Company: lotera

Test of: Home Base To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Report No.: IOTA01-U3a 900 MHz Rev A

TEST REPORT

TEST OF: Home Base

to

TO: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Test Report Serial No.: IOTA01-U3a 900 MHz Rev A

This report supersedes: NONE

Applicant: lotera

370 Convention Way # 220 Redwood City, California 94063

USA

Product Function: GPS tracker

Issue Date: 8th April 2015

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 3 of 115

Table of Contents

١.	ACCREDITATION, LISTINGS & RECOGNITION	
	1.1. TESTING ACCREDITATION	4
	1.2. RECOGNITION	5
	1.3. PRODUCT CERTIFICATION	6
2.	DOCUMENT HISTORY	
3.	TEST RESULT CERTIFICATE	8
4.	REFERENCES AND MEASUREMENT UNCERTAINTY	9
	4.1. Normative References	9
	4.2. Test and Uncertainty Procedure	
5.	PRODUCT DETAILS AND TEST CONFIGURATIONS	11
	5.1. Technical Details	
	5.2. Scope Of Test Program	
	5.3. Equipment Model(s) and Serial Number(s)	
	5.4. Antenna Details	
	5.5. Cabling and I/O Ports	
	5.6. Test Configurations	
	5.7. Equipment Modifications	
	5.8. Deviations from the Test Standard	
6.	TEST SUMMARY	
7.	TEST EQUIPMENT CONFIGURATION(S)	17
8.	MEASUREMENT AND PRESENTATION OF TEST DATA	21
9.	TEST RESULTS	
	9.1. 20 dB & 99% Bandwidth	22
	9.2. 6 dB & 99% Bandwidth	
	9.3. Number Of Channels	
	9.4. Channel Spacing	
	9.5. Dwell Time & Channel Occupancy	
	9.6. Conducted Output Power	
	9.7. Conducted Spurious Emissions	
	9.7.1. Conducted Emissions	
	9.7.1.1. Conducted Spurious Emissions	
	9.7.1.2. Conducted Band-Edge Emissions	
	9.8. Power Spectral Density	
	9.9. Radiated Emissions	
	9.9.1. Radiated Spurious	
	9.9.2. Digital Emissions (0.03-1 GHz)	
	9.10. ac Wireline Emissions	
10). APPENDIX	
	10.1. 20 dB & 99% Bandwidth	
	10.2. 6 dB & 99% Bandwidth	
	10.3. Number of Channels	
	10.4. Channel Spacing	
	10.5. Dwell Time & Channel Occupancy	
	10.6. Conducted Spurious Emissions	
	10.6.1. Conducted Emissions	
	10.6.2. Conducted Band-Edge Emissions	
	10.7. Power Spectral Density	109

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 4 of 115

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 28th day of February 2014.

President & CEO
For the Accreditation Council
Certificate Number 2381.01
Valid to November 30, 2015

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 5 of 115

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 6 of 115

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012
Requirements for bodies certifying products, processes and services. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system.

Presented this 28th day of February 2014.

President & CEO V For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2015

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 7 of 115

2. **DOCUMENT HISTORY**

Document History						
Revision	Date	Comments				
Draft	25th Mar 2015					
Rev A	8 th April 2015	Initial Release				

In the above table the latest report revision will replace all earlier versions.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 Page: 8 of 115

3. TEST RESULT CERTIFICATE

Manufacturer: lotera

370 Convention Way # 220

Redwood City California 94063

USA

Model: Home Base

Type Of Equipment: GPS Tracker (900 MHz)

S/N's: Not Available

Test Date(s): 25 - 25 March 2015

Tested By: MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566

USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Limited to 900 MHz Operation Only

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

ACCREDITED
TESTING CERT #2381.01

100

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 9 of 115

4. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 644545 D01 v01r02	Oct 31 2013	Guidance for IEEE 802.11ac Old rules.
II	662911	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
III	558074 D01	June 6,2014	DTS Meas Guidance v03r02 Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
IV	558074 D02	June 5,2014	DTS Part 15.247 Old Rule. Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
V	A2LA	April 2014	Reference to A2LA Accreditation Status – A2LA Advertising Policy
VI	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
VII	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VIII	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
IX	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
Х	FCC 47 CFR Part 15.247	2014	CFR Title 47 Part 15.247 – Radio Frequency Devices; Subpart C – Intentional Radiators
XI	ICES-003	Issue 5 2012	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (ITE) – Limits and methods of measurement.
XII	M 3003	Edition 3 Nov. 2012	Expression of Uncertainty and Confidence in Measurements
XIII	RSS-210 Annex 8	2010	Radio Standards Specification 210; License-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
XIV	RSS-Gen	2010	General Requirements and Information for the Certification of Radio communication Equipment
XV	KDB 644545 D02 v01	June 7th 2012	Alternative Guidance for IEEE 802.11ac and pre-ac Device emissions testing, old rules.
XVI	KDB 644545 D03	August 14th 2014	Guidance for IEEE 802.11ac New Rules v01
XVII	FCC 47 CFR Part 2.1033	2014	FCC requirements and rules regarding photographs and test setup diagrams.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 10 of 115

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 11 of 115

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

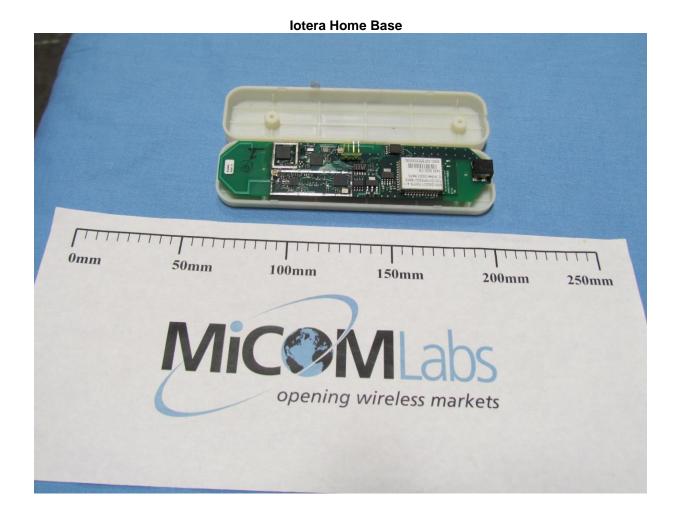
Details	Description
Purpose:	Test of the lotera Home Base to FCC CFR 47 Part 15 Subpart C
	15.247 (DTS).
Applicant:	
	370 Convention Way # 220
	Redwood City
Manufacturer:	California 94063 USA
Laboratory performing the tests:	
Laboratory performing the tests.	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
Dates of test (from - to):	25 - 25 March 2015
No of Units Tested:	4
Type of Equipment:	GPS Tracker
Product Family Name:	Home Base and lota
Model(s):	Home Base
Location for use:	
	902 - 928 MHz; 2400 - 2483.5 MHz;
Primary function of equipment:	
Secondary function of equipment:	
· ·	Chirp Spread Spectrum
EUT Modes of Operation:	902 - 928 MHz:
	FH: 125 kHz; 250 kHz (FH – Frequency Hopper)
Declared Naminal Output Dawer (Ava)	500kHz DSS
Declared Nominal Output Power (Ave):	902 - 928 MHz: 30.00 dBm: 125FH; 250FH; 500DSS;
Transmit/Receive Operation:	
•	This device has no beam-forming capability
	ac/dc Adapter 120 Vac 60 Hz / 6 Vdc
Operating Temperature Range:	
Equipment Dimensions:	6" x 1.5" x 0.5"
Weight:	200 grams
Hardware Rev:	V1.0
Software Rev:	V1.0

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 12 of 115

5.2. Scope Of Test Program


Iotera Home Base

The scope of the test program was to test the lotera Home Base, GPS Tracker configurations in the frequency ranges 902 - 928 MHz; 2400 - 2483.5 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Although the device has three bandwidths 125 kHz, 250 kHz and 500 kHz with two operational modes;

- 1) Frequency Hopping 125 kHz and 250 kHz
- 2) DSS 500 kHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 13 of 115

FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 31st October 2013; **Emissions Testing of Transmitters with Multiple Outputs in the Same Band**

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 14 of 115

5.3. Equipment Model(s) and Serial Number(s)

Туре	Description	Manufacturer	Model	Serial no.	Delivery Data
EUT	Radiated Unit	lotera	Home Base	Unknown	5 th March 2015
EUT	Conducted Unit	lotera	Home Base	Unknown	25th March 2015
EUT	ac/dc Adapter	V-INFINTY	Unknown	EPS060100	25th March 2015

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
Integral	lotera	PCB Trace	PCB	3.0	-	360	-	902 - 928
Integral	lotera	PCB Trace	PCB	3.0	-	360	-	2400 - 2483.5

BF Gain - Beamforming Gain

Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
None					

There are no I/O ports on the Home Base

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 15 of 115

5.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Operational	Data Rate with Highest Power	Channel Frequency (MHz)						
Mode(s)	Bit/s	Low	Mid	High				
	902 - 928 MHz							
125FH	300	902.56	915.00	926.94				
250FH	600	902.56	915.00	926.94				
500DSS	1200	902.56	915.00	926.94				

Results for the above configurations are provided in this report

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 16 of 115

6. TEST SUMMARY

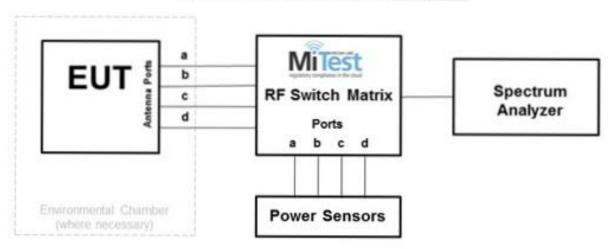
List of Measurements

List of Measurements		
Test Header	Result	Data Link
15.247(a)(2) 20 dB & 99% Bandwidth	Complies	View Data
15.247(a)(2) 6 dB & 99% Bandwidth	Complies	View Data
15.247 Number of Channels	Complies	View Data
15.247 Channel Spacing	Complies	View Data
15.247 Dwell Time & Channel Occupancy	Complies	View Data
15.247(b), 15.31(e) Conducted Output Power	Complies	View Data
15.247(d) Emissions	-	-
(1) Conducted Emissions	-	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
15.247(e) Power Spectral Density	Complies	View Data
15.207 ac Wireline Emissions	Complies	View Data

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 17 of 115


7. TEST EQUIPMENT CONFIGURATION(S)

Conducted

Conducted RF Emission Test Set-up(s) with Environmental Chamber The following tests were performed using the conducted test set-up shown in the diagram below.

- 9.1 20 dB & 99% Bandwidth
- 9.2 6 dB & 99% Bandwidth
- 9.3 Number of Channels
- 9.4 Channel Spacing
- 9.5 Dwell Time & Channel Occupancy
- 9.6 Output Power
- 9.7 Transmitter Spurious Emissions (Conducted)
- 9.8 Power Spectral Density

MiTest MiCOM Labs Automated Test System

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

^{*}environmental chamber utilized

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 18 of 115

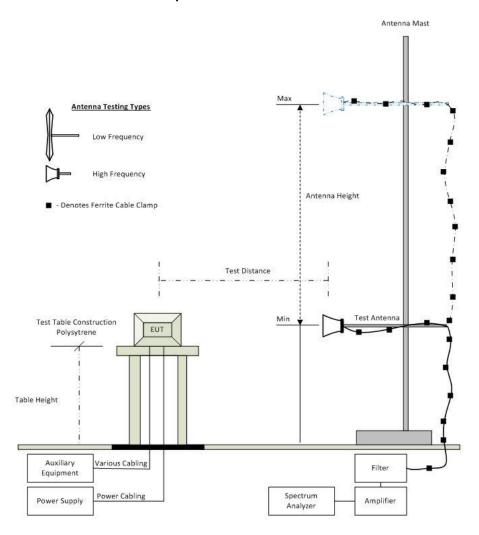
Assets Utilized for Conducted Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
127	Power Supply	HP	6674A	US36370530	Cal when used
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
193	Receiver 20 Hz to 7 GHz	Rhode & Schwarz	ESI 7	838496/007	14 Jan 2016
248	Resistance Thermometer	Thermotronics	GR2105-02	9340 #1	30 Oct 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
376	USB 10MHz - 18GHz Average Power Sensor	Agilent	U2000A	MY51440005	28 Oct 2015
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	17 Jul 2015
381	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC002	30 Jun 2015
419	Laptop with Labview Software	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Jul 2015
436	USB Wideband Power Sensor	Boonton	55006	8731	31 Jul 2015
437	USB Wideband Power Sensor	Boonton	55006	8759	31 Jul 2015
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
460	Dell Computer with installation of MiTest executable.	Dell	Optiplex330	BC944G1	Not Required
74	Environmental Chamber Chamber 3	Tenney	TTC	12808-1	30 Sep 2015
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	30 Jun 2015
RF#2 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	30 Jun 2015
RF#2 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	30 Jun 2015
RF#2 SMA#4	EUT to Mitest box port 3	Flexco	SMA Cable port4	None	30 Jun 2015
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	30 Jun 2015
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 19 of 115


Radiated Testing

The following tests were performed using the radiated test set-up shown in the diagram below.

