

FCC PART 15.247

TEST REPORT

For

Linkhealth Corporation

472 Sandhurst Dr Milpitas, CA 95035 United States

FCC ID: 2AEL7T1GHA
Model: T1GHA

Report Type: Original Report	Product Name: Smart thermometer
Test Engineer: <u>Kevin Hu</u> <i>Kevin Hu</i>	
Report Number: <u>RSC150415001</u>	
Report Date: <u>2015-10-26</u>	
Reviewed By: <u>Engineering Director</u> <i>Fidel Zhou</i> <i>Fidel Zhou</i>	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Chengdu) 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China Tel: 028-65523123, Fax: 028-65525125 www.baclcorp.com	

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	3
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT EXERCISE SOFTWARE	5
EQUIPMENT MODIFICATIONS	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §15.247 (i) & §2.1093 – RF EXPOSURE	7
APPLICABLE STANDARD	7
FCC §15.203 - ANTENNA REQUIREMENT	8
APPLICABLE STANDARD	8
ANTENNA CONNECTOR CONSTRUCTION	8
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	9
APPLICABLE STANDARD	9
MEASUREMENT UNCERTAINTY	9
EUT SETUP	10
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	11
TEST PROCEDURE	11
CORRECTED AMPLITUDE & MARGIN CALCULATION	11
TEST EQUIPMENT LIST AND DETAILS	12
TEST RESULTS SUMMARY	12
TEST DATA	12
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	16
APPLICABLE STANDARD	16
TEST PROCEDURE	16
TEST EQUIPMENT LIST AND DETAILS	16
TEST DATA	17
FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER	19
APPLICABLE STANDARD	19
TEST PROCEDURE	19
TEST EQUIPMENT LIST AND DETAILS	19
TEST DATA	20
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	22
APPLICABLE STANDARD	22
TEST PROCEDURE	22
TEST EQUIPMENT LIST AND DETAILS	22
TEST DATA	22
FCC §15.247(e) - POWER SPECTRAL DENSITY	24
APPLICABLE STANDARD	24
TEST PROCEDURE	24
TEST EQUIPMENT LIST AND DETAILS	24
TEST DATA	25

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Linkhealth Corporation*'s product, model number: *T1GHA (FCC ID: 2AEL7T1GHA)* (the "EUT") in this report was the Smart thermometer, rated input voltage: DC 3V

**All measurement and test data in this report were gathered from final production sample, serial number: 150415001/04 (assigned by BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2015-09-29, and EUT complied with test requirement.*

Objective

This report is prepared on behalf of *Linkhealth Corporation* accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any radiation on emissions measurement is:

30M~200MHz: ± 4.7 dB;
200M~1GHz: ± 6.0 dB;
1G-6GHz: ± 5.13 dB;
6G~25GHz: ± 5.47 dB;

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Test Facility

The test site used by BACL to collect test data is located in the 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China

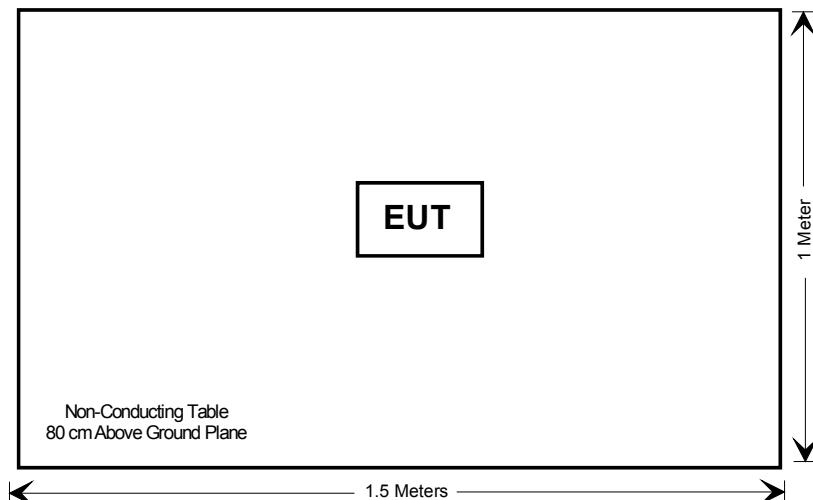
Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on July 31, 2009. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.


EUT Exercise Software

Serial assistant

Equipment Modifications

No modification was made to the EUT by BACL.

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b)(1), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	N/A*
§15.247(d)	Conducted Spurious Emissions at Antenna Port	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

N/A*: Don't require to test.

