{Meas}]	[ACF ^H]	[L _c]	[G _A]	[H _{Corr}]		
(MHz)		(MHz)	(dBuV)	(dB/Ωm)	(dB)	(dB)	(dBuA/m)	(dBuA/m)	(dB)
.009 - 30	Front	ND	ND						-
.009 - 30	Side	ND	ND						-

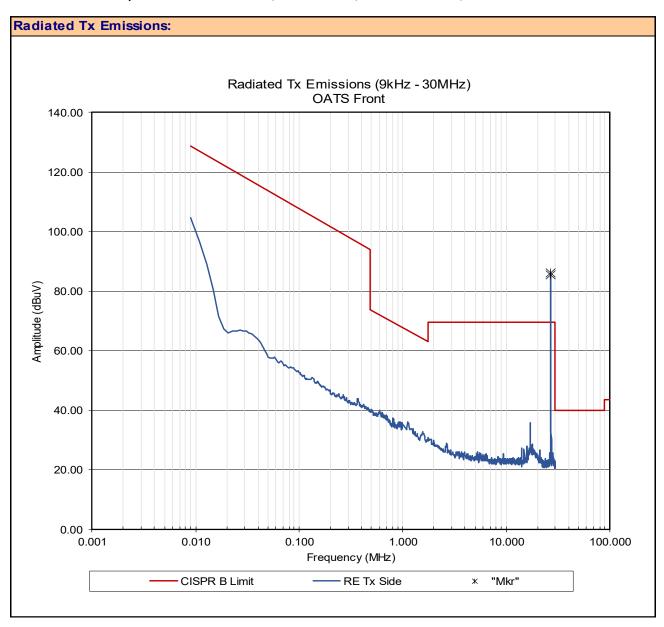
ND: No Emissions Detected above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

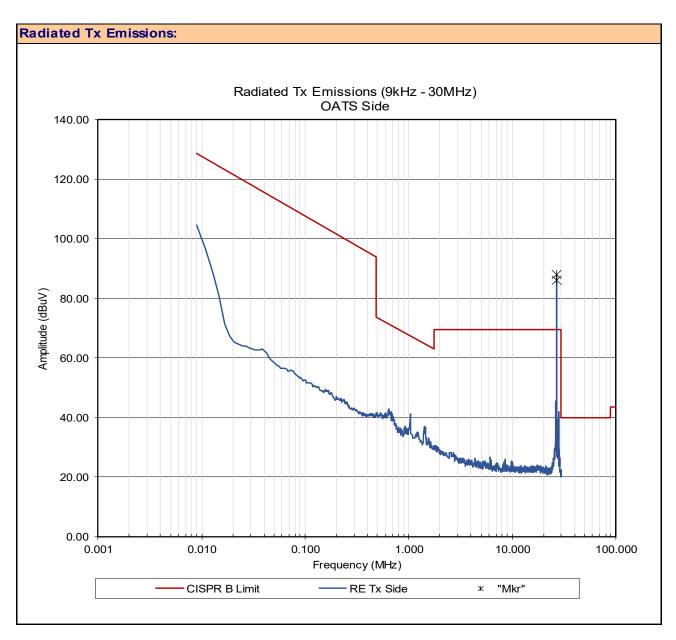
 $H_{Corr}(dBuA/m) = E_{Meas}(dBuV) + ACF^{H}(dB/\Omega m) + L_{C} - G_{A}$