9.9.1 Radiated Spurious Emissions (1 – 10 GHz)

9.9.2 Radiated Digital Emissions (0.03 – 1 GHz)

Radiated Emission Measurement Setup

Radiated Emission Test Setup

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 20 of 115

Assets Utilized for Radiated Emission Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
301	5470 to 5725 MHz Notch Filter	Microtronics	RBC50704	001	08 Oct 2015
302	5150 to 5350 MHz Notch Filter	Microtronics	BRC50703	002	08 Oct 2015
303	5725 to 5875 MHz Notch filter	Microtronics	BRC50705	003	08 Oct 2015
310	SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	14 Aug 2015
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	08 Oct 2015
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	08 Oct 2015
344	5.35 GHz Notch Filter	EWT	EWT-14-0201	H1	08 Oct 2015
345	5.46 GHz Notch Filter	EWT	EWT-14-0202	H1	08 Oct 2015
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	08 Oct 2015
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	07 Oct 2015
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	23 Oct 2015
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	30 May 2015
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 21 of 115

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 22 of 115

9. TEST RESULTS

9.1. 20 dB & 99% Bandwidth

Conducted Test Conditions for 20 dB and 99% Bandwidth							
Standard: FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5							
Test Heading:	20 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for 20 dB and 99% Bandwidth Measurement

The bandwidth at 20 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 20 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz bands. The minimum 20 dB bandwidth shall not exceed 500 kHz.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 23 of 115

Equipment Configuration for 20 dB & 99% Bandwidth

Variant:	125FH	Duty Cycle (%):	100
Data Rate:	300 Bit/s	Antenna Gain (dBi):	3
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Ме	asured 20 dB	Bandwidth (M	Hz)	6 dB Bandy	Limit	Lowest	
Frequency		Por	ort(s) 6 dB Bandwidth (MHz)		vidtii (ivii-iz)	Lillin	Margin	
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
902.6	<u>0.164</u>				0.164	0.164	≥250.0	-0.86
915.1	<u>0.164</u>				0.164	0.164	≥250.0	-0.86
926.9	<u>0.163</u>				0.163	0.163	≥250.0	-0.87

Test		Measured 99% E	Bandwidth (MHz	Maximum 99%		
Frequency		Por	rt(s)	Bandwidth		
MHz	а	b	С	d	(MHz)	
902.6	0.142				0.142	
915.1	<u>0.140</u>				0.140	
926.9	<u>0.142</u>				0.142	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 24 of 115

Equipment Configuration for 20 dB & 99% Bandwidth

Variant:	250FH	Duty Cycle (%):	100
Data Rate:	600 Bit/s	Antenna Gain (dBi):	3
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Ме	asured 20 dB	Bandwidth (M	Hz)	20 dB Band	width (MUz)	Limit	Lowest
Frequency		Port(s) 20 dB Bandwidth (MHz)		width (MHZ)	Lillin	Margin		
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
902.6	<u>0.306</u>				0.306	0.306	≤500.0	-0.19
915.1	0.300				0.300	0.300	≤500.0	-0.20
926.9	0.307				0.307	0.307	≤500.0	-0.19

Test		Measured 99% E	Bandwidth (MHz	Maximum 99%		
Frequency		Por	rt(s)	Bandwidth		
MHz	а	b	С	d	(MHz)	
902.6	0.268				0.268	
915.1	0.267				0.267	
926.9	<u>0.267</u>				0.267	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 25 of 115

9.2. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth							
Standard:	Ambient Temp. (°C):	24.0 - 27.5					
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (a)(2)	15.247 (a)(2) Pressure (mBars): 9					
Reference Document(s):	See Normative References						

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 26 of 115

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	500DSS	Duty Cycle (%):	100
Data Rate:	1.2 KBit/s	Antenna Gain (dBi):	3
Modulation:	DSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Me	Measured 6 dB Bandwidth (MHz)				6 dB Dandwidth (MUT)		Lowest
Frequency		Por	t(s)		6 dB Bandwidth (MHz)			Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
902.6	0.764				0.764	0.764	≥500.0	-0.26
915.1	<u>0.758</u>				0.758	0.758	≥500.0	-0.26
926.9	<u>0.756</u>				0.756	0.756	≥500.0	-0.26

Test	Measured 99% Bandwidth (MHz)			Maximum			
Frequency	Port(s)			99% Bandwidth			
MHz	а	b	С	d	(MHz)		
902.6	0.826				0.826		
915.1	<u>0.830</u>				0.830		
926.9	0.822	-	-	-	0.822		

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 27 of 115

9.3. Number Of Channels

Conducted Test Conditions for Number Of Channels					
Standard:	FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	Number of Channels	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (a)(2) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

l imit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 28 of 115

Equipment Configuration for Hopping Sequence

Variant:	125FH, 250FH	Duty Cycle (%):	100
Data Rate:	300 Bit/s, 600 Bit/s	Antenna Gain (dBi):	3.0
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Modulation	Frequeny Range (MHz)	Number of Hopping Channels	Limit No of Hopping Channels	Total Number of Hops	Results
125FH	900.00 - 912.00	<u>33</u>	> 50	89	Pass
125FH	912.00 - 920.00	<u>28</u>	> 50	89	Pass
125FH	920.00 - 928.00	<u>28</u>	> 50	89	Pass
250FH	900.00 - 912.00	<u>17</u>	> 25	46	Pass
250FH	912.00 - 920.00	<u>13</u>	> 25	46	Pass
250FH	920.00 - 928.00	16	> 25	46	Pass

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 29 of 115

9.4. Channel Spacing

Conducted Test Conditions for 6 dB and 99% Bandwidth					
Standard:	rd: FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	Channel Spacing	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (a)(2) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limit

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 30 of 115

Equipment Configuration for Channel Separation

Variant:	125FH, 250FH	Duty Cycle (%):	100
Data Rate:	300 Bit/s, 600 Bit/s	Antenna Gain (dBi):	3.0
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Center Frequency	Packet Type	Chan Separation	Limit	Result
MHz		MHz	MHz	
902.125	125FH	<u>0.251</u>	> 0.162	Pass
902.25	250FH	<u>0.515</u>	> 0.306	Pass

Traceability to Industry Recognized Test Methodologies		
Measurement Uncertainty:	±2.81 dB (Spectrum/Amplitude), ±0.86 ppm (Frequency)	

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 31 of 115

9.5. <u>Dwell Time & Channel Occupancy</u>

Conducted Test Conditions for 6 dB and 99% Bandwidth					
Standard: FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Dwell Time & Channel Occupancy	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (a)(2)	5.247 (a)(2) Pressure (mBars): 999 - 1001			
Reference Document(s):	See Normative References				

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limit

(i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 32 of 115

Equipment Configuration for Dwell Time & Channel Occupancy

Variant:	125FH, 250FH	Duty Cycle (%):	100
Data Rate:	300 Bit/s, 600 Bit/s	Antenna Gain (dBi):	3.0
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Center Frequency	Packet Type	Dwell Time (Single Channel)	Limit (Single Channel)	Channel Occupancy Limit	Result	
MHz		mS	mS	s		
902.125	125FH	<u>365</u>	400	<u>20</u>	Pass	
902.25	250FH	<u>398</u>	400	<u>10</u>	Pass	

Traceab	pility to Industry Recognized Test Methodologies
	Measurement Uncertainty: ±2.81 dB (Spectrum/Amplitude), ±0.86 ppm (Frequency)

Note: click the links in the above matrix to

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 33 of 115

9.6. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (b) & (c) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Fundamental Emission Output Power Measurement In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:
 - (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.
 - (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 34 of 115

multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

- (2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:
 - (i) Different information must be transmitted to each receiver.
 - (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
 - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
 - (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.
 - (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 35 of 115

Equipment Configuration for Average Output Power

Variant:	125FH	Duty Cycle (%):	100.0
Data Rate:	300 Bit/s	Antenna Gain (dBi):	3.0
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Measured Output Power (dBm)					Calculated Total Power			
Test Frequency	Port(s)				Σ Port(s) + DCCF (+0 dB)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
902.6	29.10				29.10	30.00	-0.90	13.00
915.1	28.48				28.48	30.00	-1.52	13.00
926.9	28.78				28.78	30.00	-1.22	13.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB				

DCCF - Duty Cycle Correction Factor

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 36 of 115

Equipment Configuration for Average Output Power

Variant:	250FH	Duty Cycle (%):	100.0
Data Rate:	600 Bit/s	Antenna Gain (dBi):	3.0
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

	Measured Output Power (dBm)				Calculated Total Power			
Test Frequency	Port(s)				Σ Port(s) + DCCF (+0 dB)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
902.6	29.02				29.02	30.00	-0.98	13.00
915.1	29.14				29.14	30.00	-0.86	13.00
926.9	28.92				28.92	30.00	-1.08	13.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB				

DCCF - Duty Cycle Correction Factor

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 37 of 115

Equipment Configuration for Average Output Power

Variant:	500DSS	Duty Cycle (%):	100.0
Data Rate:	1.2 KBit/s	Antenna Gain (dBi):	3.0
Modulation:	DSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

	N	leasured Outp	ut Power (dBn	Calculated				
Test Frequency	Port(s)				Total Power Σ Port(s) + DCCF (+0 dB)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
902.6	29.05				29.05	30.00	-0.95	13.00
915.1	28.81				28.81	30.00	-1.19	13.00
926.9	28.71				28.71	30.00	-1.29	13.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

DCCF - Duty Cycle Correction Factor

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 38 of 115

9.7. Conducted Spurious Emissions

9.7.1. Conducted Emissions

9.7.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions							
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (d)	5.247 (d) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References						

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 39 of 115

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	125FH	Duty Cycle (%):	100
Data Rate:	300 Bit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)							
Frequency	Range	Р	Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
902.6	30.0 - 26000.0	-49.249	-26.59							
915.1	30.0 - 26000.0	<u>-49.109</u>	-26.69							
926.9	30.0 - 26000.0	-49.222	-27.51							

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 40 of 115

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	250FH	Duty Cycle (%):	100
Data Rate:	600 Bit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	FHSS	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)							
Frequency	Range	Р	Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
902.6	30.0 - 26000.0	<u>-49.810</u>	-26.47							
915.1	30.0 - 26000.0	<u>-49.712</u>	-26.70							
926.9	30.0 - 26000.0	<u>-51.875</u>	-27.48							

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 41 of 115

Equipment Configuration for Transmitter Conducted Spurious Emissions

Variant:	500DSS	Duty Cycle (%):	100
Data Rate:	1.2 KBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	DSS	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Frequency	Range	Р	ort a	Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
902.6	30.0 - 26000.0	-49.230	-26.18						
915.1	30.0 - 26000.0	-49.241	-26.88						
926.9	30.0 - 26000.0	-59.092	-27.53						

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 42 of 115

9.7.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	125FH	Duty Cycle (%):	100
Data Rate:	300 Bit/s	Antenna Gain (dBi):	3
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.6 MHz					
Band-Edge Frequency:	902.0 MHz					
Test Frequency Range:	850.0 - 915.0 MH	Z				
	Band-Ed	lge Markers	and Limit	Revise	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	' ' ' ' ' ' ' ' ' ' ' '				
а	<u>-35.12</u>	-7.27	902.40			-0.400

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 43 of 115

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	250FH	Duty Cycle (%):	100
Data Rate:	600 Bit/s	Antenna Gain (dBi):	3
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.6 MHz						
Band-Edge Frequency:	902.0 MHz						
Test Frequency Range:	850.0 - 915.0 MI	Hz					
	Band-E	Band-Edge Markers and Limit Revised Limit Margin					
Port(s)	M1 Amplitude (dBm)	(MHZ)					
а	-36.77	-13.00	902.20			-0.200	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 44 of 115

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	500DSS	Duty Cycle (%):	100
Data Rate:	1.2 KBit/s	Antenna Gain (dBi):	3
Modulation:	DSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	902.6 MHz					
Band-Edge Frequency:	902.0 MHz					
Test Frequency Range:	850.0 - 915.0 MH	Z				
	Band-Edge Markers and Limit Revised Limit Margin					
						•
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 45 of 115

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	125FH	Duty Cycle (%):	100
Data Rate:	300 Bit/s	Antenna Gain (dBi):	3
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	926.9 MHz						
Band-Edge Frequency:	928.0 MHz	928.0 MHz					
Test Frequency Range:	915.0 - 978.0 MI	Нz					
	Band-E	dge Markers	and Limit	Revise	ed Limit	Margin	
Port(s)	M3 Amplitude (dBm)	(MHZ)					
а	<u>-39.68</u>	-13.00	927.20			-0.800	

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS					
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 46 of 115

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	250FH	Duty Cycle (%):	100
Data Rate:	600 Bit/s	Antenna Gain (dBi):	3
Modulation:	FHSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	926.9 MHz	926.9 MHz					
Band-Edge Frequency:	928.0 MHz	928.0 MHz					
Test Frequency Range:	915.0 - 978.0 MH	915.0 - 978.0 MHz					
	Band-Edge Markers and Limit Revised Limit Ma				Margin		
Dort/c)	M3 Amplitude Plot Limit M2 Frequency Amplitude M2A Frequency (dBm) (MHz) (dBm) (MHz)						
Port(s)	•					(MHz)	

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS					
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 47 of 115

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	500DSS	Duty Cycle (%):	100
Data Rate:	1.2 KBit/s	Antenna Gain (dBi):	3
Modulation:	DSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	926.9 MHz	926.9 MHz					
Band-Edge Frequency:	928.0 MHz	928.0 MHz					
Test Frequency Range:	915.0 - 978.0 MH	915.0 - 978.0 MHz					
	Band-E	dge Markers	and Limit	Revise	ed Limit	Margin	
Port(s)	M3 Amplitude Plot Limit M2 Frequency (dBm) (dBm) (MHz)			Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-38.64</u>	-15.00	927.40			-0.600	

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS					
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 48 of 115

9.8. Power Spectral Density

Conducted Test Conditions for Power Spectral Density						
Standard:	FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (e) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 49 of 115