FCC §15.247 (i) & §2.1093 – RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v05r02:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The maximum conducted output power = -5.95 dBm = 0.254 mW at 2402 MHz
 $[(\text{max. power of channel, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] = 0.254 / 5 * (\sqrt{2.402}) = 0.08 < 3.0$

Result: No SAR test needed.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has PCB SMT soldering antenna arrangement, which was permanently attached and the antenna gain is 0.5 dBi, fulfill the requirement of this section. Please refer to the internal photos.

Result: Compliance.

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 2, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cispr} of Table 2, then:

- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cispr}})$, exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Chengdu) is:

30M~200MHz: ± 4.7 dB ;

200M~1GHz: ± 6.0 dB ;

1G-6GHz: ± 5.13 dB;

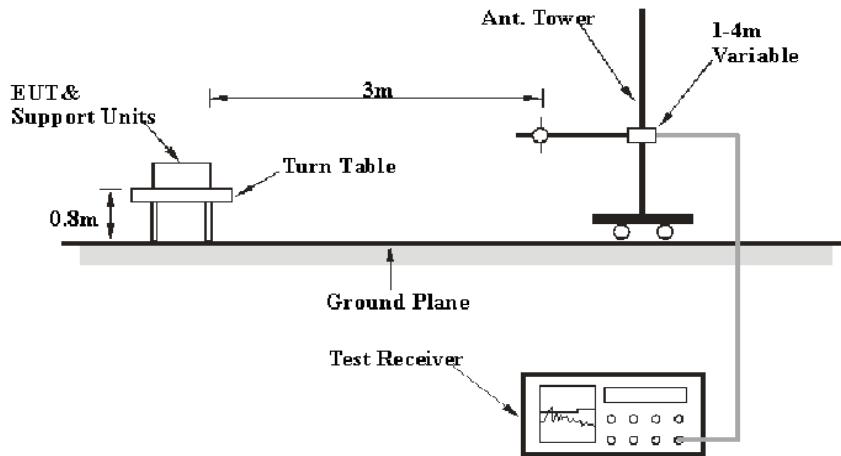
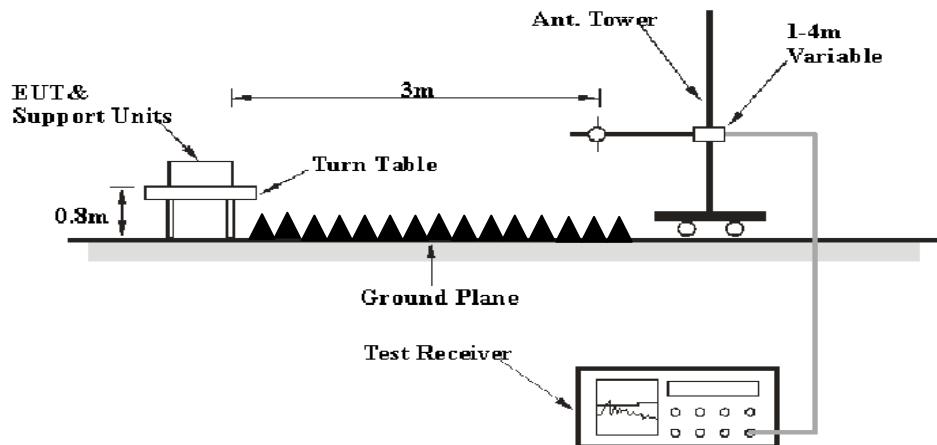

6G~25GHz: ± 5.47 dB;

Table 2 – Values of U_{cispr}


Measurement	U_{cispr}
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters Semi-Anechoic Chamber, using the setup in accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209 and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

DC 3V was used by the EUT.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
	1 MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Receiver Reading + Cable loss + Antenna Factor – Amplifier Gain

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit-Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date	Calibration Due Date
Amplifier	Agilent	8447D	2944A10442	2015-06-23	2016-06-22
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2015-06-23	2016-06-22
Sunol Sciences	Broadband Antenna	JB3	A101808	2013-04-10	2016-04-09
Rohde & Schwarz	Spectrum Analyzer	FSL18	100180	2015-06-23	2016-06-22
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2015-10-17	2016-10-16
EM TEST	Horn Antenna	3115	003-6076	2013-04-09	2016-04-08
Amplifier	HP	8449B	3008A00277	2015-06-23	2016-06-22
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23

* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Section 15.205, 15.209 and 15.247, with the worst margin reading of:

8.43 dB at 4804 MHz in the Vertical polarization

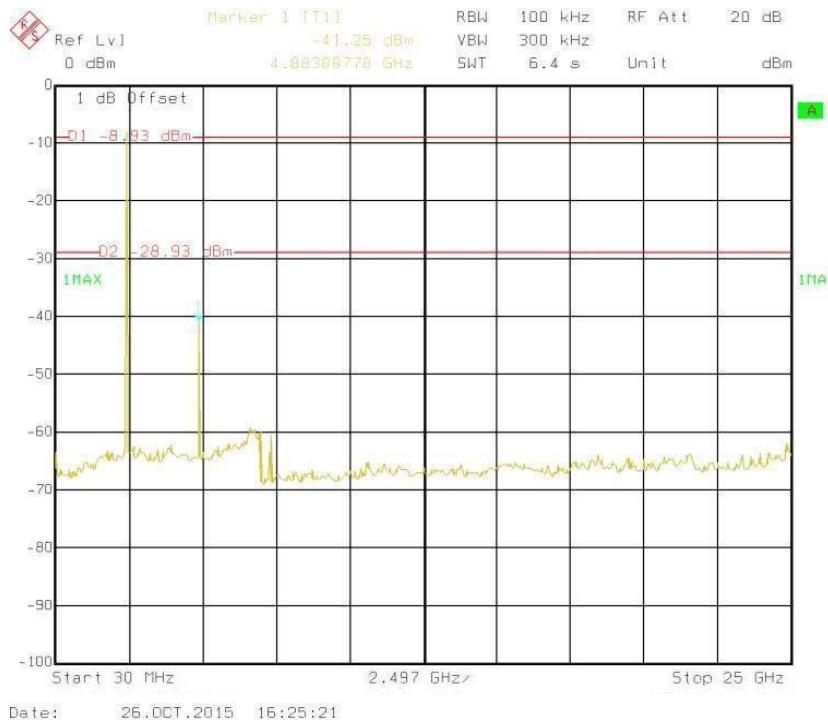
Test Data

Environmental Conditions

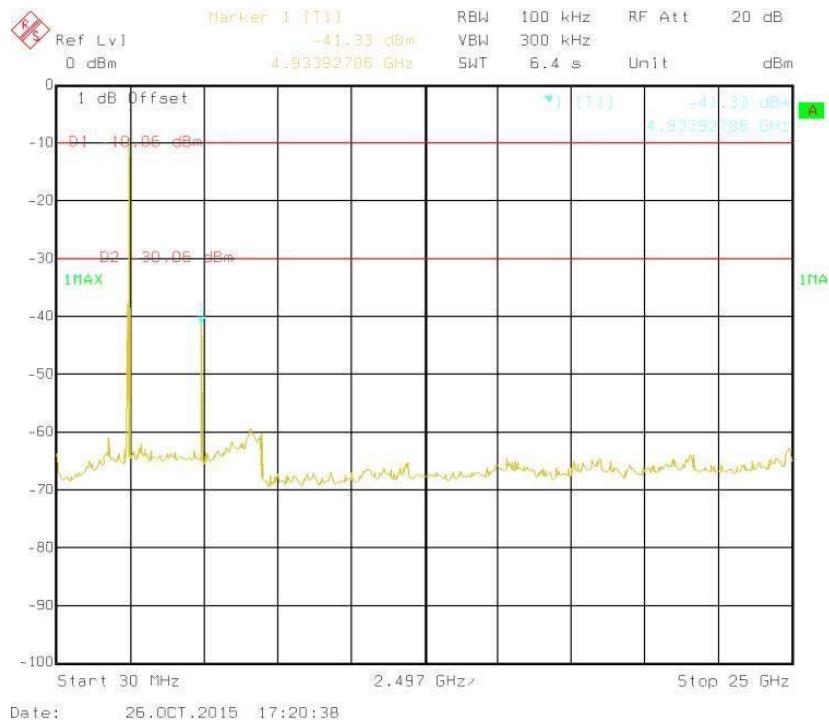
Temperature:	17 °C & 22 °C
Relative Humidity:	56 % & 69 %
ATM Pressure:	97.1 kPa & 101.7 kPa

The testing was performed by Kevin Hu on 2015-10-20 & 2015-10-26.