Where ACF^H is the Magnetic Antenna Correction Factor

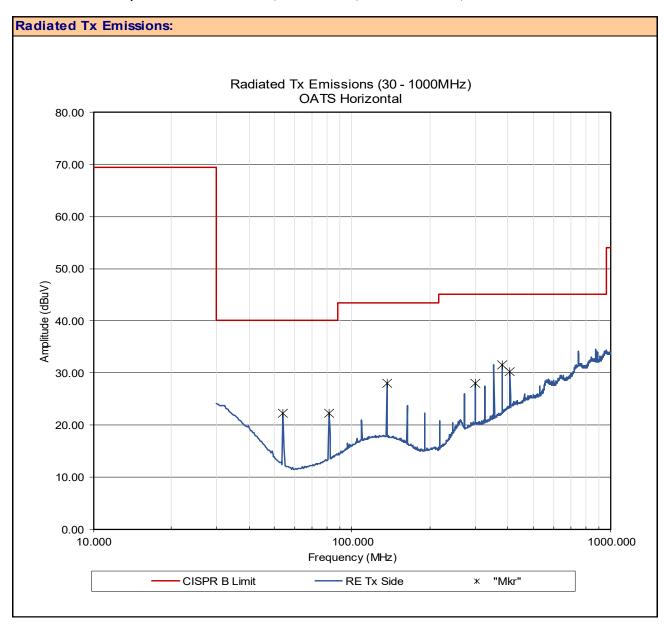

 $\mathsf{ACF}^\mathsf{H}(\mathsf{dB}/\Omega\mathsf{m}) = \mathsf{ACF}^\mathsf{E}(\mathsf{dB}/\mathsf{m}) - \mathsf{Z0}(\mathsf{dB}\Omega)$

Where $Z_0 = 120\pi\Omega = 377\Omega$, $Z_0(dB\Omega) = 20Log(377) = 51.5dB\Omega$

⁽²⁾ Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor


⁽³⁾ External Amplier not used

Plot 9.5 - Radiated Spurious Emissions OATS, 9kHz - 30MHz, with Accessories, Front


Marker = Fundamental

Plot 9.6 - Radiated Spurious Emissions OATS, 9kHz - 30MHz, with Accessories, Side

Marker = Fundamental

Plot 9.7 - Radiated Spurious Emissions OATS, 30 - 1000MHz, with Accessories, Horizontal

Plot 9.8 - Radiated Spurious Emissions OATS, 30 - 1000MHz, with Accessories, Vertical