Equipment Configuration for Power Spectral Density - Average

Variant:	500DSS	Duty Cycle (%):	100.0
Data Rate:	1.2 KBit/s	Antenna Gain (dBi):	3.00
Modulation:	DSS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:			

Test Measurement Results							
Test	N	leasured Power	Spectral Densit	ty	Amplitude Summation +	Limit	Margin
Frequency		Port(s) (d	Bm/3KHz)		DCCF (+0 dB)		argiii
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
902.6	<u>-2.800</u>				<u>-2.800</u>	8.0	-10.8
915.1	<u>-2.821</u>				<u>-2.821</u>	8.0	-10.8
926.9	<u>-2.747</u>				<u>-2.747</u>	8.0	-10.7

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB				

DCCF - Duty Cycle Correction Factor

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 50 of 115

9.9. Radiated Emissions

9.9.1. Radiated Spurious

Transmitter Radiated Spurious Emissions (above 1 GHz); Peak Field Strength Measurements; and Radiated Band Edge Measurements – Restricted Bands

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 51 of 115

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of $51.5~dB_{\mu}V$; Antenna Factor of 8.5~dB; Cable Loss of 1.3~dB; Falloff Factor of 0~dB, an Amplifier Gain of 26~dB and Notch Filter Loss of 1~dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

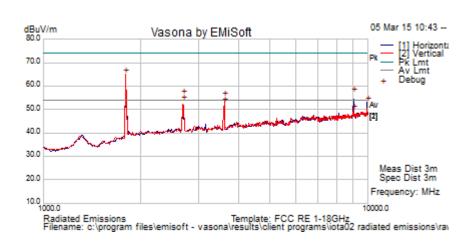
Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Serial #: IOTA01-U3a 900 MHz Rev A

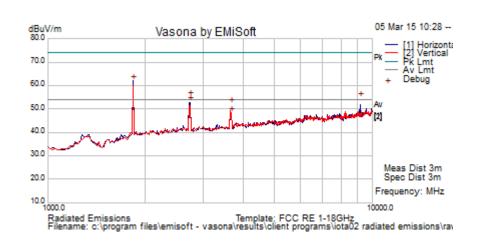
Issue Date: 8th April 2015 **Page:** 52 of 115

Frequency Hopping Operation

· · · · · · · · · · · · · · · · · · ·	ig operation				
Test Freq.	902.5 MHz 125 KHz	Engineer	JMH		
Variant	Base Station	Temp (°C)	14		
Freq. Range	1-10GHz	Rel. Hum.(%)	36		
Power Setting	PS 12	Press. (mBars)	1005		
Antenna	Integral				
Test Notes 1	Base Version 2, higher voltage on Amp, different filter				
Test Notes 2					

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2707.766	63.0	4.2	-11.4	55.8	Peak Max	V	161	250	74.0	-18.3	Pass	RB
2707.766	60.4	4.2	-11.4	53.2	Average Max	V	161	250	54.0	-0.8	Pass	RB
3610.333	58.8	4.9	-11.1	52.5	Average Max	V	148	180	54	-1.5	Pass	RB
3610.333	61.5	4.9	-11.1	55.2	Peak Max	V	148	180	74	-18.8	Pass	RB
9025.789	48.4	8.1	-6.9	49.6	Average Max	Н	146	337	54	-4.4	Pass	RB
9025.789	55.7	8.1	-6.9	56.9	Peak Max	Н	146	337	74	-17.1	Pass	RB
1793.587	75.4	3.4	-13.8	65.0	Peak [Scan]	V						NRB
9945.892	49.7	8.7	-5.4	53.0	Peak [Scan]	Н						NRB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

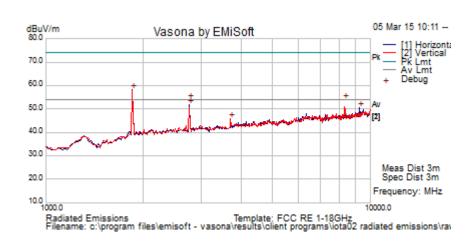
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 53 of 115

Test Freq.	915 MHz, 125 KHz	Engineer	JMH				
Variant	Base Station	Temp (°C)	14				
Freq. Range	1-10GHz	Rel. Hum.(%)	36				
Power Setting	PS 12	Press. (mBars)	1005				
Antenna	Integral						
Test Notes 1							
Test Notes 2	Base Version 2, higher voltage on Amp, dfferent filter						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2745.266	62.3	4.2	-11.4	55.1	Peak Max	Н	101	151	74.0	-18.9	Pass	RB
2745.266	59.9	4.2	-11.4	52.8	Average Max	Н	101	151	54.0	-1.2	Pass	RB
3660.371	58.4	4.9	-11.0	52.3	Peak Max	V	140	148	74	-21.7	Pass	RB
3660.371	54.5	4.9	-11.0	48.3	Average Max	V	140	148	54	-5.7	Pass	RB
9150.726	53.7	8.2	-7.2	54.7	Peak Max	Н	126	-1	74	-19.3	Pass	RB
9150.726	45.3	8.2	-7.2	46.3	Average Max	Н	126	-1	54	-7.7	Pass	RB
1829.659	72.1	3.4	-13.5	62.0	Peak [Scan]	Н	200					NRB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

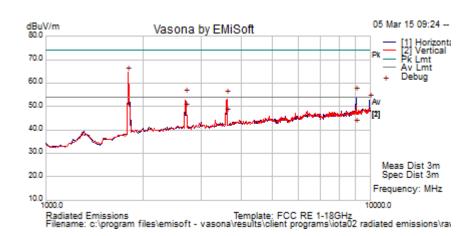
Issue Date: 8th April 2015 **Page:** 54 of 115

Test Freq.	927 MHz 125 KHz	Engineer	JMH				
Variant	TX Spur on Base Station	Temp (°C)	14				
Freq. Range	1-10GHz	Rel. Hum.(%)	36				
Power Setting	PS 12	1005					
Antenna	Integral						
Test Notes 1							
Test Notes 2	Base Version 2, higher voltage on Amp, dfferent filter						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt De g	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2780.912	58.6	4.2	-11.3	51.5	Average Max	Н	172	164	54.0	-2.5	Pass	RB
2780.912	61.1	4.2	-11.3	54.0	Peak Max	Н	172	164	74	-20.0	Pass	RB
8342.523	44.4	7.8	-7.1	45.1	Average Max	V	99	-1	54	-8.9	Pass	RB
8342.523	52.9	7.8	-7.1	53.6	Peak Max	V	99	-1	74	-20.4	Pass	RB
1847.695	68.2	3.4	-13.5	58.1	Peak [Scan]	Н						NRB
3706.575	51.8	4.9	-10.9	45.8	Peak [Scan]	Н	98	361	54	-8.2	Pass	RB
9277.780	49.3	8.3	-7.0	50.6	Peak [Scan]	Н						NRB

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Serial #: IOTA01-U3a 900 MHz Rev A

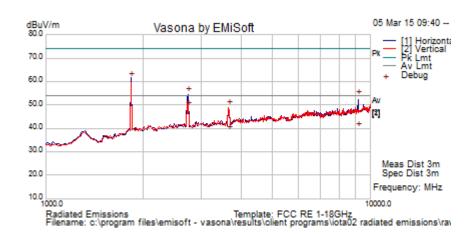
Issue Date: 8th April 2015 **Page:** 55 of 115

DSS Operation

Test Freq.	902.5 MHz 500 KHz	Engineer	JMH					
Variant	TX Spur on Base Station	Temp (°C)	14					
Freq. Range	1-10GHz	Rel. Hum.(%)	36					
Power Setting	PS 12	Press. (mBars)	1005					
Antenna	Integral	Integral						
Test Notes 1	Base Version 2, higher voltage on Amp, diffe	Base Version 2, higher voltage on Amp, different filter						
Test Notes 2								

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2707.703	62.4	4.2	-11.4	55.2	Peak Max	V	137	255	74.0	-18.8	Pass	RB
2707.703	56.5	4.2	-11.4	49.3	Average Max	V	137	255	54	-4.7	Pass	RB
3610.346	53.3	4.9	-11.1	47.0	Average Max	V	146	177	54	-7.0	Pass	RB
3610.346	61.1	4.9	-11.1	54.8	Peak Max	V	146	177	74	-19.2	Pass	RB
9026.052	40.8	8.1	-6.9	42.0	Average Max	Н	156	334	54	-12.0	Pass	RB
9026.052	54.7	8.1	-6.9	55.9	Peak Max	Н	156	334	74	-18.1	Pass	RB
1793.587	75.1	3.4	-13.8	64.7	Peak [Scan]	V						NRB
9945.892	49.6	8.7	-5.4	52.8	Peak [Scan]	Н						NRB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

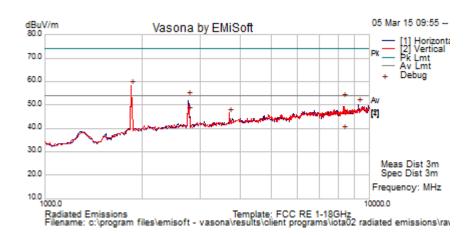
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 56 of 115

Test Freq.	915 MHz, 500 KHz	Engineer	JMH					
Variant	TX Spur on Base Station	Temp (°C)	14					
Freq. Range	1-10GHz	Rel. Hum.(%)	36					
Power Setting	PS 12	Press. (mBars)	1005					
Antenna	Integral							
Test Notes 1	Base Version 2, higher voltage on Amp, differ	Base Version 2, higher voltage on Amp, different filter						
Test Notes 2								

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2745.128	56.3	4.2	-11.4	49.2	Average Max	Н	101	152	54.0	-4.8	Pass	RB
2745.128	62.3	4.2	-11.4	55.1	Peak Max	Н	101	152	74.0	-18.9	Pass	RB
3660.308	55.5	4.9	-11.0	49.4	Peak Max	Н	100	22	74	-24.6	Pass	RB
3660.308	44.8	4.9	-11.0	38.7	Average Max	Н	100	22	54	-15.3	Pass	RB
9150.451	39.0	8.2	-7.2	40.0	Average Max	Н	118	-1	54	-14.0	Pass	RB
9150.451	52.8	8.2	-7.2	53.8	Peak Max	Н	118	-1	74	-20.2	Pass	RB
1829.659	71.7	3.4	-13.5	61.6	Peak [Scan]	Н						NRB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 57 of 115

Test Freq.	927 MHz 500 KHz	Engineer	JMH				
Variant	TX Spur on Base Station	Temp (°C)	14				
Freq. Range	1-10GHz	Rel. Hum.(%)	36				
Power Setting	PS 12	Press. (mBars)	1005				
Antenna	Integral	Integral					
Test Notes 1	Base Version 2, higher voltage on Amp, different filter						
Test Notes 2							

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2780.949	54.2	4.2	-11.3	47.1	Average Max	Н	171	162	54.0	-6.9	Pass	RB
2780.949	60.3	4.2	-11.3	53.2	Peak Max	Н	171	162	74.0	-20.8	Pass	RB
8342.624	38.0	7.8	-7.1	38.7	Average Max	Η	101	182	54	-15.3	Pass	RB
8342.624	51.7	7.8	-7.1	52.4	Peak Max	Н	101	182	74	-21.7	Pass	RB
1847.695	68.3	3.4	-13.5	58.2	Peak [Scan]	Н						NRB
9278.557	48.9	8.3	-7.0	50.2	Peak [Scan]	Н						NRB
3706.338	52.3	4.9	-10.9	46.3	Peak [Scan]	V	100	-1	54	-7.7	Pass	RB

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 58 of 115

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 59 of 115

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 60 of 115

9.9.2. Digital Emissions (0.03-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength

R = Measured Received

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

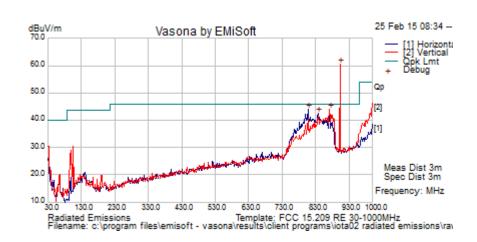
$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 $dB\mu V/m = 100\mu V/m$ 48 $dB\mu V/m = 250\mu V/m$

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Serial #: IOTA01-U3a 900 MHz Rev A

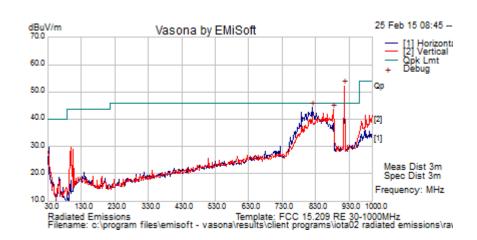
Issue Date: 8th April 2015 **Page:** 61 of 115

Frequency Hopping Operation

Test Freq.	902.5 MHz, 125 KHz BW	Engineer	JMH
Variant	TX Spur on Base Station	Temp (°C)	15
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	36
Power Setting	Maximum (+30 dBm)	Press. (mBars)	1013
Antenna	Integral		
Test Notes 1			
Test Notes 2	SN# PP01 AC 120V PS		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
902.806	61.8	6.3	-7.6	60.6	Peak [Scan]	V						FUND
807.555	46.5	6.1	-8.7	43.9	Peak [Scan]	Н	100	0	46	-2.1	Pass	NRB
838.504	44.6	6.2	-8.3	42.6	Peak [Scan]	Н	98	-1	46	-3.5	Pass	NRB
871.762	45.6	6.3	-8.1	43.8	Peak [Scan]	Н	98	-1	46	-2.2	Pass	NRB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