Test Mode: Transmitting

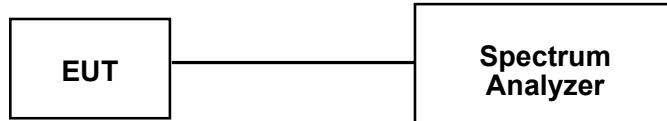

Frequency (MHz)	Receiver		Rx Antenna		Cable Loss (dB)	Amplifier Gain (dB)	Corrected Amplitude (dB μ V/m)	FCC 15.247	
	Reading (dB μ V)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)				Limit (dB μ V/m)	Margin (dB)
Low Channel: 2402 MHz									
2402	60.14	PK	H	23.14	5.75	0.00	89.03	N/A	N/A
2402	55.81	AV	H	23.14	5.75	0.00	84.70	N/A	N/A
2402	63.73	PK	V	23.14	5.75	0.00	92.62	N/A	N/A
2402	59.29	AV	V	23.14	5.75	0.00	88.18	N/A	N/A
2390	26.72	PK	V	23.08	5.68	0.00	55.48	74.00	18.52
2390	15.5	AV	V	23.08	5.68	0.00	44.26	54.00	9.74
4804	42.52	PK	V	30.76	7.86	26.81	54.33	74.00	19.67
4804	33.76	AV	V	30.76	7.86	26.81	45.57	54.00	8.43
117.36	40.11	QP	V	14.86	0.76	28.02	27.71	43.50	15.79
Middle Channel: 2440 MHz									
2440	55.73	PK	H	25.74	5.79	0.00	87.26	N/A	N/A
2440	50.44	AV	H	25.74	5.79	0.00	81.97	N/A	N/A
2440	57.11	PK	V	25.74	5.79	0.00	88.64	N/A	N/A
2440	52.08	AV	V	25.74	5.79	0.00	83.61	N/A	N/A
4880	43.15	PK	V	30.79	7.90	26.78	55.06	74.00	18.94
4880	32.19	AV	V	30.79	7.90	26.78	44.10	54.00	9.90
117.36	40.28	QP	V	14.86	0.76	28.02	27.88	43.50	15.62
High Channel: 2480 MHz									
2480	57.16	PK	H	25.85	3.82	0.00	86.83	N/A	N/A
2480	50.76	AV	H	25.85	3.82	0.00	80.43	N/A	N/A
2480	58.25	PK	V	25.85	3.82	0.00	87.92	N/A	N/A
2480	51.92	AV	V	25.85	3.82	0.00	81.59	N/A	N/A
2483.5	27.68	PK	V	25.86	3.80	0.00	57.34	74.00	16.66
2483.5	13.74	AV	V	25.86	3.80	0.00	43.40	54.00	10.60
4960	44.76	PK	V	31.00	4.70	26.71	53.75	74.00	20.25
4960	34.7	AV	V	31.00	4.70	26.71	43.69	54.00	10.31
117.36	41.27	QP	V	14.86	0.76	28.02	28.87	43.50	14.63

Conducted Spurious Emissions at Antenna Port


Low Channel

Middle Channel

High Channel


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

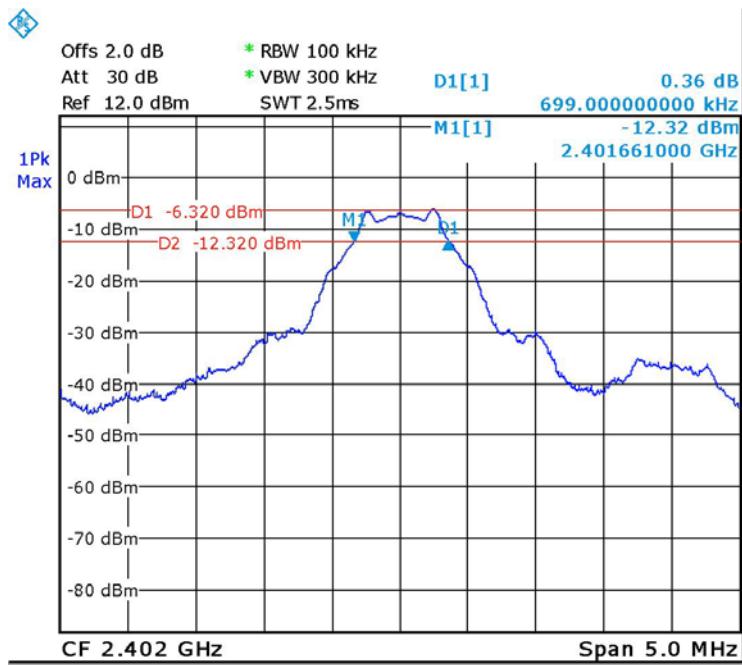
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSL18	100180	2015-06-23	2016-06-22

* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

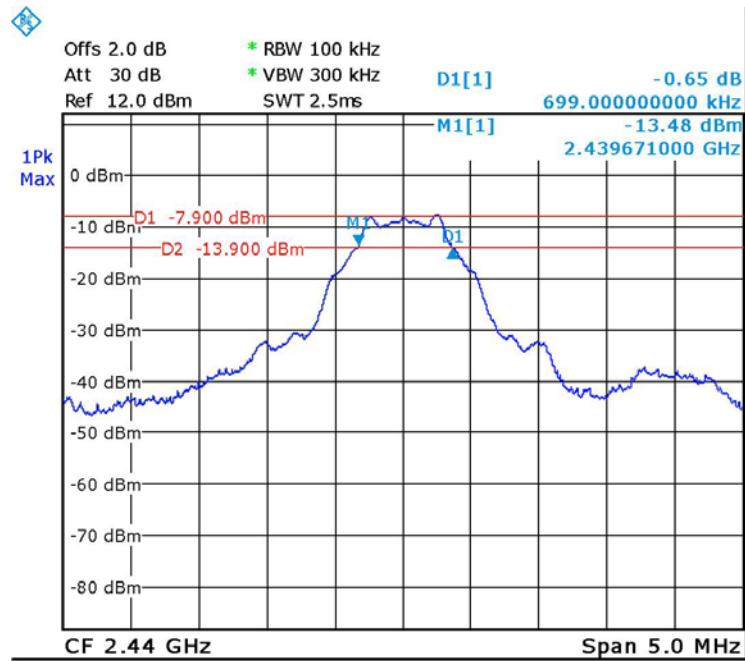
Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	68 %
ATM Pressure:	101.8 kPa

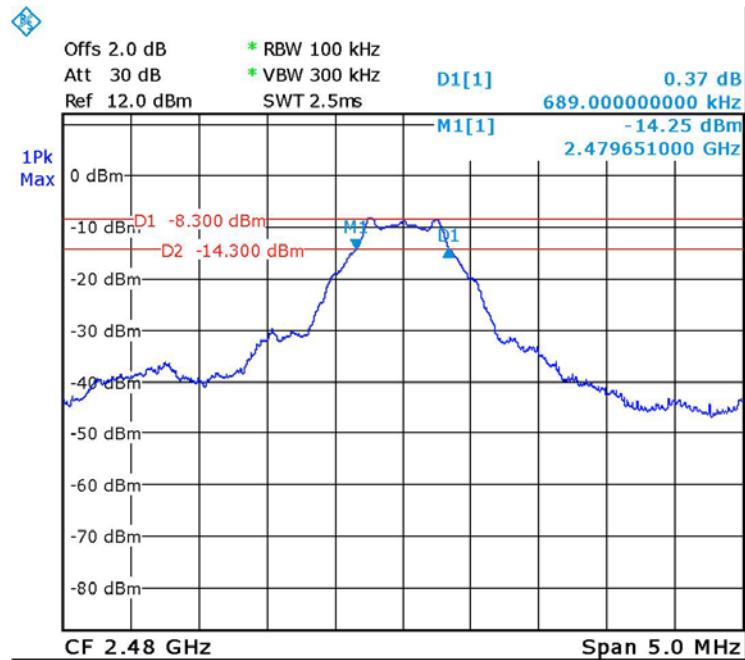

The testing was performed by Kevin Hu on 2015-10-19.

Test Mode: Transmitting


Mode	Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	FCC Limit (kHz)
GFSK	Low	2402	0.699	> 500
	Middle	2440	0.699	> 500
	High	2480	0.689	> 500

Please refer to the following plots:

Low Channel

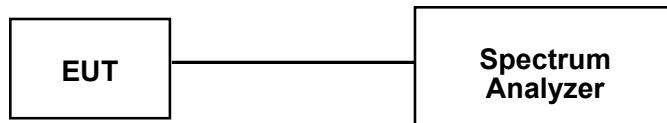


Middle Channel

Date: 19.OCT.2015 15:08:41

High Channel

Date: 19.OCT.2015 14:24:17


FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

1. Place the EUT on a bench and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.
3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSL18	100180	2015-06-23	2016-06-22