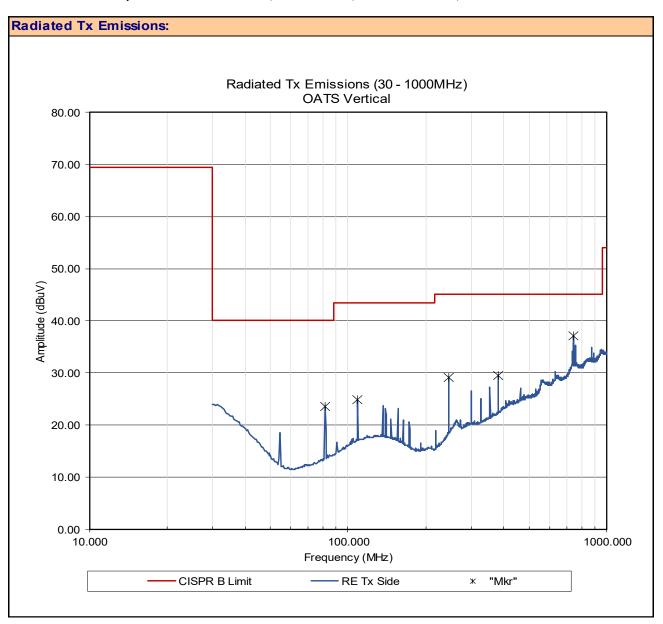


Table 9.2 - Summary of Radiated Tx Emissions, with Accessories

Summary of	of Radiated	Tx Emissions w/	Access	ories								
Measured	A	Fusionism	Measu	red	Antenna	Cable	Ampli	fier	Correc	ted		
Frequency	Antenna	Emission	Emiss	ion	ACF	Loss	Gair	n	Emissi	on	Limit	Margin
Range	Polarization	Frequency	[E _{Mea}	ıs]	[ACF]	[L _c]	[G _A]	[E _{Corr}	.]		
(MHz)		(MHz)	(dBu	V)	(dB)	(dB)	(dB))	(dBuV/	m)	(dBuV)	(dB)
.009 - 30	Front	ND	ND									-
.009 - 30	Side	ND	ND									-
30-1000	Horizontal	54.20	10.06	AV	11.46	0.78	0.00	(3)	22.3	(2)	40.0	17.7
30-1000	Horizontal	81.48	8.85	AV	12.50	0.91	0.00	(3)	22.3	(2)	40.0	17.7
30-1000	Horizontal	136.04	10.19	AV	16.60	1.12	0.00	(3)	27.9	(2)	43.5	15.6
30-1000	Horizontal	299.00	7.94	AV	18.50	1.63	0.00	(3)	28.1	(2)	45.0	16.9
30-1000	Horizontal	381.00	9.35	AV	20.40	1.86	0.00	(3)	31.6	(2)	45.0	13.4
30-1000	Horizontal	408.00	6.71	AV	21.50	1.9	0.00	(3)	30.1	(2)	45.0	14.9
30-1000	Vertical	81.48	10.16	AV	12.50	0.91	0.00	(3)	23.6	(2)	40.0	16.4
30-1000	Vertical	108.76	7.78	AV	15.98	1.02	0.00	(3)	24.8	(2)	43.5	18.7
30-1000	Vertical	245.16	10.79	AV	16.92	1.48	0.00	(3)	29.2	(2)	45.0	15.8
30-1000	Vertical	381.00	7.14	AV	20.40	1.86	0.00	(3)	29.4	(2)	45.0	15.6
30-1000	Vertical	745.00	5.75	AV	28.70	2.68	0.00	(3)	37.1	(2)	45.0	7.9
						<u> </u>			Resu	Its:	Com	olies

ND: No Emissions Detected above ambient or within 20dB of the limit

$$E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$$

Where ACF^E is the Electric Antenna Correction Factor

^{*} Without Manufacturer's Accessories, ** With Manufacturer's Accessories

Summary of	Summary of Radiated Tx Emissions ISED RSS-Gen 6.5 (Below 30MHz) w/ Accessories								
Measured	Antonno	Emission	Measured	Antenna	Cable	Amplifier	Corrected		
Frequency	Antenna	EIIIISSIOII	Emission	ACF	Loss	Gain	Emission	Limit	Margin
Range	Polarization	Frequency	[E _{Meas}]	[ACF ^H]	[L _c]	[G _A]	[H _{Corr}]		
(MHz)		(MHz)	(dBuV)	(dB/Ωm)	(dB)	(dB)	(dBuA/m)	(dBuA/m)	(dB)
.009 - 30	Front	ND	ND						•
.009 - 30	Side	ND	ND						-