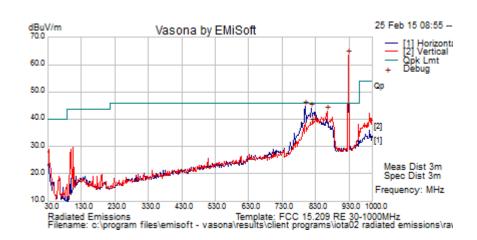
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 62 of 115

Test Freq.	915 MHz, 125 KHz BW	Engineer	JMH
Variant	Tx Spur on Base Station	Temp (°C)	15
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	36
Power Setting	Maximum (+30 dBm)	Press. (mBars)	1013
Antenna	Integral		
Test Notes 1			
Test Notes 2	SN# PP01 AC 120V PS		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
916.413	53.3	6.4	-7.6	52.2	Peak [Scan]	V						FUND
819.218	46.5	6.1	-8.3	44.4	Peak [Scan]	Н	100	0	46.0	-1.6	Pass	NRB
883.275	45.0	6.3	-8.0	43.3	Peak [Scan]	V	99	-1	46.0	-2.7	Pass	NRB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

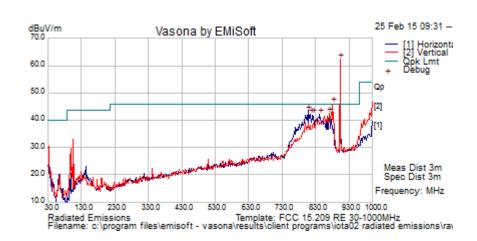
Issue Date: 8th April 2015 **Page:** 63 of 115

Test Freq.	927 MHz, 125 KHz BW	Engineer	JMH
Variant	Tx Spur on Base Station	Temp (°C)	15
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	36
Power Setting	Maximum (+30 dBm)	1013	
Antenna	Integral		
Test Notes 1			
Test Notes 2	SN# PP01 AC 120V PS		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
928.076	64.3	6.4	-7.3	63.4	Peak [Scan]	>						FUND
799.780	47.5	6.1	-8.8	44.8	Peak [Scan]	Ι	100	0	46.0	-1.2	Pass	NRB
817.413	46.2	6.1	-8.4	44.0	Peak [Scan]	Н	99	-1	46.0	-2.0	Pass	NRB
863.677	44.7	6.3	-8.1	42.9	Peak [Scan]	V	99	-1	46.0	-3.1	Pass	NRB

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Serial #: IOTA01-U3a 900 MHz Rev A

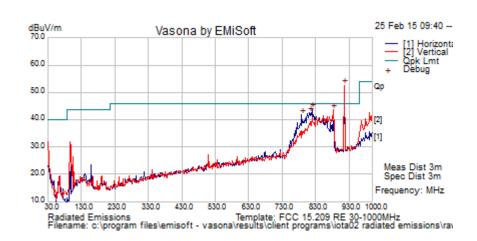
Issue Date: 8th April 2015 **Page:** 64 of 115

DSS Operation

Test Freq.	902.5 MHz, 500 KHz BW	Engineer	JMH
Variant	TX Spur on Base Station	Temp (°C)	15
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	36
Power Setting	Maximum (+30 dBm)	Press. (mBars)	1013
Antenna	Integral		
Test Notes 1	SN# PP01 AC 120V PS		
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
902.806	63.5	6.3	-7.6	62.3	Peak [Scan]	V						FUND
881.423	47.7	6.3	-8.0	46.0	Peak [Scan]	V	100	0	46	-0.1	Pass	NRB
807.339	45.8	6.1	-8.7	43.2	Peak [Scan]	Н	98	-1	46	-2.8	Pass	NRB
871.615	44.2	6.3	-8.1	42.4	Peak [Scan]	V	98	-1	46	-3.6	Pass	NRB
814.932	44.3	6.1	-8.4	42.0	Peak [Scan]	V	98	-1	46	-4.0	Pass	NRB
842.214	43.9	6.3	-8.3	41.9	Peak [Scan]	Н	98	-1	46	-4.1	Pass	NRB
821.465	44.0	6.2	-8.2	41.9	Peak [Scan]	V	98	-1	46	-4.1	Pass	NRB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

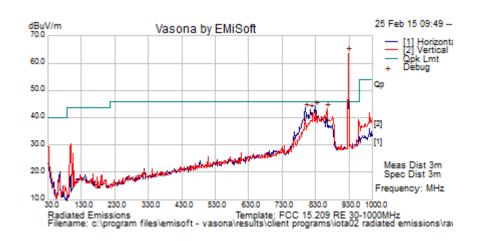
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 65 of 115

Test Freq.	915 MHz, 500 KHz BW	Engineer	JMH		
Variant	Tx Spur on Base Station	Temp (°C)	15		
Freq. Range	30 MHz - 1000 MHz	z - 1000 MHz Rel. Hum.(%			
Power Setting	Maximum (+30 dBm)	1013			
Antenna	Integral				
Test Notes 1	SN# PP01 AC 120V PS				
Test Notes 2					

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
916.413	53.8	6.4	-7.6	52.6	Peak [Scan]	V						FUND
819.218	46.0	6.1	-8.3	43.8	Peak [Scan]	Н	100	0	46.0	-2.2	Pass	NRB
883.441	45.2	6.3	-8.0	43.5	Peak [Scan]	Н	99	-1	46.0	-2.5	Pass	NRB
811.885	44.8	6.1	-8.6	42.4	Peak [Scan]	Н	99	-1	46.0	-3.6	Pass	NRB
788.033	44.6	6.1	-8.9	41.7	Peak [Scan]	Н	99	-1	46.0	-4.3	Pass	NRB


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 66 of 115

Test Freq.	927 MHz, 500 KHz BW	927 MHz, 500 KHz BW Engineer JMH					
Variant	Tx Spur on Base Station	15					
Freq. Range	30 MHz - 1000 MHz	36					
Power Setting	Maximum (+30 dBm) Press. (mBars) 1013						
Antenna	Integral						
Test Notes 1	SN# PP01 AC 120V PS						
Test Notes 2							

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
928.076	64.5	6.4	-7.3	63.6	Peak [Scan]	V						FUND
830.882	46.0	6.2	-8.1	44.0	Peak [Scan]	Н	100	0	46.0	-2.0	Pass	NRB
800.072	45.8	6.1	-8.8	43.1	Peak [Scan]	Н	98	-1	46.0	-2.9	Pass	NRB
863.821	45.1	6.3	-8.1	43.2	Peak [Scan]	V	98	-1	46.0	-2.8	Pass	NRB
815.336	45.1	6.1	-8.4	42.8	Peak [Scan]	Н	98	-1	46.0	-3.2	Pass	NRB

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 67 of 115

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

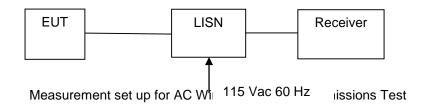
Laboratory Measurement Uncertainty for Radiated Emissions

|--|

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 68 of 115


9.10. ac Wireline Emissions

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement Results for AC Wireline Conducted Emissions (150 kHz - 30 MHz)

Ambient conditions.

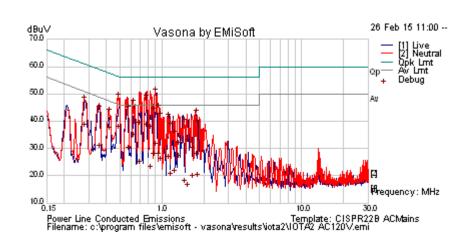
Temperature: Error! Reference source not found. °C

Reference source not found. %

source not found, mbar

Relative humidity: Error!
Pressure: Error! Reference

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 69 of 115

ac Wireline Emissions

Test Freq.	120V	Engineer	JMH				
Variant	AC Line Emissions	Temp (°C)	16				
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	43				
Power Setting	NA	1008					
Antenna	NA						
Test Notes 1	AC 120V PS V-INFINTY Model:EPS060100						
Test Notes 2							

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.277	27.3	9.9	0.1	37.3	Average	Neutral	50.91	-13.6	Pass	
0.277	37.2	9.9	0.1	47.2	Quasi Peak	Neutral	60.91	-13.7	Pass	
0.356	19.5	9.9	0.1	29.5	Average	Live	48.82	-19.3	Pass	
0.356	33.9	9.9	0.1	43.8	Quasi Peak	Live	58.82	-15.0	Pass	
0.415	32.7	9.9	0.1	42.6	Quasi Peak	Neutral	57.55	-14.9	Pass	
0.415	26.3	9.9	0.1	36.3	Average	Neutral	47.55	-11.3	Pass	
0.482	26.5	9.9	0.1	36.5	Average	Neutral	46.3	-9.8	Pass	
0.482	38.2	9.9	0.1	48.2	Quasi Peak	Neutral	56.3	-8.1	Pass	
0.570	33.7	9.9	0.1	43.7	Quasi Peak	Live	56	-12.3	Pass	
0.570	18.8	9.9	0.1	28.9	Average	Live	46	-17.2	Pass	
0.620	36.2	10.0	0.1	46.2	Quasi Peak	Neutral	56	-9.8	Pass	
0.620	23.5	10.0	0.1	33.6	Average	Neutral	46	-12.4	Pass	
0.689	13.6	10.0	0.1	23.7	Average	Neutral	46	-22.4	Pass	
0.689	27.8	10.0	0.1	37.8	Quasi Peak	Neutral	56	-18.2	Pass	
0.763	37.9	10.0	0.1	47.9	Quasi Peak	Neutral	56	-8.1	Pass	
0.763	27.1	10.0	0.1	37.1	Average	Neutral	46	-8.9	Pass	
0.826	26.4	9.9	0.1	36.4	Quasi Peak	Neutral	56	-19.6	Pass	
0.826	11.7	9.9	0.1	21.7	Average	Neutral	46	-24.3	Pass	
0.855	33.3	9.9	0.1	43.3	Quasi Peak	Live	56	-12.7	Pass	

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 70 of 115

0.855	16.5	9.9	0.1	26.5	Average	Live	46	-19.5	Pass	
0.897	40.2	9.9	0.1	50.2	Quasi Peak	Neutral	56	-5.8	Pass	
0.897	20.3	9.9	0.1	30.3	Average	Neutral	46	-15.7	Pass	
0.929	34.2	9.9	0.1	44.2	Quasi Peak	Live	56	-11.8	Pass	
0.929	16.7	9.9	0.1	26.7	Average	Live	46	-19.3	Pass	
0.962	14.8	9.9	0.1	24.8	Average	Neutral	46	-21.2	Pass	
0.962	31.3	9.9	0.1	41.3	Quasi Peak	Neutral	56	-14.7	Pass	
1.106	30.8	9.9	0.1	40.8	Quasi Peak	Neutral	56	-15.2	Pass	
1.106	15.6	9.9	0.1	25.6	Average	Neutral	46	-20.4	Pass	
1.138	27.7	9.9	0.1	37.7	Quasi Peak	Live	56	-18.3	Pass	
1.138	9.1	9.9	0.1	19.1	Average	Live	46	-26.9	Pass	
1.213	24.7	10.0	0.1	34.8	Quasi Peak	Live	56	-21.3	Pass	
1.213	10.1	10.0	0.1	20.2	Average	Live	46	-25.8	Pass	
1.311	15.9	10.0	0.1	25.9	Average	Neutral	46	-20.1	Pass	
1.311	20.4	10.0	0.1	30.5	Quasi Peak	Neutral	56	-25.5	Pass	
1.427	28.9	10.0	0.1	38.9	Quasi Peak	Live	56	-17.1	Pass	
1.427	6.5	10.0	0.1	16.6	Average	Live	46	-29.4	Pass	
1.519	21.7	10.0	0.1	31.8	Quasi Peak	Neutral	56	-24.2	Pass	
1.519	5.1	10.0	0.1	15.2	Average	Neutral	46	-30.8	Pass	
1.631	18.8	10.0	0.1	29.0	Quasi Peak	Live	56	-27.1	Pass	
1.631	8.4	10.0	0.1	18.5	Average	Live	46	-27.5	Pass	
1.745	16.6	10.0	0.1	26.7	Average	Neutral	46	-19.3	Pass	
1.745	32.2	10.0	0.1	42.3	Quasi Peak	Neutral	56	-13.7	Pass	
1.781	28.6	10.0	0.1	38.7	Quasi Peak	Live	56	-17.3	Pass	
1.781	8.8	10.0	0.1	18.9	Average	Live	46	-27.1	Pass	
Legend:	DIG =	Digital Dev	ice Emiss	ion; TX = 1	Fransmitter Emiss	sion; FUND =	Fundamen	tal Freque	ncy	
J								-		
	NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band									

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 71 of 115

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

§15.207 (a) Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)					
	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

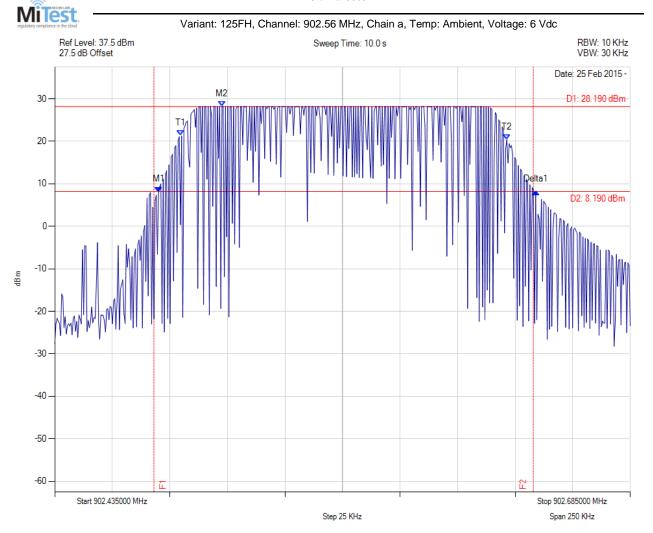
Measurement uncertainty	±2.64 dB
Measurement uncertainty	±2.64 0B