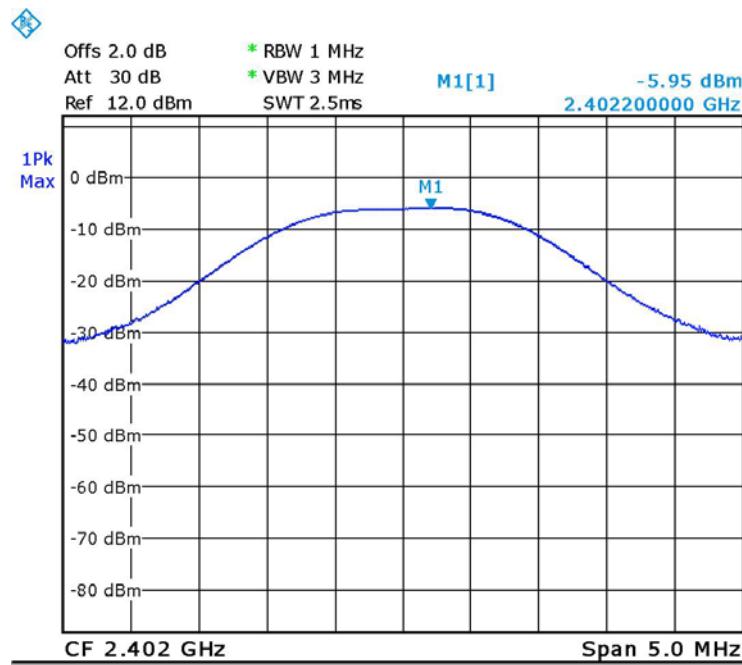
* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

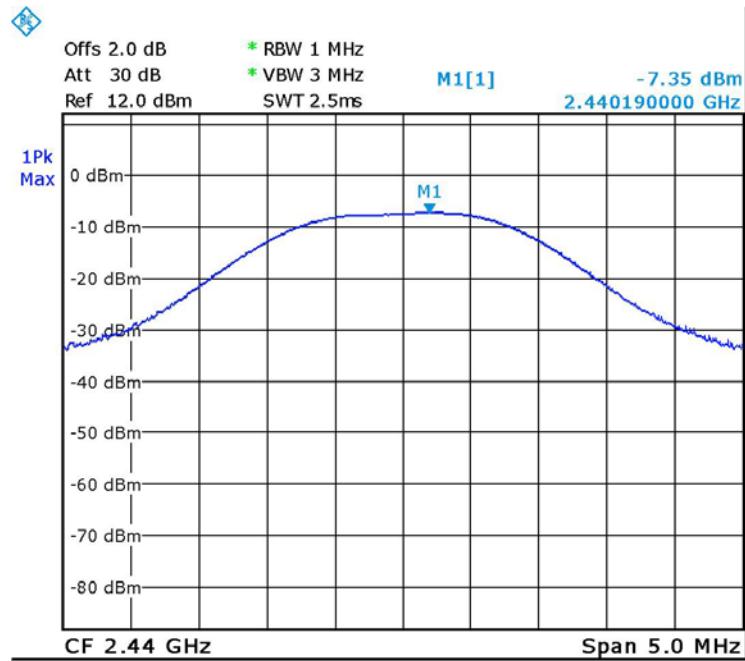
Environmental Conditions

Temperature:	22 °C
Relative Humidity:	68 %
ATM Pressure:	101.8 kPa

The testing was performed by Kevin Hu on 2015-10-19.