ND: No Emissions Detected above ambient or within 20dB of the limit

 $H_{Corr}(dBuA/m) = E_{Meas}(dBuV) + ACF^{H}(dB/\Omega m) + L_{C} - G_{A}$

Where ACF^H is the Magnetic Antenna Correction Factor

 $ACF^{H}(dB/\Omega m) = ACF^{E}(dB/m) - Z0(dB\Omega)$

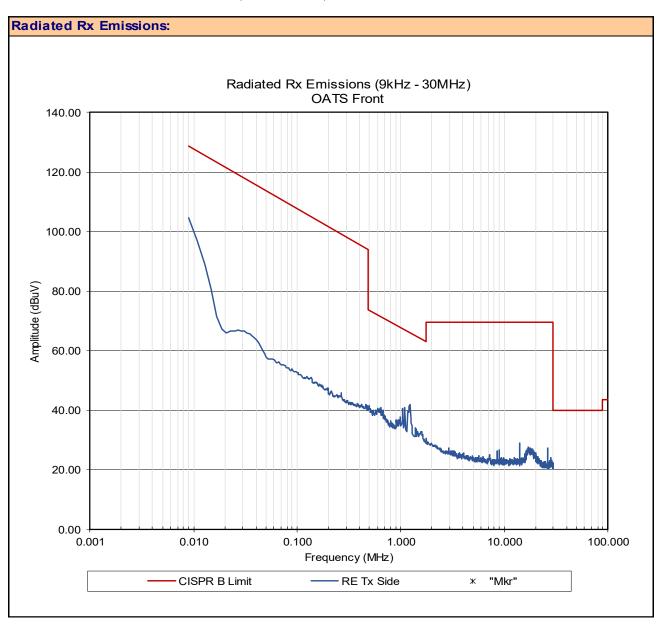
Where $Z_0 = 120\pi\Omega = 377\Omega$, $Z_0(dB\Omega) = 20Log(377) = 51.5dB\Omega$

⁽²⁾ Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

⁽³⁾ External Amplier not used

⁽²⁾ Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

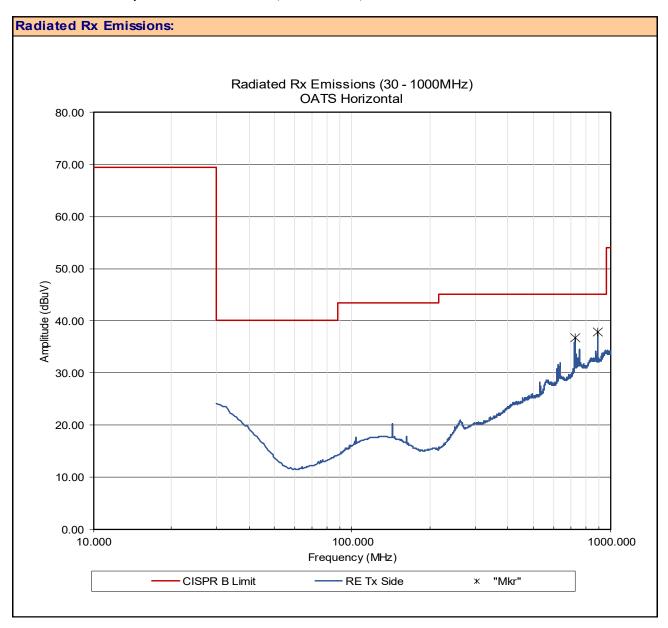
⁽³⁾ External Amplier not used


10.0 RADIATED SPURIOUS RX EMISSIONS

Test Procedure	
Normative Reference	FCC 47 CFR §15.109, ICES-003(6.2)
Normative Reference	ANSI C63.4:2014
Limits	
47 CFR §15.109	(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values: 30-88MHz: 40dBuV/m
	88-216MHz: 43.5dBuV/m 216-960MHz: 46dBuV/m
	> 960MHz: 54dBuV/m
ICES-003(6.2.1)	6.2.1 - Radiated Emissions Limits Below 1 GHz
RSS-Gen 8.9	Class B: ITE that does not meet the conditions for Class A operation shall comply with the Class B radiated limits set out in Table 5 determined at a distance of 3 metres.
	30-88MHz: 40dBuV/m
	88-216MHz: 43.5dBuV/m
	216-960MHz: 46dBuV/m
	> 960MHz: 54dBuV/m
Test Setup	Appendix A Figure A.3

Measurement Procedure

The DUT was set up as per ANSI C63.4:2014. Emissions were scanned between 30MHz and 1000MHz. The turntable was rotated 360 degrees and the antenna was elevated to 4m to optimize the measured emissions.