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 72 of 115

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Serial #: IOTA01-U3a 900 MHz Rev A

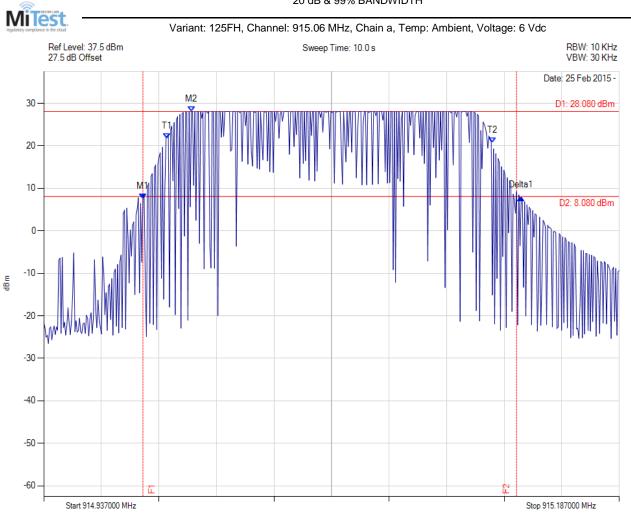
Issue Date: 8th April 2015 **Page:** 73 of 115

10. APPENDIX

10.1. 20 dB & 99% Bandwidth

20 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1: 902.480 MHz: 8.086 dBm M2: 902.508 MHz: 28.187 dBm Delta1: 164 KHz: 0.006 dB T1: 902.490 MHz: 21.400 dBm T2: 902.631 MHz: 20.414 dBm OBW: 142 KHz	Channel Frequency: 902.56 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Span 250 KHz

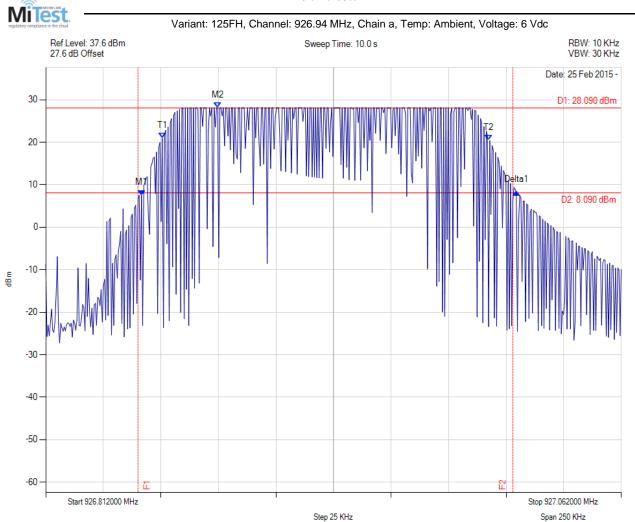
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 74 of 115

20 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1: 914.980 MHz: 7.531 dBm M2: 915.001 MHz: 28.080 dBm Delta1: 164 KHz: 0.305 dB T1: 914.991 MHz: 21.707 dBm T2: 915.132 MHz: 20.638 dBm OBW: 140 KHz	Channel Frequency: 915.06 MHz

Step 25 KHz



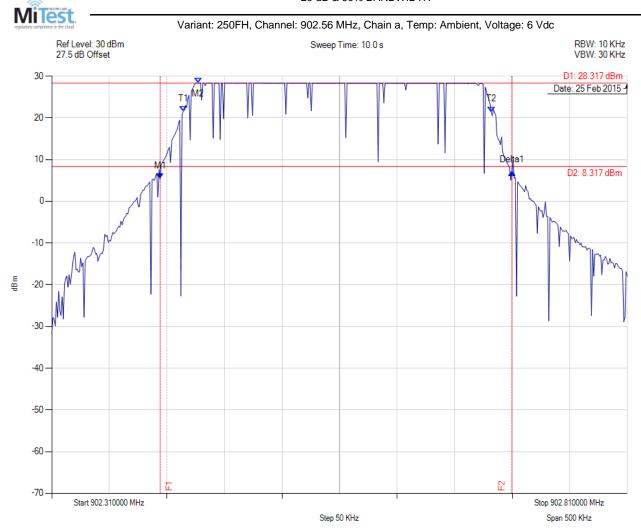
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 75 of 115

20 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1: 926.854 MHz: 7.519 dBm M2: 926.887 MHz: 28.088 dBm Delta1: 163 KHz: 0.783 dB T1: 926.863 MHz: 20.945 dBm T2: 927.004 MHz: 20.438 dBm OBW: 142 KHz	Channel Frequency: 926.94 MHz



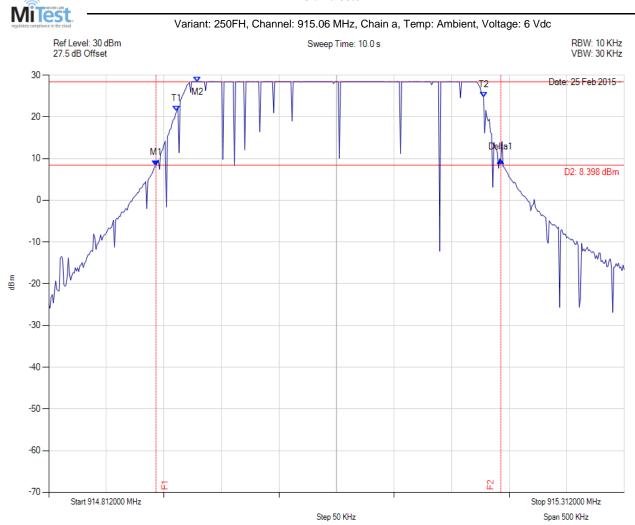
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 76 of 115

20 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1: 902.404 MHz: 5.441 dBm M2: 902.437 MHz: 28.317 dBm Delta1: 306 KHz: 1.527 dB T1: 902.424 MHz: 21.565 dBm T2: 902.692 MHz: 21.431 dBm OBW: 268 KHz	Channel Frequency: 902.56 MHz



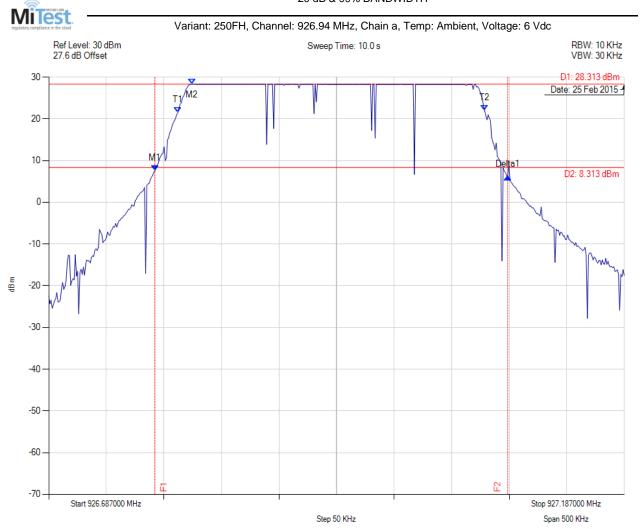
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 77 of 115

20 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1: 914.905 MHz: 8.333 dBm M2: 914.941 MHz: 28.398 dBm Delta1: 300 KHz: 1.324 dB T1: 914.923 MHz: 21.305 dBm T2: 915.190 MHz: 24.687 dBm OBW: 267 KHz	Channel Frequency: 915.06 MHz



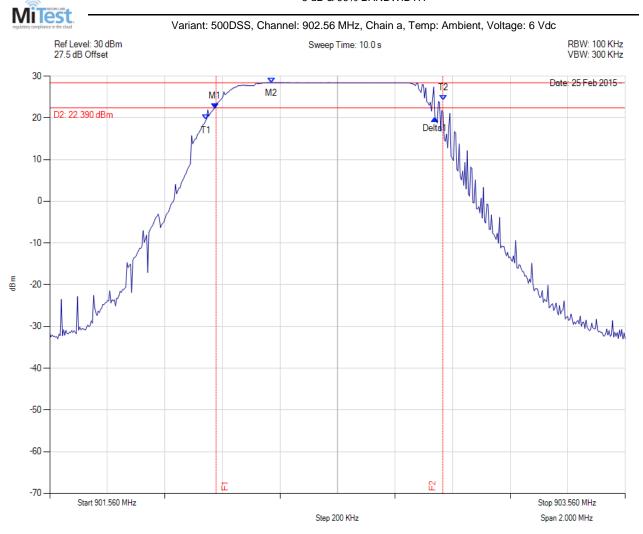
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 78 of 115

20 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1: 926.779 MHz: 7.524 dBm M2: 926.811 MHz: 28.313 dBm Delta1: 307 KHz: -1.430 dB T1: 926.799 MHz: 21.502 dBm T2: 927.066 MHz: 21.960 dBm OBW: 267 KHz	Channel Frequency: 926.94 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

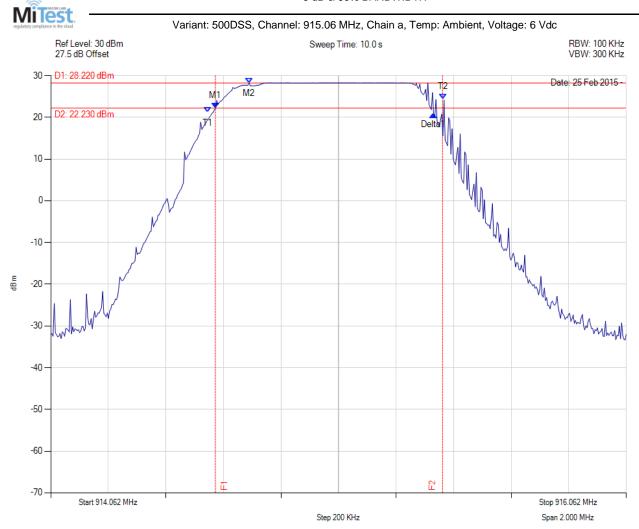
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 79 of 115

10.2. 6 dB & 99% Bandwidth

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1: 902.134 MHz: 22.217 dBm M2: 902.330 MHz: 28.385 dBm Delta1: 764 KHz: -2.300 dB T1: 902.104 MHz: 19.460 dBm T2: 902.928 MHz: 24.205 dBm OBW: 826 KHz	Channel Frequency: 902.56 MHz



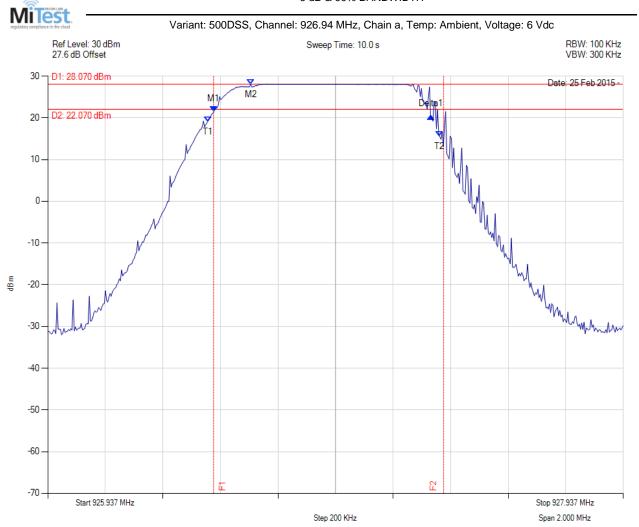
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 80 of 115

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1: 914.634 MHz: 22.184 dBm M2: 914.751 MHz: 28.216 dBm Delta1: 758 KHz: -1.440 dB T1: 914.608 MHz: 21.183 dBm T2: 915.426 MHz: 24.311 dBm OBW: 830 KHz	Channel Frequency: 915.06 MHz



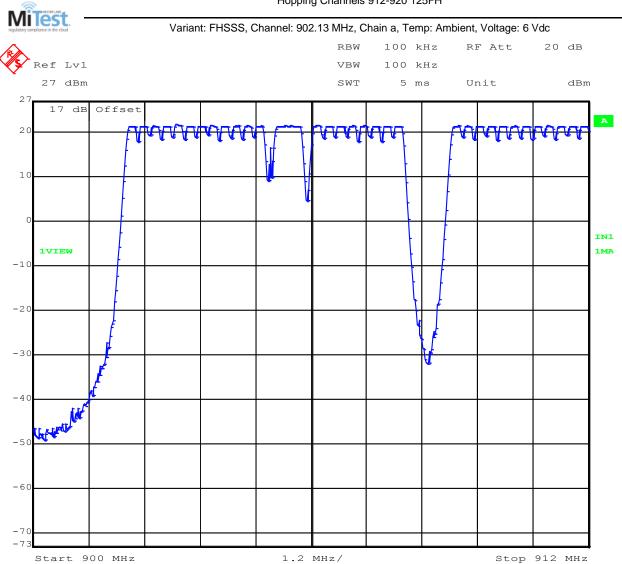
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 81 of 115

6 dB & 99% BANDWIDTH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1: 926.513 MHz: 21.534 dBm M2: 926.642 MHz: 28.070 dBm Delta1: 756 KHz: -1.230 dB T1: 926.493 MHz: 19.086 dBm T2: 927.299 MHz: 15.620 dBm OBW: 822 KHz	Channel Frequency: 926.94 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