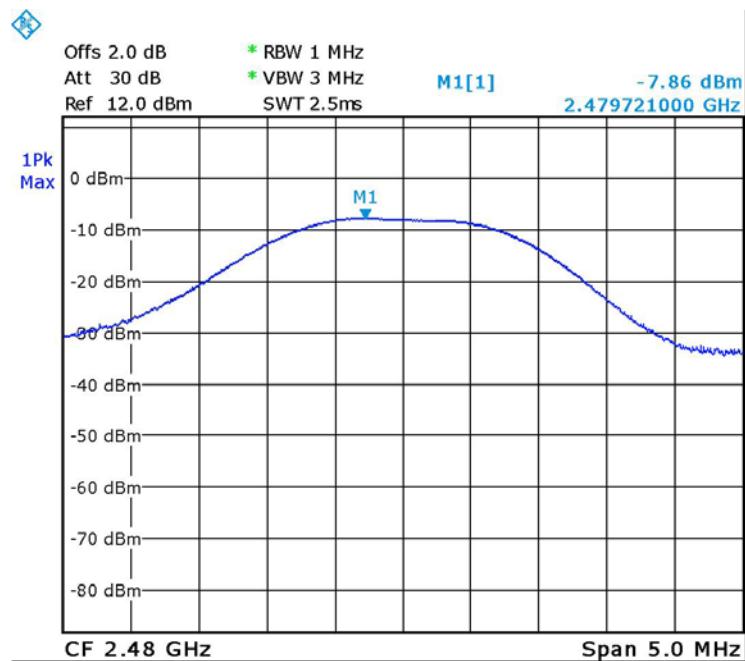

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Result
GFSK	Low	2402	-5.95	30	Pass
	Middle	2440	-7.35	30	Pass
	High	2480	-7.86	30	Pass


Note: Duty cycle is more than 98%.

Please refer to the following plots

Low Channel



Middle Channel

Date: 19.OCT.2015 14:14:28

High Channel

Date: 19.OCT.2015 14:17:04

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

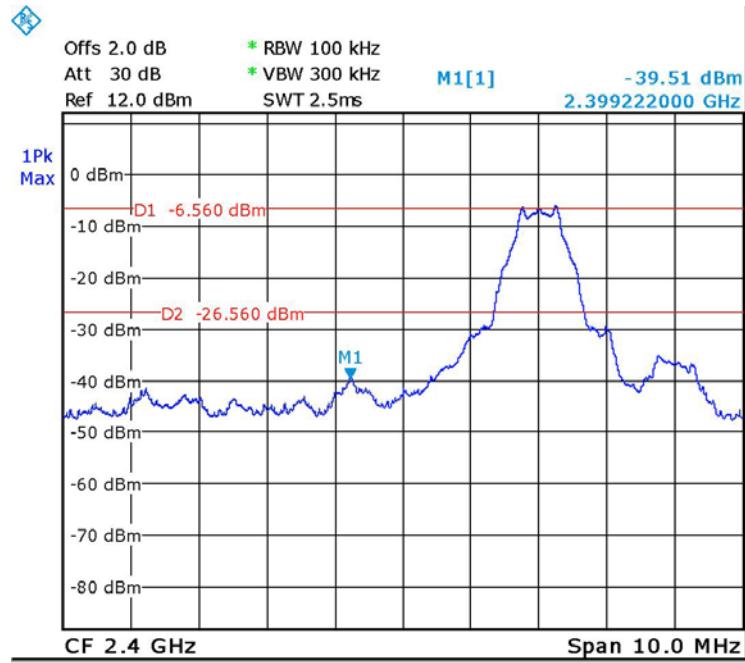
1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSL18	100180	2015-06-23	2016-06-22

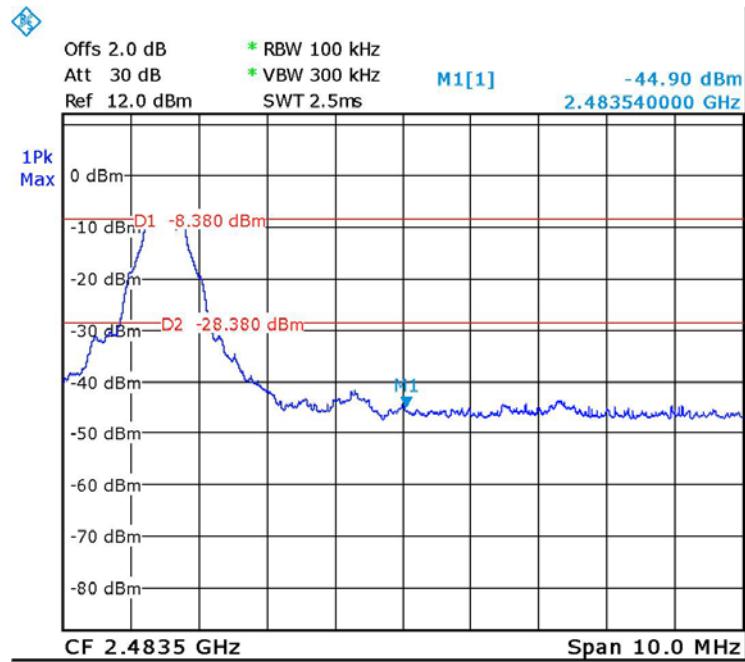
* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data


Temperature:	22 °C
Relative Humidity:	68 %
ATM Pressure:	101.8 kPa

The testing was performed by Kevin Hu on 2015-10-19.