Plot 10.1 – Radiated Rx Emissions OATS, 9kHz - 30MHz, Front

Plot 10.2 – Radiated Rx Emissions OATS, 9kHz - 30MHz, Side

Plot 10.3- Radiated Spurious Emissions OATS, 30 - 1000MHz, Horizontal

Plot 10.4– Radiated Spurious Emissions OATS, 30 - 1000MHz, Vertical

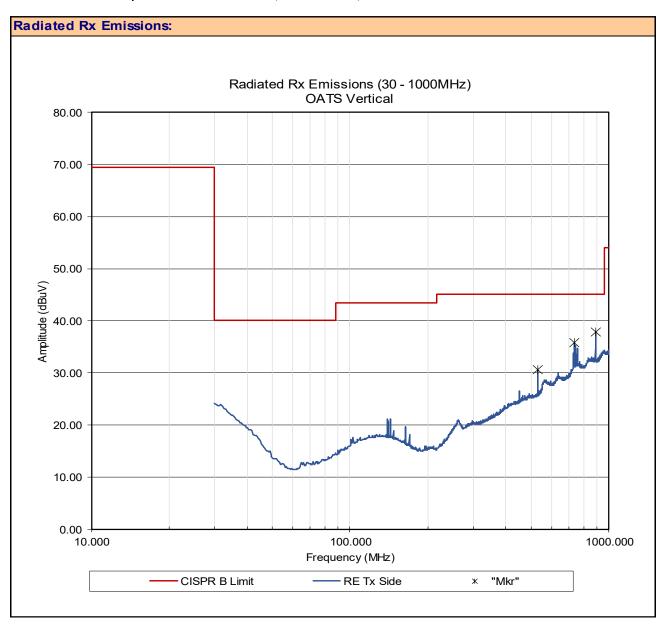


Table 10.1 - Summary of Radiated Rx Emissions

Manageman			Measu	d	Autonna	Cable	Ampli	fio.	Correc	404		
Measured	Antenna	Emission	Ivieasu	reu	Antenna	Cable	Ampii	ner	Correc	tea		
Frequency	7		Emission		ACF	Loss	Gain		Emission		Limit	Margin
Range	Polarization	Frequency	[E _{Mea}	s]	[ACF]	[L _c]	[G _A]	[E _{Corr}	.]		
(MHz)		(MHz)	(dBu	V)	(dB)	(dB)	(dB)	(dBuV/	m)	(dBuV)	(dB)
.009 - 30	Front	ND	ND	ΑV								-
.009 - 30	Side	ND	ND	ΑV								-
30-1000	Horizontal	727.0000	5.8098	ΑV	28.20000	2.7	0.00	(3)	36.7	(2)	45.0	8.3
30-1000	Horizontal	888.0000	5.7478	ΑV	29.20000	2.9	0.00	(3)	37.9	(2)	45.0	7.1
30-1000	Vertical	530.0000	4.9200	ΑV	23.40000	2.3	0.00	(3)	30.6	(2)	45.0	14.4
30-1000	Vertical	732.0000	4.8400	ΑV	28.30000	2.7	0.00	(3)	35.8	(2)	45.0	9.2
30-1000	Vertical	886.0000	5.8954	ΑV	29.10000	2.9	0.00	(3)	37.9	(2)	45.0	7.1
									Resu	ılts:	Com	olies

ND: No Emissions Detected above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$

Where ACF^E is the Electric Antenna Correction Factor

* Without Manufacturer's Accessories, ** With Manufacturer's Accessories

Summary of	Summary of Radiated Rx Emissions ISED RSS-Gen 6.5 (Below 30MHz)									
Measured	Antenna	Emission	Measu	Measured		Cable	Amplifier	Corrected		
Frequency	Ainteillia	Lillission	Emiss	Emission		Loss	Gain	Emission	Limit	Margin
Range	Polarization	Frequency	[E _{Mea}	[E _{Meas}]		[L _c]	[G _A]	[H _{Corr}]		
(MHz)		(MHz)	(dBu	V)	(dB/Ωm)	(dB)	(dB)	(dBuA/m)	(dBuA/m)	(dB)
.009 - 30	Front	ND	ND	AV						-
.009 - 30	Side	ND	ND	AV						-