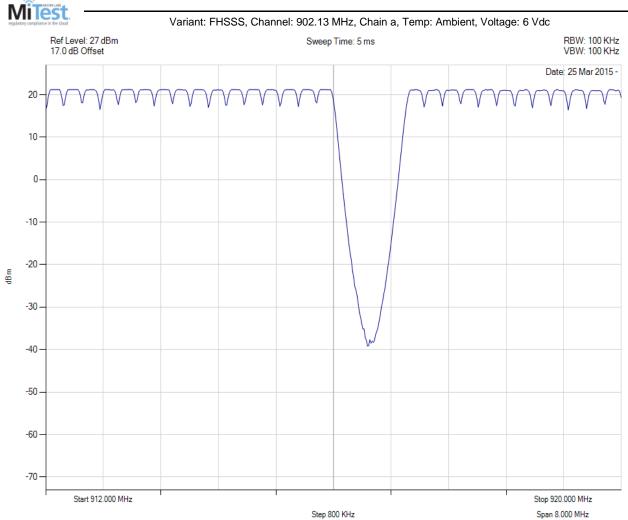
Issue Date: 8th April 2015 **Page:** 82 of 115

10.3. Number of Channels

Hopping Channels 912-920 125FH

25.MAR.2015 10:39:49 Date:

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		No. Of Hops: 33
Sweep Count = 0		·
RF Atten (dB) = 20		
Trace Mode = VIEW		



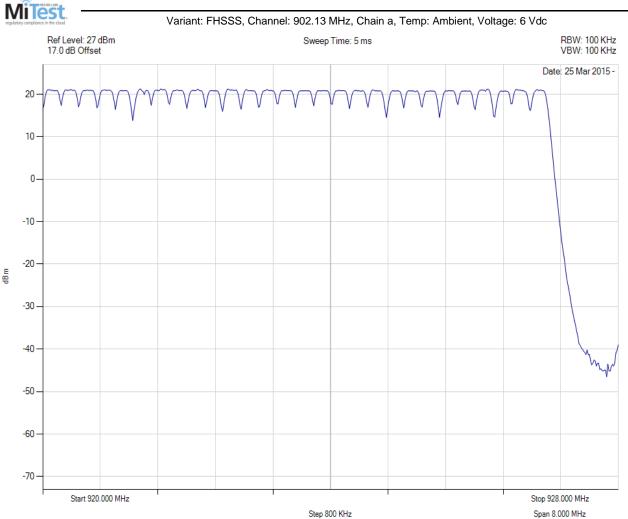
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 83 of 115

Hopping Channels 912-920 125FH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		No. Of Hops: 28
Sweep Count = 0		·
RF Atten (dB) = 20		
Trace Mode = VIEW		



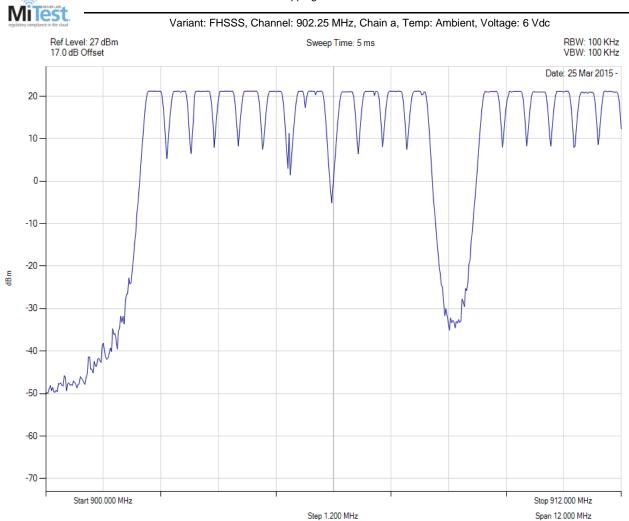
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 84 of 115

Hopping Channels 920-928 125FH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		No. of Hops: 28



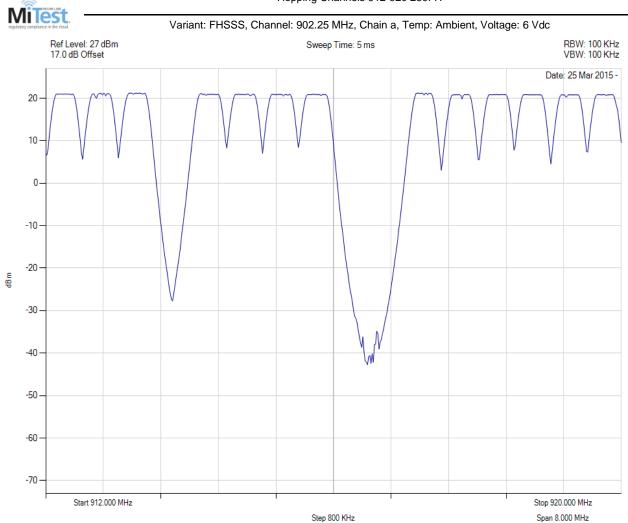
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 85 of 115

Hopping Channels 900-912 250FH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		No. Of Hops: 17



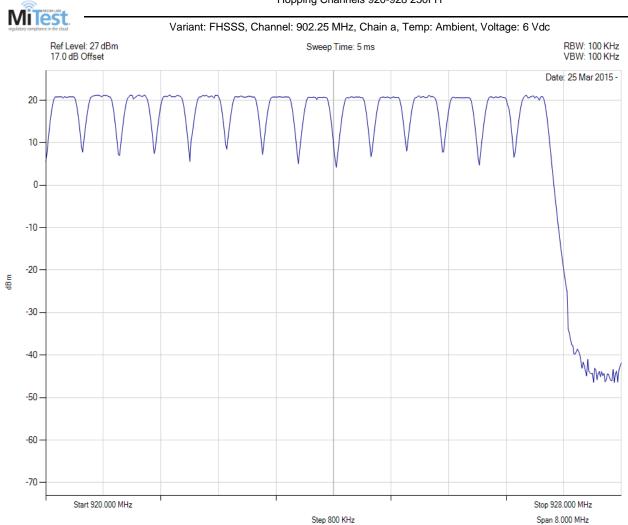
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 86 of 115

Hopping Channels 912-920 250FH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		No of Hops:13



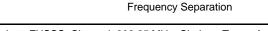
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

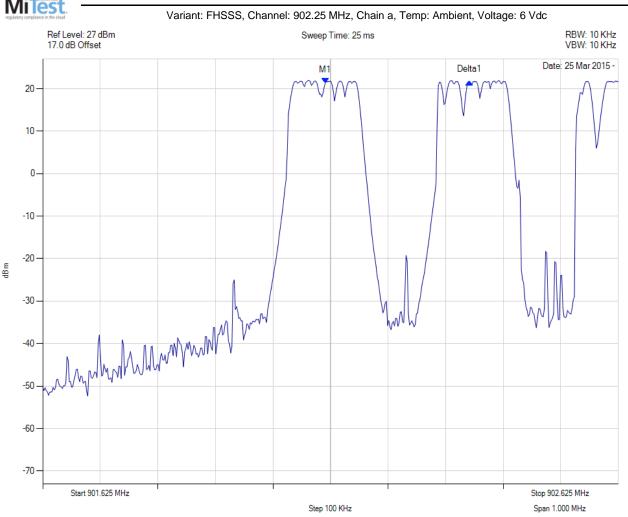
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 87 of 115

Hopping Channels 920-928 250FH

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		No. Of hops: 16



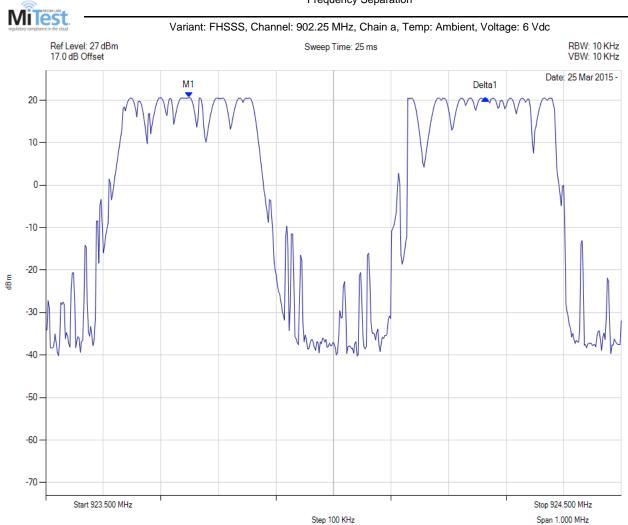

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 88 of 115

10.4. Channel Spacing

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0	M1 : 902.116 MHz : 21.356 dBm Delta1 : 251 KHz : 0.277 dB	Channel Frequency: 902.25 MHz
RF Atten (dB) = 20	Bold 1 . Zo 1 Ki Z . G.Zi 7 GB	
Trace Mode = VIEW		



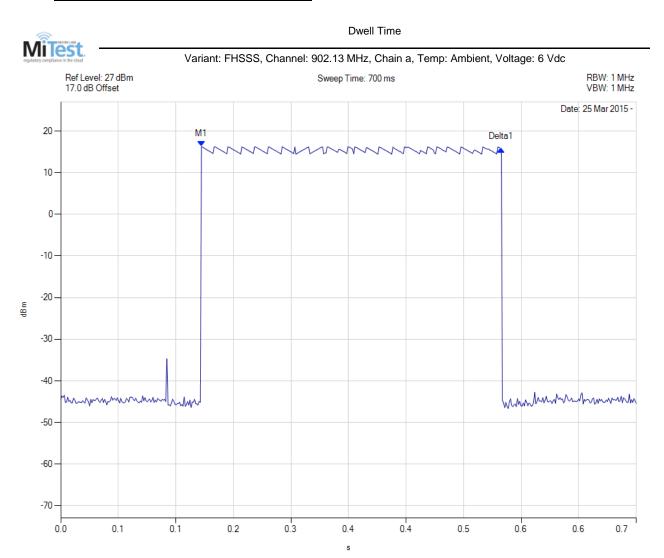
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 89 of 115

Frequency Separation

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0	M1 : 923.748 MHz : 20.594 dBm Delta1 : 515 KHz : -0.122 dB	Channel Frequency: 902.25 MHz
RF Atten (dB) = 20 Trace Mode = VIEW		



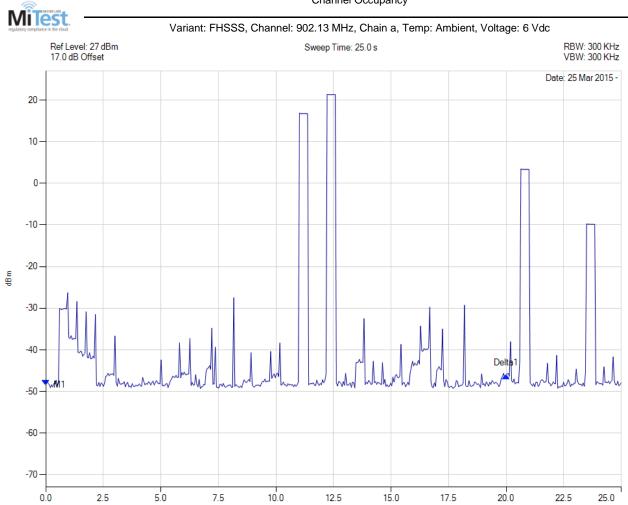
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 90 of 115

10.5. Dwell Time & Channel Occupancy

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0	M1 : 0.171 s : 16.300 dBm Delta1 : 0.365 s : -0.574 dB	Channel Frequency: 902.13 MHz
RF Atten (dB) = 20 Trace Mode = VIEW		



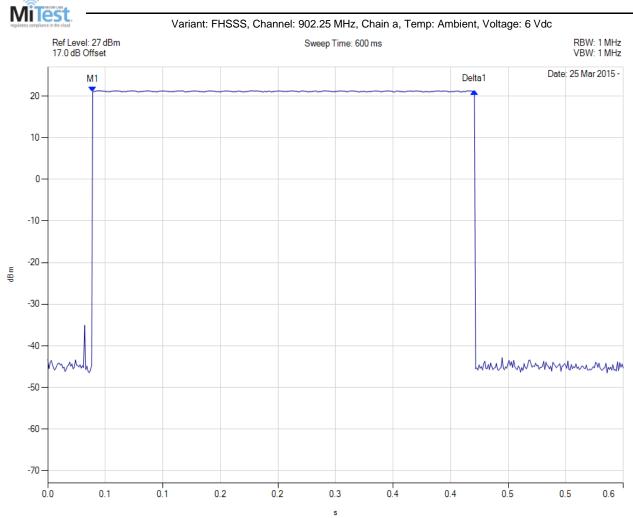
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 91 of 115

Channel Occupancy

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK	M1: 0.000 s: -48.430 dBm	Channel Frequency: 902.13 MHz
Sweep Count = 0	Delta1: 20.000 s: 2.245 dB	
RF Atten (dB) = 20		
Trace Mode = VIEW		



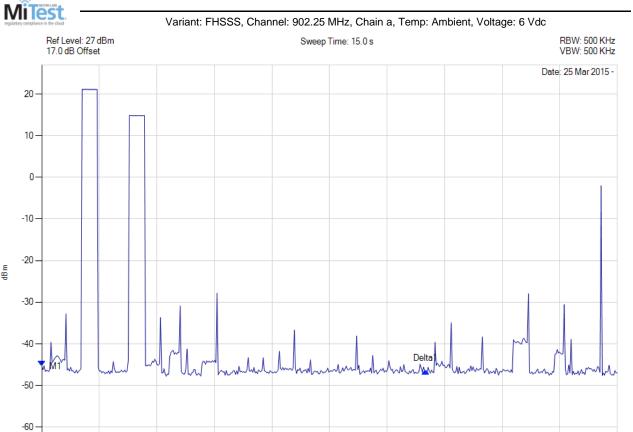
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