Test Mode: Transmitting


Test Result: Compliance, Please refer to following table and plots.

Band Edge, Left Side

Date: 19.OCT.2015 15:20:09

Band Edge, Right Side

Date: 19.OCT.2015 14:45:11

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. According to KDB 558074 D01 DTS Meas Guidance v03v03, set the RBW = 3 kHz, VBW = 10 kHz, Set the span to 1.5 times the DTS channel bandwidth.
4. Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSL18	100180	2015-06-23	2016-06-22

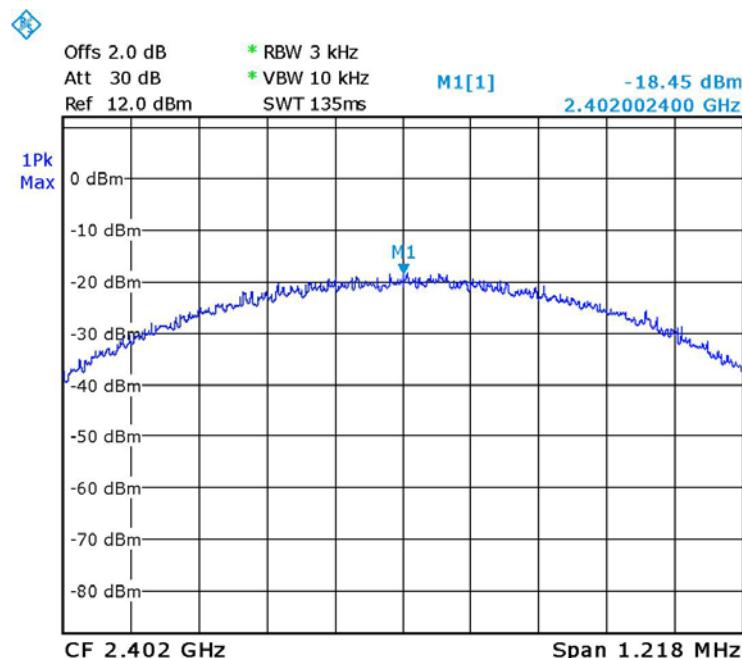
* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	68 %
ATM Pressure:	101.8 kPa

The testing was performed by Kevin Hu on 2015-10-19.

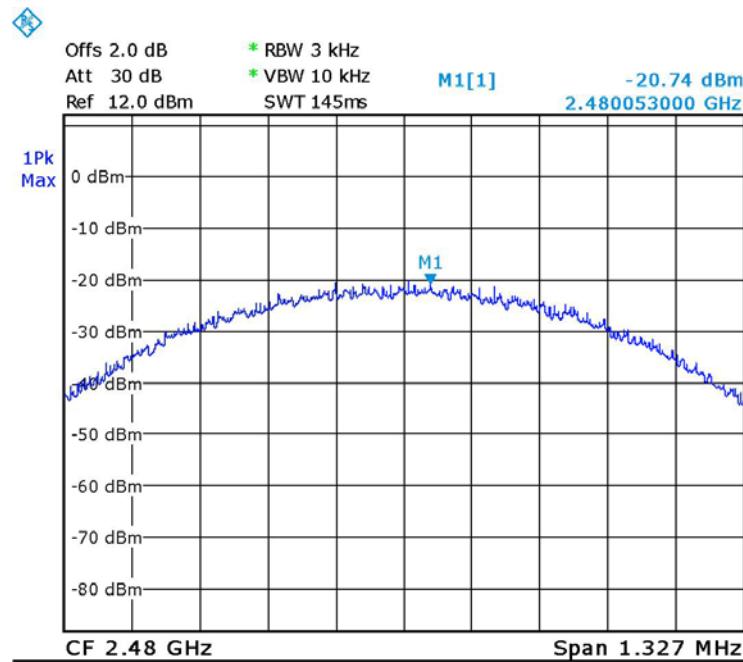

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Result
GFSK	Low	2402	-17.95	8	Pass
	Middle	2440	-19.27	8	Pass
	High	2480	-20.24	8	Pass

Note: Duty cycle is more than 98%.

Please refer to the following plots.

Power Spectral Density, Low Channel



Power Spectral Density, Middle Channel

Date: 19.OCT.2015 15:10:13

Power Spectral Density, High Channel

Date: 19.OCT.2015 15:01:51

***** **END OF REPORT** *****