ND: No Emissions Detected above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $H_{Corr}(dBuA/m) = E_{Meas}(dBuV) + ACF^{H}(dB/\Omega m) + L_{C} - G_{A}$

Where ACF^H is the Magnetic Antenna Correction Factor

 $ACF^{H}(dB/\Omega m) = ACF^{E}(dB/m) - Z0(dB\Omega)$

Where $Z_0 = 120\pi\Omega = 377\Omega$, $Z_0(dB\Omega) = 20Log(377) = 51.5dB\Omega$

APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT

Table A.1 – Setup - Conducted Measurements Equipment

			Equipment List
Asset Number	Manufacturer	Model Number	Description
00241	R&S	FSU40	Spectrum Analyzer

Figure A.1 – Test Setup Conducted Measurements

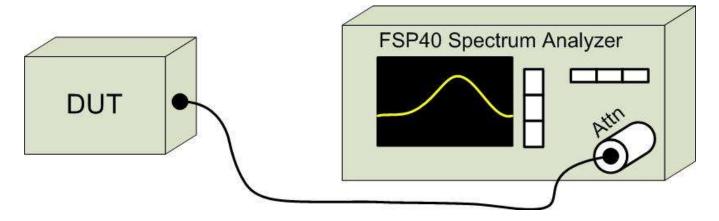


Table A.2 – Setup - Audio Modulation Equipment

Equipm	Equipment List								
Asset	Manufacturer	Model	Description						
Number	Wandacturer	Number	Description						
00028	HP	8901A	Modulation Analyzer						
00027	HP	8903B	Audio Analyzer/Generator						

Figure A.2 – Test Setup Audio Modulation Response Measurements

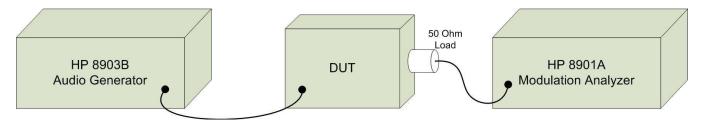


Table A.3 - Setup - Radiated Emissions Equipment

Equipm	ent List					
Asset Number	Manufacturer	Model Number	Description			
00051	HP	8566B	Spectrum Analyzer			
00049	HP	85650A	Quasi-peak Adapter			
00047	HP	85685A	RF Preselector			
00072	EMCO	2075	Mini-mast			
00073	EMCO	2080	Turn Table			
00071	EMCO	2090	Multi-Device Controller			
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier			
00241	R&S	FSU40	Spectrum Analyzer			
00050	Chase	CBL-6111A	Bilog Antenna			
00275	Coaxis	LMR400	25m Cable			
00276	Coaxis	LMR400	4m Cable			
00278	TILE	34G3	TILE Test Software			
00034	ETS	3115	Double Ridged Guide Horn			