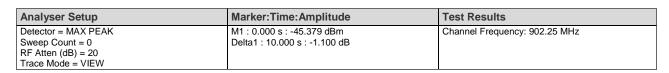
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 92 of 115

Dwell Time

Analyser Setup	Marker:Time:Amplitude	Test Results
Detector = MAX PEAK	M1: 0.047 s: 21.059 dBm	Channel Frequency: 902.25 MHz
Sweep Count = 0	Delta1: 0.398 s: 0.094 dB	
RF Atten (dB) = 20		
Trace Mode = VIEW		




To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 93 of 115

Channel Occupancy

7.5

S

9.0

10.5

12.0

13.5

15.0

Back to Matrix

-70 -

0.0

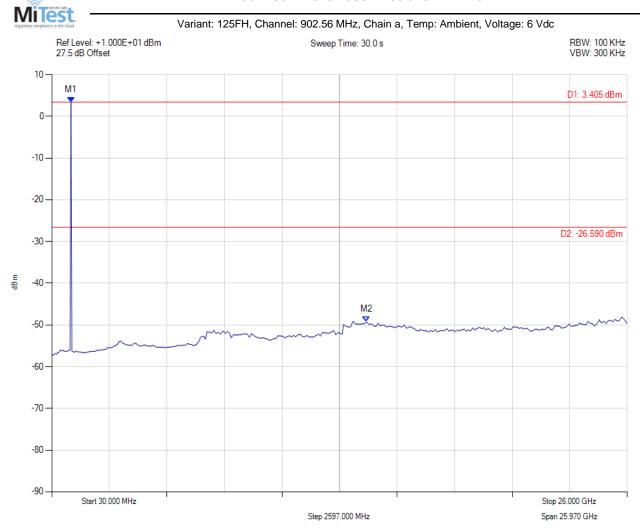
1.5

3.0

4.5

6.0

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 94 of 115

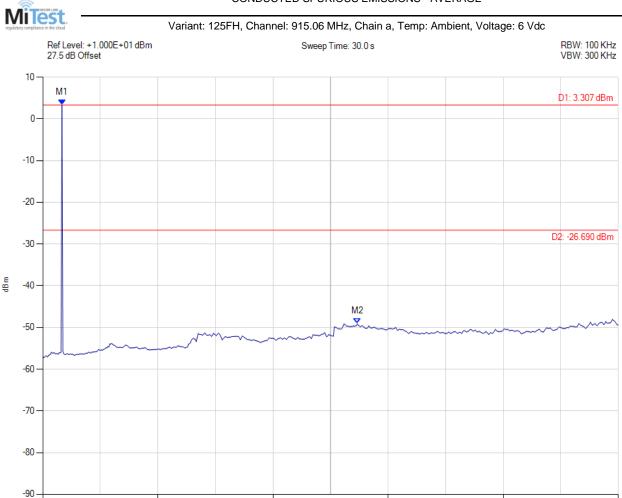
10.6. Conducted Spurious Emissions

10.6.1. Conducted Emissions

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1: 900.000 MHz: 3.405 dBm	Channel Frequency: 902.56 MHz
Sweep Count = 0	M2: 14.230 GHz: -49.249 dBm	
RF Atten (dB) = 20		
Trace Mode = MAXH		

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Stop 26.000 GHz

Span 25.970 GHz

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 95 of 115

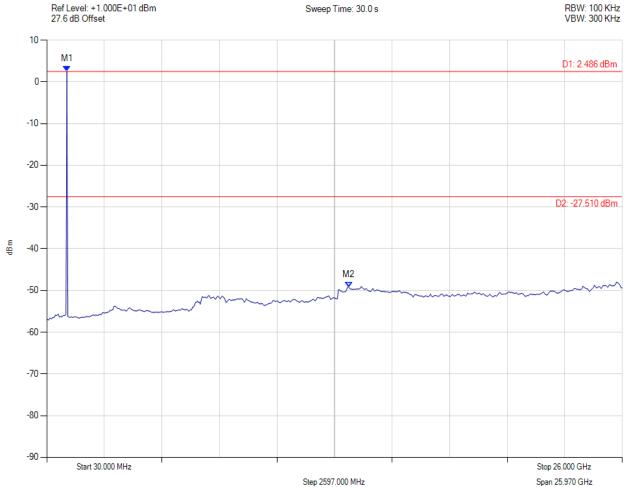
CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1: 900.000 MHz: 3.307 dBm	Channel Frequency: 915.06 MHz
Sweep Count = 0	M2: 14.230 GHz: -49.109 dBm	
RF Atten (dB) = 20		
Trace Mode = MAXH		

Step 2597.000 MHz

Back to Matrix

Start 30.000 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

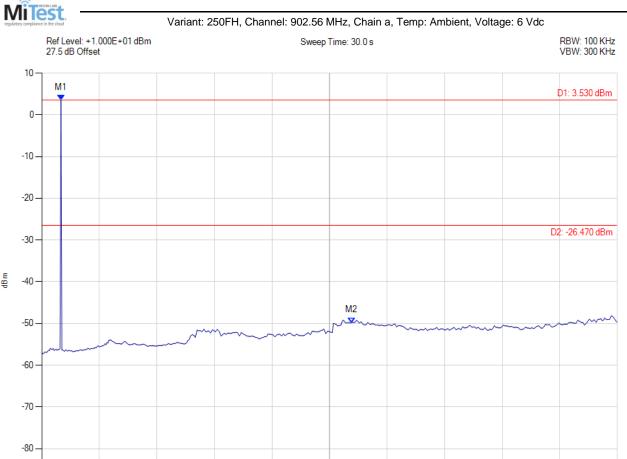
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 96 of 115

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 940.000 MHz : 2.486 dBm M2 : 13.660 GHz : -49.222 dBm	Channel Frequency: 926.94 MHz

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Stop 26.000 GHz

Span 25.970 GHz

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 97 of 115

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0	M1 : 900.000 MHz : 3.530 dBm M2 : 14.010 GHz : -49.810 dBm	Channel Frequency: 902.56 MHz
RF Atten (dB) = 20 Trace Mode = VIEW		

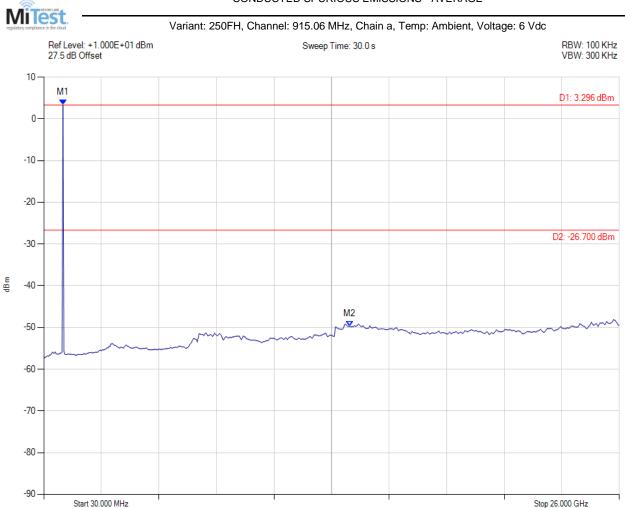
Step 2597.000 MHz

Back to Matrix

-90 -

Start 30.000 MHz

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Stop 26.000 GHz

Span 25.970 GHz

Serial #: IOTA01-U3a 900 MHz Rev A

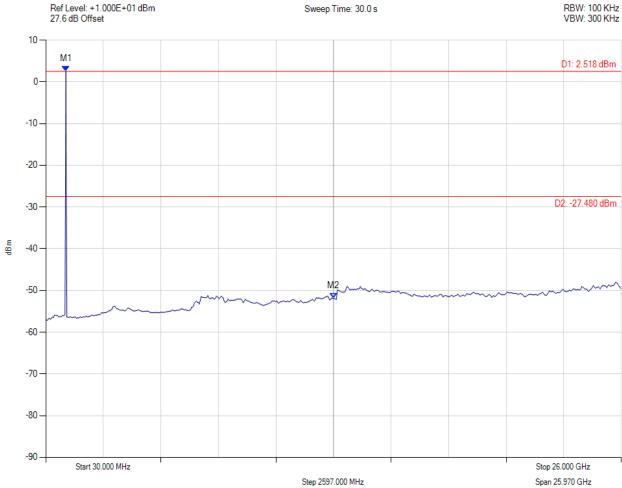
Issue Date: 8th April 2015 **Page:** 98 of 115

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER		Channel Frequency: 915.06 MHz
Sweep Count = 0	M2: 13.840 GHz: -49.712 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Step 2597.000 MHz




To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

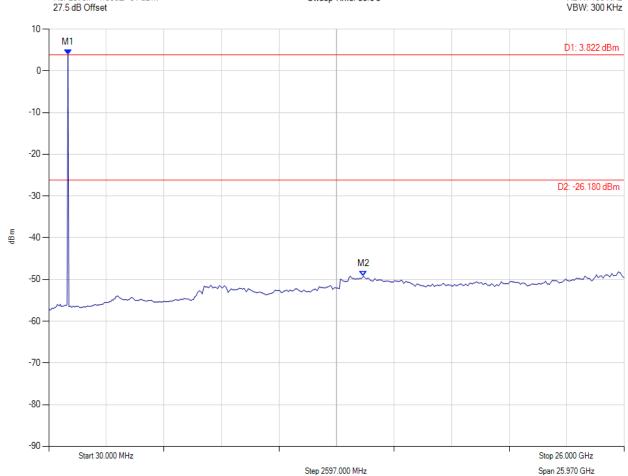
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 99 of 115

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 940.000 MHz : 2.518 dBm M2 : 13.020 GHz : -51.875 dBm	Channel Frequency: 926.94 MHz



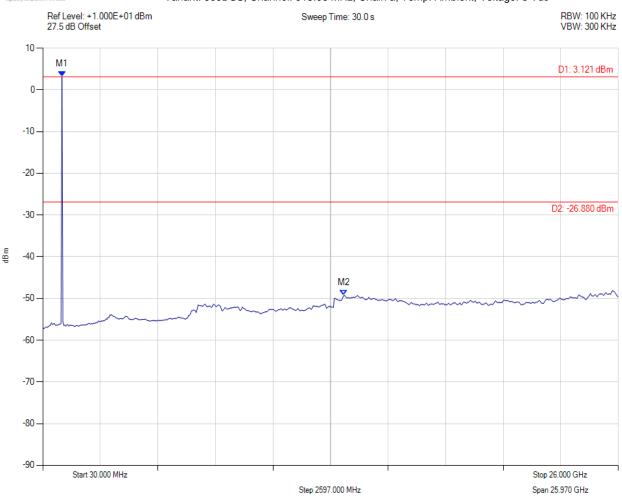

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 Page: 100 of 115

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 900.000 MHz : 3.822 dBm M2 : 14.230 GHz : -49.230 dBm	Channel Frequency: 902.56 MHz

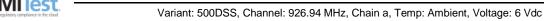

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

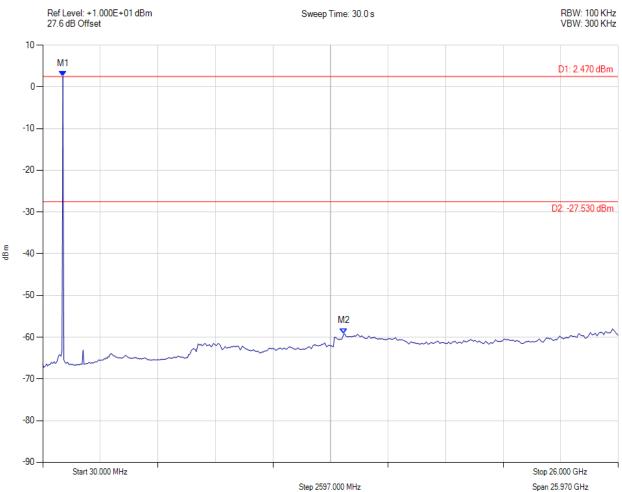
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 101 of 115

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1: 900.000 MHz: 3.121 dBm	Channel Frequency: 915.06 MHz
Sweep Count = 0	M2: 13.620 GHz: -49.241 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		



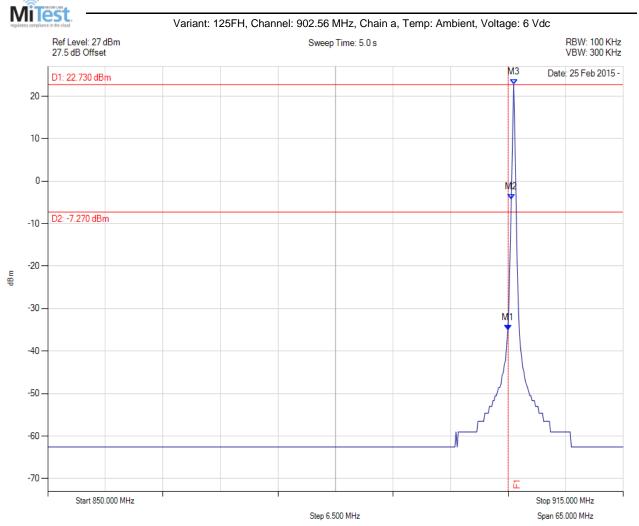

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 102 of 115

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1: 940.000 MHz: 2.470 dBm	Channel Frequency: 926.94 MHz
Sweep Count = 0	M2 : 13.620 GHz : -59.092 dBm	
RF Atten (dB) = 10		
Trace Mode = VIEW		


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

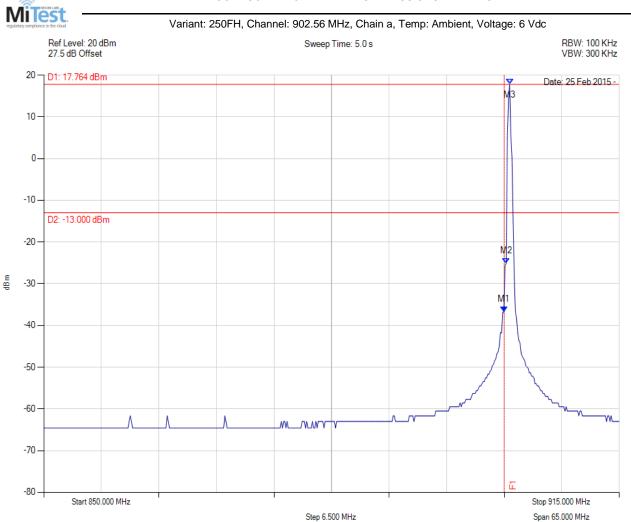
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 103 of 115

10.6.2. Conducted Band-Edge Emissions

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 902.000 MHz : -35.123 dBm M2 : 902.365 MHz : -4.237 dBm M3 : 902.625 MHz : 22.733 dBm	Channel Frequency: 902.56 MHz



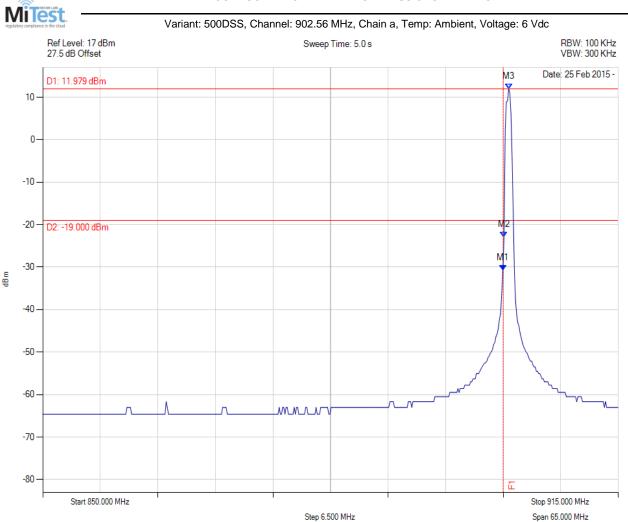
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 104 of 115

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 902.000 MHz: -36.767 dBm	Channel Frequency: 902.56 MHz
Sweep Count = 0	M2 : 902.234 MHz : -25.087 dBm	
RF Atten (dB) = 10	M3: 902.625 MHz: 17.764 dBm	
Trace Mode = VIEW		



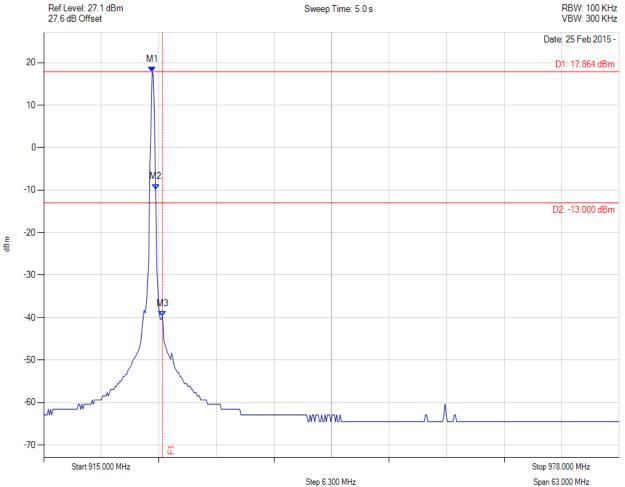
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 105 of 115

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 902.000 MHz : -30.711 dBm M2 : 902.104 MHz : -22.887 dBm M3 : 902.625 MHz : 11.979 dBm	Channel Frequency: 902.56 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

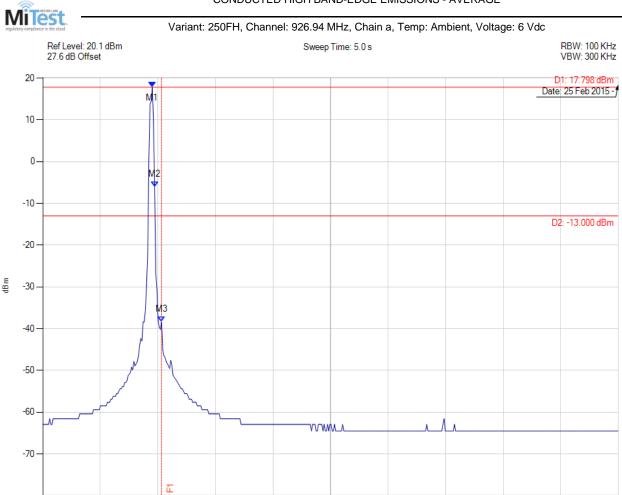
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 Page: 106 of 115

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 926.868 MHz : 17.864 dBm M2 : 927.246 MHz : -9.822 dBm M3 : 928.000 MHz : -39.675 dBm	Channel Frequency: 926.94 MHz

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)


Stop 978.000 MHz

Span 63.000 MHz

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 107 of 115

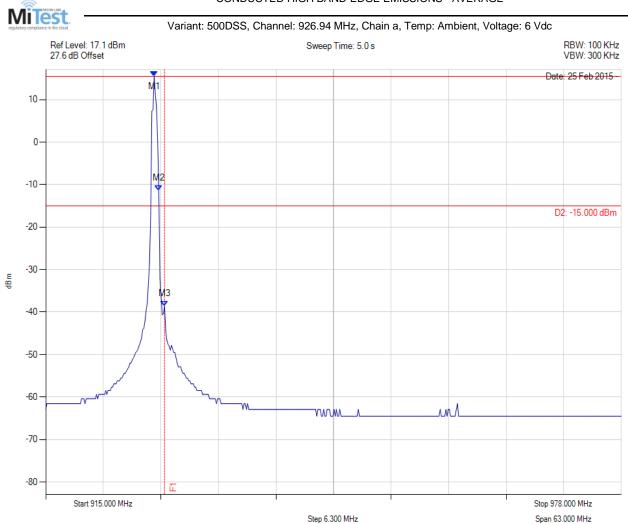
CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 926.994 MHz : 17.798 dBm M2 : 927.246 MHz : -6.038 dBm M3 : 928.000 MHz : -38.379 dBm	Channel Frequency: 926.94 MHz

Step 6.300 MHz

Back to Matrix

Start 915.000 MHz



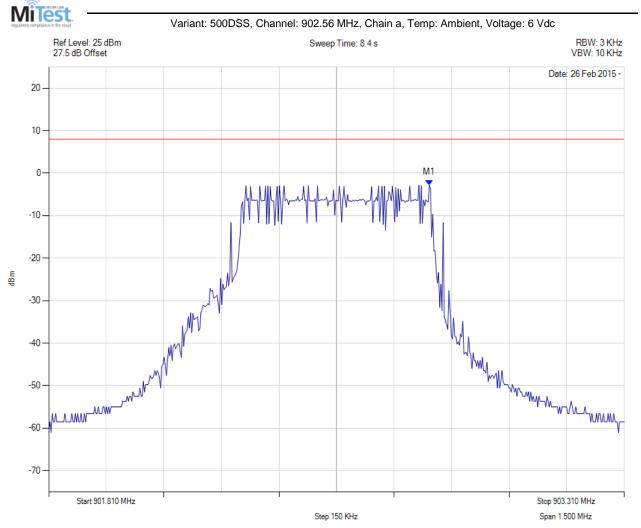
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 108 of 115

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 926.868 MHz : 15.479 dBm M2 : 927.373 MHz : -11.441 dBm M3 : 928.000 MHz : -38.641 dBm	Channel Frequency: 926.94 MHz


To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

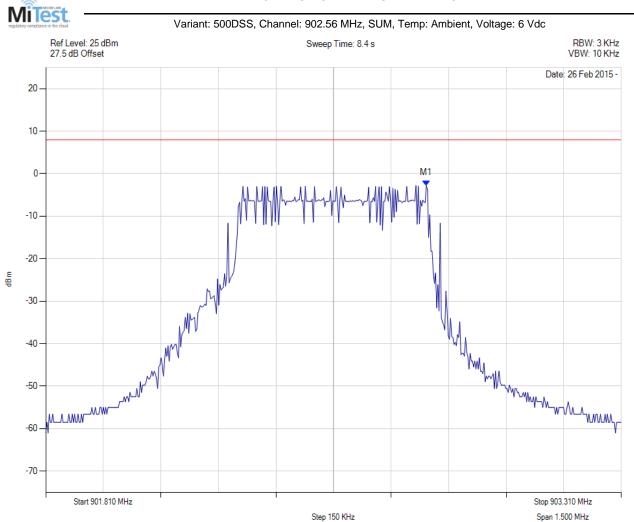
Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 109 of 115

10.7. Power Spectral Density

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 902.802 MHz : -2.800 dBm	Channel Frequency: 902.56 MHz
RF Atten (dB) = 20 Trace Mode = VIFW		



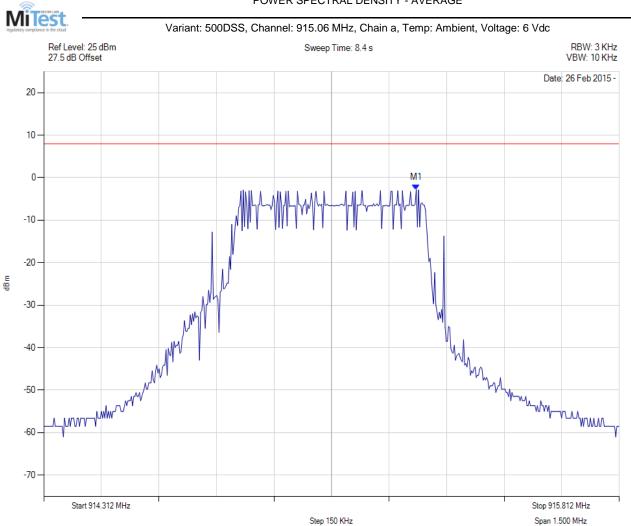
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 110 of 115

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 902.802 MHz : -2.800 dBm	Channel Frequency: 902.56 MHz



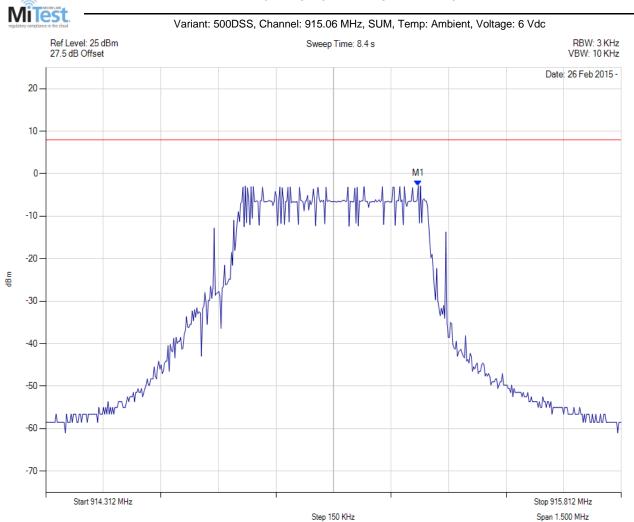
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 111 of 115

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 915.283 MHz : -2.821 dBm	Channel Frequency: 915.06 MHz
RF Atten (dB) = 20 Trace Mode = VIEW		



To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 112 of 115

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 915.283 MHz : -2.821 dBm	Channel Frequency: 915.06 MHz



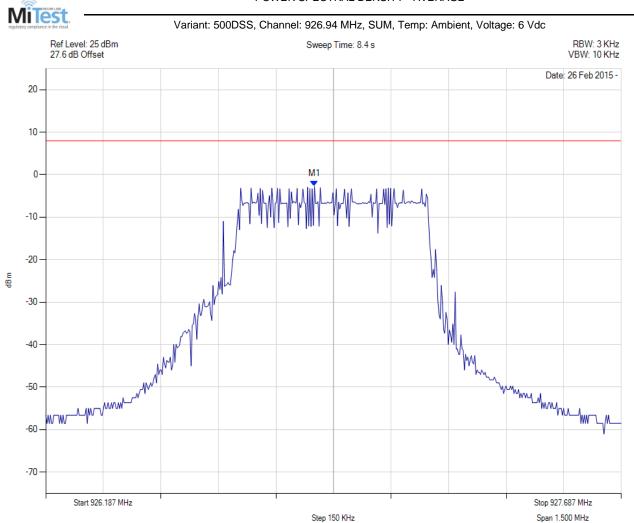
To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 113 of 115

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0	M1 : 926.887 MHz : -2.747 dBm	Channel Frequency: 926.94 MHz
RF Atten (dB) = 20 Trace Mode = VIEW		



To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Serial #: IOTA01-U3a 900 MHz Rev A

Issue Date: 8th April 2015 **Page:** 114 of 115

POWER SPECTRAL DENSITY - AVERAGE

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 926.887 MHz : -2.747 dBm	Channel Frequency: 926.94 MHz

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com