CNR: Calibration Not Required

COU: Calibrate On Use

Figure A.3 – Test Setup Radiated Emissions Measurements Below 30MHz

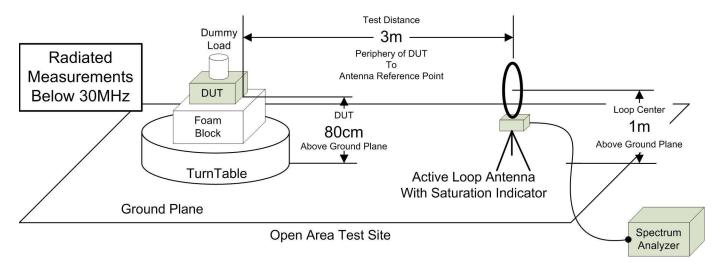


Figure A.4 – Test Setup Radiated Emissions Measurements 30-1000MHz

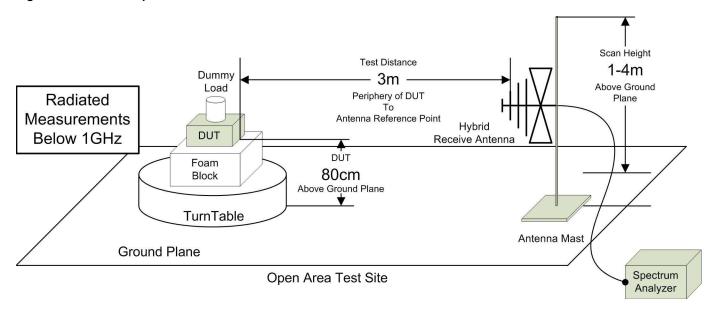
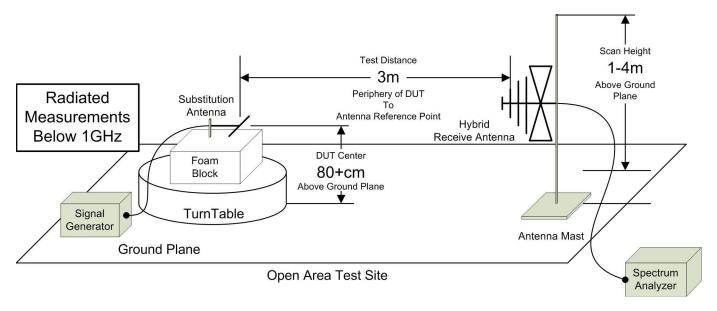



Figure A.5 – Test Setup Radiated Emissions Measurements 30-1000MHz

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Equipme	ent List						
Asset Number	Manufacturer	Model Number	Serial Number	Description	Last Calibrated	Calibration Interval	Calibration Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	16 Nov 2023	Triennial	16 Nov 2026
00035	ETS	3115	6276	Double Ridged Guide Horn	4 Mar 2022	Triennial	4 Mar 2025
00241	R&S	FSU40	100500	Spectrum Analyzer	6 Sep 2024	Triennial	6 Sep 2027
00250	Circuit Test	DMR-1800	TE182	Digital Multi-Meter - DVM	26 Jun 2023	Triennial	26 Jun 2026
00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
00130	Pasternack	PE7019-30	n/a	30dB, 50W Attenuator	COU	n/a	COU
00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR

NCR: No Calibration Required COU: Calibrate On Use

APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (U _{LAB})
Th	nis uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2
	Radiated Emissions 30MHz - 200MHz
	U _{LAB} = 5.14dB
	Radiated Emissions 200MHz - 1000MHz
	U _{LAB} = 5.90dB
	Radiated Emissions 1GHz - 6GHz
	$U_{LAB} = 4.80dB$ $U_{CISPR} = 5.2dB$
	Radiated Emissions 6GHz - 18GHz
	$U_{LAB} = 5.1dB$ $U_{CISPR} = 5.5dB$
	Power Line Conducted Emissions 9kHz to 150kHz
	$U_{LAB} = 2.96dB$ $U_{CISPR} = 3.8dB$
	Power Line Conducted Emissions 150kHz to 30MHz
	$U_{LAB} = 3.12dB$ $U_{CISPR} = 3.4dB$
	If the calculated uncertainty \mathbf{U}_{lab} is $less$ than \mathbf{U}_{CISPR} then:
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit
2	Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit
	If the calculated uncertainty \mathbf{U}_{lab} is $\mathbf{greater}$ than \mathbf{U}_{CISPR} then:
3	Compliance is deemed to occur if NO measured disturbance, increased by $(U_{lab} - U_{CISPR})$, exceeds the disturbance limit
4	Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit

Other Measurement Uncertainties (U _{LAB})
RF Conducted Emissions 9kHz - 40GHz
$U_{LAB} = 1.0dB$ $U_{CISPR} = n/a$
Frequency/Bandwidth 9kHz - 40GHz
$U_{LAB} = 0.1ppm$ $U_{CISPR} = n/a$
Temperature
$U_{LAB} = 1^{O}C$ $U_{CISPR} = n/a$

END OF REPORT